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A new technique for modeling the crack behaviors of concrete structures is described, where the
softening band inside the element is represented by two rod elements whose behaviors are based on
the fracture-oriented constitutive relations. This new method, like the discrete model, can reflect
the localized nature of cracking , and at the same time can easily be applied without the difficulty
of modifying the existing finite element mesh and pre-defining the concrete crack. In this paper,
examples are given to show the phenomenon of crack localization and to show the objectivity of

this method.
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1. INTRODUCTION

It is generally agreed that softening mechanism
in cementitious materials are based on microfrac-
ture processes that produce highly localized fail-
ure mode at zero and low-confining stress levels.
Concrete cracking at low-confined stress levels is
a localized phenomenon, which means that in
concrete structures, the material inside a crack
undergoes loading, while at the same time, the
material outside this crack undergoes unloading.
This leads to large strain localizing into this ma-
jor crack without affecting the surrounding ma-
terial.

Since the major nonlinearities of typical con-
crete structures are often caused by cracking, in
recent years, a lot of research works have been
done to develop the constitutive models for the
description of crack in not only concrete but also
in mortar and rocks, as shown in the review by
Bazant!). Up to now, to describe the cracking of
concrete, two different approaches are available:
the discrete approach and the smeared approach.

The discrete approach, first proposed by Ngo
and Scordelis?, is attractive physically, as it re-
flects the localized nature of cracking, but its nu-
merical implementation is hampered by the need
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concrete, crack, fracture mechanics, finite element, mesh independence, localiza-

for letting the cracks follow the element bound-
aries, thereby requiring the introduction of addi-
tional nodal points or rearrangement of the orig-
inal mesh. Even though Ingraffea and Saouma?
developed a procedure to automatically and lo-
cally modify an existing mesh, the discrete model
is not easy to apply in the analysis of arbitrary
structures.

The smeared approach was first introduced by
Rashid?, in which only the constitutive relation
expressed in terms of stresses and strains needs
to be modified in the element region when crack
occurs. In its original form, the smeared crack ap-
proach assumes the slope of the softening branch
to be a material property. Computationally, the
smeared approach is more practicable than the
discrete one, but when the traditional smeared
approach is used with a simple strength criterion
to detect the initiation and propagation of cracks,
the propagation of concrete cracks is dependent
on the width of the finite element, and if the
width of the element approaches zero, the stress
in the element tip approaches infinity, which im-
plies that the propagation of crack may be caused
by a small applied load, and the total energy dis-
sipated by cracks approaches zero. This leads
the analysis results to unobjectivity as shown by



Bazant and Cedolin®. To solve this problem,
the crack band model of Bafant and Oh® has
been proposed, and later, smeared fracture mod-
els were proposed by Nilsson and Oldenburg”,
William et al. 8 and Pramono and William®,
which require the proper choice of an internal
length normally associated with the element size.

Because of its simplicity in computation,
smeared model have been widely used in finite ele-
ment analysis, but using the smeared models, the
localized bandwidth of the concrete crack is repre-
sented by the element size. For some problems, as
pointed out by Shirai'® and Rots'!), it is doubt-
ful that the smeared model can suitably simulate
a localization of fracture and unloading behaviors
in surrounding region due to stress-locking phe-
nomenon resulting from the excessive shear stress
transfer along the crack, false compressive strut
action parallel to the crack and other reasons.

Other approaches, proposed by Ortiz et al.l?)
and Belytschko et al.’® | have been followed to de-
vise more objective failure models starting with
the assumption that the active zome of plastic
softening is embedded into larger zone of intact
behavior. But it is difficult to combine those
methods with fracture mechanics to analyze the
localized crack of concrete structures.

In view of this, it is worthwhile to develop a
way to correctly reflect the localized nature of
crack, in which large strain localizes inside the
crack without affecting the surrounding material
outside the crack, and at the same time to be
easily implemented into finite element program
to analyze arbitrary concrete structures without
pre-defining the concrete crack and modifying the
existing mesh.

In this research, an element with inner linkage
rods is introduced when crack occurring which is
judged by the maximum principle stress at the
center of the element and the tensile strength of
material. When a single crack occurs, the element
with inner linkage rods is composed of two large
unloading parts linked with rods which represent
the crack and follow fracture-oriented constitu-
tive relations. Actually, the element with inner
linkage rods is a substructure.

The fictitious crack model of H111erb0rg14) is
extended so that a suitable description of the
tension and shear response of a crack plane is
achieved. The method proposed considers the
existence of multiple cracks, and a consistent ap-
proach is obtained for closing and reopening of
cracks. To use this method to analyze concrete
structures, the only thing to do is first making
a subroutine using displacements control method
to describe the nonlinear behaviors of the sub-
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Rod A

Rod B

Fig. 1 The rod linkage element

structure and then implementing this subroutine
into the common used finite element programs.

Since it is most possible for plain concrete
structures to fail at the last stage with a ma-
jor localized crack. In this paper, three kinds
of structures of plain concrete (uniaxial tension,
pure bending and shearing) are analyzed to show
the phenomenon of crack localization. Also, dif-
ferent kinds of meshes are used to show the ob-
jectivity of this method.

The problem of rotating-crack is not included
in this method, and there are still some issues
to be resolved that how to use this method to
describe the crushing behavior of concrete.

It is also possible to use this method to analyze
the size effect of the reinforced concrete struc-
tures, but it is out of the scope of this paper on
this stage.

FINITE ELEMENT WITH INNER
LINKAGE RODS

2.

The linkage elements, originally proposed by
Ngo and Scordelis?), has been commonly used
for modeling the bond-slip behavior of reinforced
concrete structures. In this research, the linkage
element is used to represent the localized crack
and to link the unloading concretes on two sides
of this crack. This linkage element is composed of
two rods, which follow the fracture-oriented con-
stitutive relation. Those rod elements have been
used by other researchers!®)1®) to analyze the size
effect problems of reinforced concrete beams with
pre-defined cracks.

Fig.1 shows the rod linkage element. Rod A4 is
the rod for describing the tensile behavior of the
crack and Rod B is for the shear slip behavior of
the crack. Fig.2 and Fig.3 show the finite ele-
ment with inner linkage rods when a single crack
occurs. Points a and b, and points ¢ and d have
the same coordinates. Using this kind of element
makes it possible that the stress inside the crack
undergoes loading and that outside the crack un-
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Fig. 4 The element with inner linkage rods, case 3

dergoes unloading.

The procedures to implement this kind of ele-
ment can be described as follows:

1. For every element in the mesh the maxi-
mum principle stress at the center of the element
is calculated. The stress state at the center of
the element can simply be obtained by averag-
ing the stress at 2x2 Gauss points when 4-node
isoparametric elements are used, or directly using
one-point integration rule!”). This calculation is
repeated at every step of the solution process un-
til the maximum principle stress is equal to or
larger than the tensile strength of the material,
that means that a crack occurs through the cen-
ter of the element.

2. From this point on, the finite element where
the crack occurs, is replaced by the finite element
with inner linkage rods that is mentioned above.
The crack with angle a , shown in Fig.2 and
Fig.3, is normal to the maximum principle stress.
The crack length L can be calculated out and the
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Fig. 5 The fictitious crack model of Hillerborg
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Fig. 6 o-w curve used in the analysis
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section areas of Rod A and Rod B are equal to
Lt/2, where t is the thickness of this element. The
inner freedom related to points a, b, ¢ and d can
be eliminated at element level by means of static
condensation'® by this way the stiffness matrix
related with points 1,2,3 and 4 can be obtained.

When the crack goes through or near the di-
agonal nodes of the element, the finite element
with inner linkage rods shown in Fig.3 should
be used, otherwise the element shown in Fig.2
should be used to ensure that the element has a
good shape and.good performance. For the mul-
ticrack case which is often observed in the struc-
tures of slab and shell, the finite element with
inner rods as shown by Fig.4 can be used. With
regard to the examples taken into account in this
paper, the multicrack case seldom occurs or it is
not the major factor influencing the response of
the structures, this kind of element has not yet
been implemented into authors’ program.

3. FICTITIOUS CRACK MODEL

The fictitious crack model was first introduced
by Hillerborg, et al.'¥ and in its original form, it
is a discrete approach. It is of importance that in-
stead of describing the cracking process by a rela-
tion between stress and strain, the fictitious crack
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Fig. 7 The stress-strain curve inner linkage rod A
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model describes the behavior of the infinitely thin
cracked zone by a constitutive relation expressed
in terms of normal stress ¢ and the crack width
normal to the crack plane. When the crack opens
" the stress is not assumed to fall to zero at once,
but to decrease with increasing width, as shown
in Fig.5. At the crack width wy the stress falls to
zero. Energy dissipated per unit crack area Dy,
is related to the area under the o — w curve of
Fig.5,ie.,
w1
D = /0 odw = Gy (1)
where G is the fracture energy, i.e., the energy
required to create a fully opened crack plane of
unite area, and wy is shown in Fig.5.

In the application of the fictitious crack model,
the o—w curve may be chosen in different ways.
In the analysis of this paper, the curve shown in
Fig.6 was used. Note that Fig.5 and Fig.6 bear
the same area for Gy.

4. ROD ELEMENT
In this section, the fracture-oriented constitu-
tive relation of the rod element will be described.

(1) Rod element for simulating the ten-
sion behavior of the crack

In Fig.1, Rod A is used to describe the tension
behavior of the crack.
a) Loading behavior

To describe the loading behavior of Rod A, we
will adopt the same equations used by Zareen!®),
which are based on the fictitious crack model.

Assuming the rod has the unite length, the
loading stress-strain relation curve of Rod A can
be shown by Fig.7. We assume the initial stiff-
ness of the rod element Eg = 100 x F,., where E,
is the Young’s modulus of the concrete, in order
to make sure that the difference in displacements
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at two end of the rod is small enough before the
crack occurs.

The initial stiffness of the rod element FRg is
necessary in the case when the cracks do not oc-
cur at the same time on the two sides of the el-
ement, for example, for Fig.2, it is possible that
the maximum principle stresses at the element
center and point a are larger than tensile strength
of concrete while at point c it is less than tensile
strength of concrete. For the case when the cracks
occur at point @ and ¢ at the same time, there are
not differences between the results obtained with
and without the initial stiffness of the rod ele-
ment. Therefore, for general considerations, Fgr
is necessary.

The strain, stress and tangential stiffness can
be expressed as

fi
Ep = — 2
4 ER ( )
€1 =0.75—f’i (3)
Jt
Gy
g9 = b—+ 4
2 =54 (4)
and
Ege 0<e<e,
0.75f1(e — ¢
U ft_é{%{sgp) &p <e< e
B :_ file—a .
4(52—61) g1 <e<ey
0 e2<¢
(5)
Egr 0<e<Le
————Lgo'ls; gp<e< ey
E= 1 t” B (6)
_4(62 — E]_) <1 < £ -~ 52
0 go < €

where f; is the tensile strength and G is the frac-
ture energy of concrete.

b) TUnloading and reloading behavior

The constitutive equations described above ap-
ply when the crack are opening. In practice, it is
also important to have realistic models for the
closing and reopening of cracks, especially when
the crack localization phenomenon, which means
that in one portions of the concrete structures a -
major crack will open and the other cracks will
close, is concerned. Here the equations proposed
by Dahlblom and Ottosen!® are used.

Assume that at point (0y,e4), €p < €4 < €2,
the unloading is detected, the path of unloading
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Fig. 8 The unloading and reloading behaviors of rod A

will follow the Eq.(7) as shown by Fig.8a.

ngg - ﬁgul
T { =P, P=se ()
Er(e - Bey) £ < Py

where EFg has the same meaning as in Eq.(2). 3
is the material parameter. If 3 is chosen as zero,
this corresponds to fully recoverable crack width,
whereas, 3 = 1 corresponds to total irrecoverable
crack width, as shown in Fig.8c.

If ey > &y the unloading and reloading path
follow Fig.8b.

As the main point of this paper is to show the
objectivity of this method and that this method
can be used to describe the crack localization phe-
nomenon, the effect of changing 3 will not be pre-
sented in this paper. In this studies, £ is chosen
to be 0.

(2) Rod element for simulating the shear
slip behavior of the crack

The original fictitious crack model considers
only the behavior of a crack loaded normal to
the crack plane. In reality, crack planes are of-
ten exposed to shear. From the experimental
observation??), when the crack occurs, the tan-
gential crack displacement w; depends on both
the shear stress and the normal crack displace-
ment w,. Note that both the Rod A and Rod B
have the unit length, we can write

& = f(T75n) ( )
where ¢, is the strain of Rod B, and T is the stress
of Rod B and ¢, is the strain of Rod A.

For Eq.(8), a simplest form is used as'®

En
&t = —/T

9
o ©)
In order to fit with the experiment result!®), G,
is taken as 3.8 MPa.
Note that Eq.(8) has the same feature as the
fictitious crack model that it is expressed in the

8
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Fig. 9 Displacement of the rod element

stress-displacement relation form. This promises
the analytical result be objective.

Although experimental date showed a soften-
ing effect in the shear stress, we let it fall down
to and then remain to be zero when the magni-
tude of shear stress becomes larger than f,. It
is an assumption, however, as the plain concrete
fracture is mainly caused by the fracture Mode-I,
this assumption will not give rise to significant
effect on the analytical results.

TANGENTIAL STIFFNESS MA-
TRIX FOR ROD ELEMENT

5.

Fig.9 shows a rod element in global coordi-
nates X-Y, with angle 6 to X axis. The global dis-
placements at two ends are (Uy,V;) and (Us, V3).
The displacements of two end nodes with ref-
erence to the x-y local coordinates {u1,v1) and

s

where ¢ = cos 6 and s = sin 6
The strain along the rod can be written as

U — U ;
11
I (11)

U
|4

U
v

c
—8

S
4

(10)

& =



Fig. 10 The uniaxial stress-strain curve

where L is the length of the rod.
With respect to the global displacements, the
strain of the rod can be written as

_l_[c s —c —8][U1 Vl Us VZ]T
[B]{d} (12)

Lp
So the stiffness matrix of the rod with reference
to the global coordinate will be

~
<

Lgp T
(K] = A, / (B)” E [B da
b |
, 2 se =& —sc
AsE | —s¢ 2 —sc —s?
T Lg | - —sc & sc (13)
—s¢ —¢2 —sc &2

where E is the Young’s modulus of the rod, while
A, 1s the section area of the rod.

6. NUMERICAL EXAMPLE

The finite element used in this analysis is
a four-node quadrilateral element. Drucker-
Prager type constitutive equation with the uni-
axial stress-strain curve in Fig.10 is employed.

All the problems analyzed below are assumed
to be the plane stress problems. The purpose of
the calculation is not to compare results with ex-
perimental evidence, but rather to show that the
suggested method can reflect the localized nature
of cracking and is objective in the sense that for
decreasing finite element size the total energy dis-
sipated due to cracking approaches the correct
. value.

For each example, with respect to different load
level, the crack patterns, which indicate the ori-
entation and width of the cracks, will be shown.
The same magnifying factor will be used for all
the crack width in the same example, and when
the width of the crack is equal to zero (this
means the crack has closed), this crack will not
be drawn. From these crack patterns the proce-
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Fig. 11 Dimension and boundary condition of exam-
ple 1
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Fig. 12 Meshes used in example 1
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Fig. 13 Load-displacement curves for example 1

dure of opening and closing of the crack can be
seen clearly.

(1) Uniaxial tension

A plain concrete bar is subjected to prescribed
uniform displacements at both ends. The di-
mension and the supporting condition are shown
in Fig.11. The material properties are as fol-
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Fig. 14 Crack patt
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Fig. 15 Dimension and boundary condition for ex-
ample 2

‘mesh A

mesh B

Fig. 16 Meshes for example 2

lows: E, = 2.1 x 10°kgf/cm?, f, = 26.3kgf/cm?,
fi = 190kgf/cm? and Gy = 0.1kgf/cm.

Two kinds of mesh 15 x 8 and 8 x 4 are used to
demonstrate the objectivity of this method and
shown in Fig.12. The imperfection elements,
which are shown by the shadow element in Fig.12
are embedded in the center of two sides of the bar.
The imperfection element has the same material
properties as the other elements but the thickness
is reduced to 3cm.

The load-displacement curves are shown in
Fig.13 with two kinds of mesh used. The results
are shown in Fig.14 depicting the crack patterns
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Fig. 17 Load-displacement for example 2

at different load levels. The objectivity of this
method can be demonstrated by Fig.13.

(2) Pure bending

The concrete beam geometry is illustrated in
Fig.15. The portion between the two point loads
is subjected to pure bending. The material prop-
erties are the same as used in example 1.

Some researchers!®) have studied the size ef-
fect phenomenon of the same plain concrete beam
as shown in Fig.15, but with different material
properties.

Two kinds of mesh, mesh A and mesh B,
are used and shown in Fig.16. Fig.17 shows
the load-displacement curves at the center of the
lower side of the beam for mesh A and mesh B, re-
spectively. Corresponding to the steps marked in
Fig.17, the crack patterns are shown in Fig.18.

Actually, for this particular problem, the stress
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Fig. 18 Crack patterns for example 2

states at the same depth of the beam between
the two point load are the same. Between the
two point loads, cracks should occur in all the
elements in the bottom side of the beam at the
same certain load level. After that the cracks
* grow towards to the upper element and at the
same time the loading (crack opening) and un-
loading (crack closing) take place in the layers
of elements that already cracked. This crack
opening and closing procedures take place con-
tinuously and the crack opening element can be
one element, two elements or more. It is a bifur-
cation phenomenon. Without any imperfection
(like example 1) or small interfering, the bifur-
cation path, to which the calculation results will
go, seem to be determined by factors which are
affected by the specimen size, material proper-
ties, the mesh, the loading step, supporting con-
ditions, ete. For uniaxial tension problem, the bi-
furcation path will affect the post-peak response
of the specimen causing different post-peak load-
displacement curves corresponding to different bi-
furcation paths, but the values of the peak points
are the same. For this particular pure bending
case, since the bifurcation phenomenon occurs
before the peak point, the bifurcation path af-
fects not only the post-peak response of the spec-
imen, but also the pre-peak response, including
the value of the peak point. From Fig.18, it can
be seen that the failure is initiated by the for-
mation of crack process zone with microcracks in
the region of tensile stresses (step a). For mesh
A, at step d, which is the peak point, a major
crack had already dominated, at step g, crack lo-
calized with a major crack occurred with others
completely or almost completely closed. For mesh
B, at peak point of step f, two major cracks dom-
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Fig. 19 Dimension and boundary condition for ex-
ample 3

inated, and at step h, it shows the tendency that
eventually one major crack would occur. For this
example, the supporting condition is not symmet-
ric. The stresses of the elements on the same layer
between the two point loads would not absolutely
the same. Therefore, one major crack would oc-
cur at last, but when the dispersed cracks localize
to one crack will have effects on the response of
the structure as shown in Fig.17.

This example successfully show the crack lo-
calization phenomenon of the pure bending, but
for the teason stated above the objectivity of this
method can not be shown in this example.

(3) Shearing

The plain concrete wall is subjected to shear
displacement as illustrated in Fig.19. A series
of computation were carried out with uniformly
designed finite element meshes with increasing
refinement(4 x 4, 6 x 6 and 8 x 8). The progres-
sive development of cracks with regard to differ-
ent stages is depicted in Fig.20. The inherent
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Fig. 21 Load-displacement curves for example 3

objectivity of the numerical results with respect
to the choice of the finite element mesh is reason-
ably well demonstrated in Fig.21

In Fig.20, the crack opening and closing pro-
cedure is well demonstrated, and at step ¢ the
structure finally fails with a major failure zone.

7. CONCLUSIONS

In this paper, a new technique for modeling
the crack behaviors of concrete structures is pre-
sented, where the softening band (crack) inside

Stcp c
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Crack patterns for example 3

the element is represented by two rod elements
whose behavior is based on the fracture-oriented
constitutive relations. In this method, the nonlo-
cal parameters such as internal length measures
are not needed. It has been confirmed by the nu-
merical results in this paper that this new method
is objective with respect to the choice of the el-
ement size, can reflect the localized nature of
cracking and can be easily be implemented into
the commonly used finite element programs to
analyze any arbitrary concrete structures without
the difficulties of modifying the existing finite el-
ement mesh and pre-defining the concrete crack.
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