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Three-dimensional elasto-plastic and continuum fracture model for concrete, which had been originally
developed with reference to uniform stress field, is verified on struciural member level of non-uniformity. This
study adopts idealized square concrete cores purely confined by closed square lateral steel ties. The constitutive
model is examined in view of confining stress induced from lateral steel to core concrete and enhanced strength and
ductility of core concrete at the axial capacity of columns. The verified applicable range of the constitutive model is
clarified under practical stress conditions and paths arising in RC column members. The effect of loading rate on

the plasticity evolution is also discussed.

Key Words : constitutive law, confinement, plasticity, fracture, axial strength

1. INTRODUCTION

Computational mechanics has gained
considerable popularity owing to its versatility when
we treat structural member behaviors in practice.
The attractiveness of this approach is portrayed by
wide applicability to different configurations,
boundary and loading conditions. Here, one of the
most important conditions is the installation of
reliable constitutive laws for constituent materials
usedZ),B).

Though concrete can not be strictly categorized as
a continuum due to micro discontinuities, it can be
considered in a finite region on an average basis to
be a continjum. Through FEM it is possible to
simulate concrete structural behaviors, provided that
the constitutive relations incorporated are sound
representations of concrete. One of constitutive
models for concrete is the combined elasto-plastic
and continuum fracture model®. The original model
developed for 2D stress states had been enhanced to
represent  three-dimensional  non-linearity  in
concrete'”. This model had been developed and
verified under uniform stress fields at the material
level under hardening stage arising in the stress-
strain curves.
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It is indispensable to further examine the
applicability of any constitutive model under non-
uniform stress fields and realistic stress paths
generally encountered in actual reinforced concrete
as engineering problems'’. For this purpose, the
authors applied the constitutive model through FEM
to the problem of three-dimensional non-linear
behaviors of concrete columns under passive
confinement parted by lateral reinforcement in the
ascending part of stress-strain relation.

Here indispensable are reliable experimental
results which have simple and clear boundary
conditions and systematically arranged parameters.
On this line, the test program which consists of
square concrete columns confined with square
perfectly closed ties without longitudinal
reinforcement nor cover concrete was adopted'®. As
the most distinguishing aspect of this test program,
3D lateral tie strains were comprehensively
monitored to compute the average confinement
parted to the concrete core. Description of the
experimental program and related results are
discussed elsewhere'?

This paper presents the primary verification of
the three-dimensional elasto-plastic and continuum
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fracturing model for concrete confinement at member
level of stress non-uniformity and the range of
applicability of this microscopic approach in the
ascending branch of the mean axial stress-strain
relation. The concept of this process'” is again
illustrated in Fig.1.

2. THREE-DIMENSIONAL ANALYSIS OF
STRESS AND DAMAGE

(1) Constitutive law of concrete

The constitutive model of concrete used can be
schematically idealized as shown in Fig.2. The total
stress is identified as the assembly of internal
stresses developing over the non-damaged elasto-
plastic elements. Here, elastic strain is directly
proportional to internal stress intensity applied to
active non-damaged elasto-plastic elements. Thus,
the elastic strain is chosen to represent the internal

- stress intensity which governs the plasticity and
fracture in the concrete continuum with defects. An
index named fracture parameter (K) is introduced to
represent the ratio of active volume which can carry
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internal stress in concrete. The model basically
derives from the following four experimental facts
simply complied below. Details are discussed in
reference 10).

a) Fracture in hydrostatic stress state

It was found that the capacity to store volumetric
elastic strain energy is not affected by the level of 3D
confinement nor by the level of damage induced in
concrete'®. It means that the entire volume of
concrete is active with respect to the volumetric
elasticity. Fig.3 shows that regardless of the level of
applied confinement, the relationship between the
hydrostatic stress invariant (/;) and the volumetric
elastic strain invariant as (/,.) remains constant,
mathematically described as®,

11 = 3Kolle

¢))
I=c,/3 I,=¢,/3

where, K, is the volumetric elastic constant and o
and & are total stresses and elastic strain tensors,
respectively.

b) Fracture in shear

The level of damage caused by shear in concrete
influences the capacity of concrete to store shear
elastic strain energy'®. ~The continoum damage
represented by the fracture parameter K is evolved
by the internal shear stress intensity, while retarded
by volumetric confinement. Plot of the stress deviator
invariant against the elastic strain deviator invariant
in Fig.4 shows that the relationship between two is
affected by the level of confinement.

To represent the response of damaged concrete in
shear, the model adopts the relationship between total
stress deviator invariant (J,) and elastic strain
deviator invariant (J5.) as,
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where, F is a damage measure function of Ja, Jae,
and I, and Gy is the initial elastic shear stiffness.

)

Since the level of fracture is path dependent, the
maximum of the value, Fi, experienced in the past
loading history of concrete is taken as the value for F
in Eq.(2). If the updated value of F is smaller than
any previous value, the fracture condition is assumed
to be stable with no progress of damage. With higher
confinement, propagation of micro defects is
restrained. It implies that higher confinement results
in a larger fraction of concrete domain contributing
in shear mode resistance at a given shear elastic
strain.

It was found that when the fracture parameter K
becomes smaller than 0.25, strain localization in
compression is induced in concrete. Here, strain
field is no longer uniform and absolute strain is size-
dependent. Thus, this value is tentatively identified as
applicability limit of the model.

¢) Plasticity in shear

Plasticity in deviatoric shear denoted by Jyp is
advanced by the internal shear stress intensity
represented by J,. However, it was found that
deviatoric plasticity is not influenced by the
volumetric confinement as shown in Fig.5. This
effect is represented by plastic hardening function H
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where, Jie max is the maximum of J during past
loading histories, e is elastic strain deviator tensor,
and &, is plastic strain tensor. When the updated
value is lower than any previous value, evolution of
plasticity is assumed to be unchanged. Based on
uniformly confined experiments, plastic hardening
function, (H=H(J,)) has been proposed for normal
concrete.

Here, it must be reminded that the plastic
evolution function was formulated with reference to
the short-term loading test of concrete solids'®.
When stress rate arising in real structures would
differ from the condition on which the function H
was based, we have to take into account the time-
dependent plasticity in the verification process. In
fact, it was reported by Okamura et al.'” under 2D
states that plastic evolution law of concrete has to be
modified in terms of real loading rate produced in
target structures, and the following simple correction
factor is used for cyclic analysis of RC plate as,

sz'_'B'H(Jze) )

where, B=1.5 for laboratory structural experiments.

The authors hereafter discuss the difference of
loading rate between the material based test condition
and the structural reality with respect to the
correction factor. The use of correction factor (B) to
take into account the effect of loading rate is in
accordance to previous studies about the effect of
strain rate to the strength and ductility of plain and
confined concrete. It was found that higher strain
rate will increase the strength and ductility of plain
as well as confined concrete”””. It took only
several minutes to apply the load to the specimen
from zero to the peak in deriving the model. On the
other hand, several hours were needed in case of real
structures tested in laboratories. This difference in
the loading time affects the plastic evolution of
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concrete and the correction factor is adopted to take
into account this effect.

Since the time dependent fracturing and damage
evolution are reported to be comparatively less
affected by the stress rate'”, time dependent
fracturing will not be discussed in this study.

d) Plasticity in volume

The volumetric plastic strain (/) associated with
shear plasticity (J5,) is significantly affected by the
magnitude of confinement'”. This non-linearity
named shear dilatancy is indicated by the dilatancy
derivative (D) given in Eq.(5) and Eq.(6).

dIIp = D(IlerK)dJ}.‘p (5)

)

Based on experimental data, the dilatancy derivative
(D=D(l. , K) ) has been formulated'® and shown in
Fig.6. Increase in confinement causes this expansion
or dilatancy to be reduced.

d]]p = %depkk

Since the progress of volumetric plastic strain is
gradual according to the level of damage in the
concrete and confinement applied to it, continuous
function of dilatancy derivative (D) is utilized as,

)

The effect of Poisson’s ratio and confinement is

taken into account in D, and D, , respectively'”.

D=D,K* +D, (1-K)*

As stated above, the effect of confinement is
classified into continuum fracture and plasticity in
terms of volumetric and deviatoric aspects. The
above four relations and equations are the core of the
three-dimensional continuum fracture and plasticity
constittive law. By solving the above proposed
simultaneous equations, we have the incremental

constitutive equations in terms of total stress and
strains as,

dfc} = [M]([I]+[L] V'd{e} @®

where, [M] and [L] represent the fracture and
10)

plasticity matrices, respectively .

Owing to the combination of plasticity and
fracturing formula, the constitutive model covers
strain hardening and softening, continuously and
consistently. When higher confinement would be
created, evolution of fracturing in shear is restrained.
It coherently makes the overall behavior of concrete
more plastic as it is.

As stated above, the softening behavior can be
mathematically dealt with by the model proposed.
But, at this moment, the authors regard the post peak
softening as being out of applicability. Material
functions and coefficients are formulated as element
size-independency for simplicity. It means that the
model cannot be applied in general to strain softening
range in which the apparent constitutive relation is
much size-dependent. Then, the authors firstly
concentrate on the strain hardening 3D behaviors up
to the peak strength of size-independency even
though the model can originally cover the softening
zone.

(2) Model of Reinforcement

Steel bars used as lateral reinforcement were
modeled under two idealizations of truss members
only capable of resisting axial loads and beam
members having flexural and shear stiffness
incorporated.

With the first idealization of steel as truss model
which is simpler in analytical implementation, 3D
isoparametric element having just axial stiffness and
translational degree of freedom at nodes was
implemented. Since the rotational degree of freedom
is not incorporated, bending moment and shear force
developing along the element cannot be idealized.

For the second idealization of steel, Timoshenko
beam element'® was selected. In this element, a
plane section initially normal to the mid-surface
remains plane but not necessarily normal to it. This
condition allows transverse shear deformation. Both
translational displacement and rotational fields are
interpolated along the finite element. Then, the
flexural stiffness can be taken into account for larger
sections of steel bars. As the shear energy term is
involved, reduced integration scheme proposed by
Zienkiewicz'¥ is adopted for avoiding “shear
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locking”. Stress-strain relation assumed for steel is
the elastic perfect plastic model.

(3) Finite element idealization

Square members considered for this analysis has
axial symmetry which enables only one fourth of the
member in the lateral direction to be discretized as
finite elements. In the longitudinal direction, two
layers of concrete isoparametric elements with 20
nodes are applied which divide the half tie spacing
into two. To account for the non-uniformity in the
lateral direction four solid concrete -elements per
layer are adopted as shown in Fig.7. This
discretization was decided by conducting preliminary
check for mesh size convergence in the hardening
stage of columns concerned.

Loading is accomplished by applying forced axial
displacement to the top surface of the concrete with
bottom surface maintained as a fixed boundary.
Computation was conducted in the ascending part of
the concrete axial stress-strain behavior in
consideration of the mesh sensitivity for compression
softening.

One of core information adopted for verification
is mean axial stress-strain relation of columns. This
relation is a reflection of local plasticity and damage
of concrete in the light of overall response of
members. The other one is the mean confining stress
defined as, .

®

which represents the degree of confinement actually
induced from lateral reinforcing bars and is also
closely associated with the plastic dilatancy and
continuum fracturing model of concrete. Here, o is

the stress tensor of concrete and Ve is the volume of
the analysis domain.

The confinement effectiveness of lateral
reinforcement is quantified by confinement
effectiveness index denoted by o®™'® which is the
ratio of actually induced spatial average confining
stress at the peak strength of confined core to the
potential confinement capacity (Gyum) When all
lateral steel attains yield as, '

Gv
o=
] Gv,lim (10)
1
Gv,lim = _—2— pfy

where, p denotes the volumetric ratio of lateral
reinforcement to that of the concrete core, and f, is
the yield strength of steel.

Confinement effectiveness is reflected in increase
in the axial compressive capacity of = confined
concrete core and the related ductility. For verifying
micro-mechanical approach on member level, both
confinement effectiveness and capacity enhancement
have to be focused.

3. FLEXURAL EFFECT OF LATERAL
REINFORCING BARS

In RC structural analysis it is generally assumed
that reinforcing steel only carries axial stress as truss
or chord members. This hypothesis represents lateral
reinforcement member with finite axial stiffness and
infinitely small flexural one which would apply
confinement only at corners of square concrete core. -

Practically used lateral reinforcing bars however
have a finite flexural stiffness which could contribute
to the confinement mechanism. Neglecting this effect
might result in underestimating confinement
efficiency by steel. In implementation of 3D micro
mechanical constitutive models of concrete for
evaluating confinement phenomena, it is necessary to
identify the most appropriate modeling of lateral
steel. For this purpose steel modeling as truss and
beam elements have to be investigated.

To differentiate between two idealizations, results
of a special experiment creating the confinement
stress conditions that would be developed in only
corner confined concrete was used'”. Here, contact
between concrete and lateral steel was removed by
deformable spacing material, except at corners,
resulting in stress transfer only at four corers of the
square core. This condition creates only axial forces
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in ties. A normally confined column with the same
confinement parameters and the contact between
steel and concrete occurred at all locations was also
used for comparison. The confinement mechanisms
for-the two experiments are illustrated in Fig.8. To
simulate the experimental results of axial mean
stress-strain and confinement through FEM analysis,
steel was modeled as truss and Timoshenko’s beam
members for the two cases, respectively. Since
heavily reinforced columns possess larger diameter
bars  having unavoidable shear stiffness,
Timoshenko’s beam theory which allows shear
deformation is realistic and thought to be appropriate
as a lateral tie model.

The observed and computed axial peak strengths
of confined core given in Fig.9 for the corner action
case are seen to match very closely along the stress-
stain paths. Especially, accuracy of the member
strength has much to do with the constitutive model
for continuum fracturing.

On the other hand, computed deformability and
ductility are dominantly associated with the model
for plastic evolution. The mean axial strain at the
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peak load is seen to be higher for experiment as
compared with analysis with the original plastic
evolution law. This may be attributed to the strain
rate used in developing the microscopic concrete
model (10-100p/sec), which was higher than that
used in experiment (0.1-1p/sec). Fig.9 includes
analytical result based on factored plastic evolution
(B=1.5) as stated in Eq.(4). The strength gain
computed is not affected but the ductility prediction
is much improved.

These results show that the special experiment is
a reasonable physical representation of the truss
idealization of steel in the FEM simulation.

Similar results on the companion normal
specimen is shown in Fig.10. In this case the
experimentally developed peak strength, strain at
capacity as well as induced average confining stress
at the peak, are much higher than the special
experiment. This structural enhancement can be
directly attributed to the effect of contact or beam
action of lateral ties. Comparison with the FEM
analysis data based on beam elements show that,
peak strength as well as the spatial average confining
stress developed at the peak strength are very closely
matched by the FEM results.

Strain at the capacity is underestimated when the
original plastic evolution law is used, a trend similar
to what was identified through Fig.10. This
observation can be explained again on the grounds of
effect of strain rate used in the experimental
development of the microscopic concrete model. In
fact, when the same factored plasticity (B=1.5) is
applied, overall ductility is also improved.

As further clarification of the two idealization
methods, confinement stress uniformity at the critical
section of the core is compared. Critical section
governing the peak strength of the core is the
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midway point between two discretely placed
lateral ties. Results of FEM analytical method is
used to compute the distribution of local lateral
confining stress G. defined as the in-plane lateral
stress invariant given by Eq.(9).

Computed lateral confining stress distribution
under truss idealized case” is shown in three-
dimensional diagram of Fig.11. Similar diagram for
the case of beam idealized analysis is depicted in
Fig.12. At four corners, in-plane normal stresses in
x- and y-directions exactly get zero because concrete
at the corner of the critical section between ties is
exposed to free surfaces on which no external force
is applied in all directions. Then, the confining stress
defined by Eq.(9) becomes zero at four corners. It is

seen from these diagrams that the confinement stress -

distribution across the cross section of the core is
more uniform in the case of beam element analysis.
Furthermore, the absolute values of the confining
stresses are seen to be much higher in this case as
compared to truss element based analysis. It means
more confinement is applied to the core ‘concrete if
steel is modeled as beam element than truss element.
These  observations  further  indicate  the
appropriateness of modeling the confining
reinforcement as beam elements.

From these experimental and analytical
comparisons, it is clear that for simulation of general
confinement phenomena, lateral steel should be
modeled as beam elements rather than analytically
simpler truss elements in case of the heavily
reinforced columns of lateral steel. Even if the lateral
reinforcement would be light, larger diameter bars
with greater bending stiffness are used for
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confinement agent in the case of larger spacing.
Therefore, it is required to use beam idealization
regardless of the amount of lateral ties specified.

4. CONFINEMENT EFFECTIVENESS
- CAPACITY OF CORE CONCRETE -

The idealized experimental investigation was
conducted on a wide range of lateral reinforcement
content and spacing'”. Content of lateral
reinforcement is quantified in terms of volumetric
lateral reinforcement ratio (p). Spacing of lateral
reinforcement normalized by the minimum core
dimension (s/d) is used for geometry factor of lateral
ties. The confined core is assumed to be bound by
centerlines of peripheral lateral reinforcement.

Since the flexural and shear stiffness of lateral
ties is found to be dominant for confinement as
discussed in the previous chapter, the following FEM
analysis is based on steel idealized as beam elements.
Comparison of FEM simulation results pertaining to
confinement level and strength of confined core at its
peak strength, with results of experimental
program'? is given in Table 1. Here, the maximum
available confining stress denoted by oy in Eq.(10)
is reached if all lateral steel attains yield condition at
the core peak given by ¥5pf,.

(1) Axial Mean Stress and Confinement Stress

The relation of most interest in regard to the
macro behavior of confined concrete columns is the
mean axial stress-strain variation. It is the objective
of the microscopic approach to correctly predict this
non-linearity up to the peak strength of concrete.



Table 1 FEM analysis results at peak strength for confined
columns in the experimental program'”

Designation | Spac. | Average confining Strength of
and ratio | stress core concrete
Ce (s/d) | (o) (MPa)
Uncon | Confined
fined | (fec)
(eo)
Max. | Exp. | FEM Exp. | FEM
avail
able
C16-075 041 949 7.64]| 6.58 369 59.5| 50.7
high o/f
D19-104 0.581 9.24| 7.20| 543 3561 53.5]| 46.8
high o/f
019x2-232 1.201 8.49| 1.72] 1.60 352§ 39.0] 382
high /f
A09-042 0.22] 540 5.06| 471 35.6] 46.3]| 464
| medium r/f
H13-094 0.51] 4.99| 3.67| 3.69 3561 439] 433
medium t/f
116-150 0.83| 4.56| 2.11| 277 3561 42.6] 411
medium r/f
J19-225 1.26| 4.384 1.07} 176 35.6| 39.9| 388
medivm r/f

MO09-090 048] 2.52¢ 1.80} 212 35.2| 40.3] 400
low t/f
N13-192 1.04| 245]| 0.64| 141 352 37.7| 380
low r/f
P09-043 0.31] 7.13] 6.38]| 6.03 38.0| 53.0] 512
small core
$25-119 032| 6.61| 5.63| 554| 37.3| 513} 495
big core
T13-065 0.35] 7.22| 6.56| 5.84| 36.7| 51.8f 49.0
size effect .
flex. effect
U13-065-C 0.35] 7.22| 3.15( 292 358 41.1} 399
corner action
V16-075-LS | 0.41] 9.12| 7.18| 522| 27.5| 464 386
high r/f
lowf2
Note) Compression is specified positive in this table.

Through this approach, this curve is cumulatively
generated based on elasticity, plasticity and
continuum damage.

To understand the tendency of analytical method
as compared with experimental results, three pairs of
specimens are considered in the following
discussions. Since the yield strength of lateral steel
for this study is kept nearly constant, the
reinforcement ratio is a direct indicator of potential
confinement capacity.

The mean axial  stress-strain relations, both
experimental and computed, for nearly same (p=3%)
lateral reinforcement ratio with different spacing
ratios are studied first. This medium reinforcement
ratio was selected to present the standard conditions
used in the experimental program. Experimental and
analytical comparisons are given through Fig.13 for
closely tie spaced column and through Fig.14 for
more widely tie spaced one. Confinement
effectiveness index is also placed on the same axis
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with the spatial average confining stress for
indication of the level of confinement.

It is seen that for both columns FEM prediction
on the peak strength fairly matches. For the column
with lower spacing ratio, computed mean axial
stress-strain path matches quite well with the
experimental observation. The induced average
confining stress path is predicted fairly well by
analysis in the beginning of loading and also close to
the peak including the confinement produced at the
peak strength of the core.

In the case of higher spacing, mean axial stress-
strain path as well as confining stress path is very
closely predicted. Peak strength of core concrete and
the strain at peak strength are also predicted very
well.

The computed stress-strain relation is compared
with experimentally observed for low (p=1.5%) and
medium (p=2.8%) reinforcement ratio with spacing
ratio above unity. The spacing ratios are s/d=1.04
and s/d=1.26, respectively. Physical meaning of this
spacing condition is that the ties are arranged with a
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spacing more than the core size. The mean axial
stress-strain as well as induced average confining
stress versus mean axial strain of the core is given in
Fig.15 and Fig.17, respectively. For the lower
reinforcement ratio, strength is matched quite well.

It is observed that the experimental mean axial
strain at peak strength is lower than the analytical
prediction by about 50%. This discrepancy might be
attributed to the instability which occurs to the core
concrete close to the peak, since the spacing is quite
large. Experimental induced average confining stress
is also about 50% lower than the predictions by
analysis at the peak strength of the core. However,
the absolute values of average confining stress are
small.

For the medium reinforcement case presented by
Fig.17, the peak strength prediction is satisfactory.
Still overprediction of the strain at peak strength is
seen, similar to the previous case in Fig.15. Further
it is observed that the induced confinement variation
is predicted well until the peak strength of the
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experiment. Confinement at the peak strength of the
core is overpredicted by the analysis.

A typical set of curves for practically applicable
lower spacing ratio are considered as the third pair.
The mean axial stress-strain curve and induced
average confining stress against mean axial strain
curves are plotted in Fig.l6 for volumetric
reinforcement ratio of 3.0% with a spacing ratio of
0.51. The peak strength and axial stress-strain paths
are quite well matched for this case. The analytical
induced confining stress is also seen to vary quite
closely with the experimental curve. A deviation is
observed near the peak strength.

For the reinforcement ratio on the higher side
(p=4.4%), and spacing ratio of 0.35, comparison
curves are shown in Fig.18. Axial peak strength as
well as the axial mean stress-strain curves for the
analytical result and experimental observations is
closely maiched. However, little underprediction of
the experimental value is seen for the strain at peak
strength of the core. The induced confining stress is
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seen to match very closely with the experimental
value at the peak strength of the core.

It is observed that from the six comparisons
above, the peak strength is quite well predicted while
the strains at peak strength of the core are varying.
This could be attributed to the different strain rates
used in developing the material relations of the micro
model with respect to experiments compared as
stated before. It is noted from these curves that
generally, for lower spacing ratios, (i.e., closely
spaced ties) the predictions of peak strength as well
as confining stress level at peak strength are matched
quite well by the computational method. For higher
spacing conditions, the analytical method predicted
the peak strengths quite closely.

However, the analysis exhibits a general tendency
of slightly overpredicting the confining stress level at
the peak strength of the core for large spacing. In the
case of small reinforcement ratio with closer
arrangement of ties, both strength gain and
confinement effectiveness were fairly predicted. This
behavior will be discussed with other combination of
lateral reinforcement ratio and spacing in the later
section again.

(2) Cyclic loading

As a further discussion of the characteristics of
microscopic constitutive law based approach,
unloading and residual deformations are considered.
Fig.19 shows axial stress-strain relations of three
cases of square concrete cores and a circular core
with different confinement levels. These four levels
were generated with the same sized lateral tie placed
at different spacing, resulting in varying lateral
reinforcement - ratios.  For this analysis beam
idealization was adopted for square cores and truss
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idealization was used for circular core since the
bending moment never be introduced owing to the
point symmetry around the center of section. In the
simulations unloading was commenced at three
discrete levels of axial mean strain.

It is noteworthy that the residual axial strains are
not influenced by the different axial stress levels at
the start of unloading. Experimental verification for
this phenomenon is obtained from Ref. 8). Here,
laterally confined square as well as circular concrete
columns has been subjected to cyclic axial
compressive loading. At the conclusion of each
cycle, the residual axial strain is plotted against the
maximum axial strain to which the column had been
subjected, in Fig.20. It is seen that the above
relation is not influenced by the confining
arrangement or shape signifying different levels of
confinement. It can be said with reference to this
figure that the residual plastic deformation under
axial loading is not affected by the level of
confinement as formulated in Eq.(4).

This phenomenon incorporated into the
constitutive law by the relation indicated in Fig.5 in
section 2 is verified by above observations on
member level applicability. It is seen from this
figure that the relationship between plastic deviatoric
strain and elastic deviatoric strain is not influenced
by the confinement level.

Another advantage of confinement is identified by
this discussion, which allows confined concrete to
attain higher axial stress levels without generating
excess residual plastic deformations. The practical
significance is realized when confined members are
subjected to repeated overloading, but resulting in
lower permanent deformations indicating Dbetter
serviceability condition.
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(3) Spacing and Amount of Lateral
Reinforcement

Spacing and the amount of lateral reinforcement
which are most influential in the effect of
confinement at the peak strength of the confined
concrete core are addressed as further discussion of
the verification of the micro-mechanical approach.
For this purpose three ranges of reinforcement
content were selected. Reinforcement content given
as the volumetric reinforcement ratio is a direct
indicator of the potential confinement capacity since
steel yield strengths used were in a very close range
as mentioned earlier.

Confinement effectiveness index obtained from
experiments as well as computed with the FEM
analysis are compared for different spacing under the
three lateral reinforcement contents in Fig.21. Here
the FEM analysis results with lateral steel idealized
as beam elements are seen to be close with the
experimentally observed for closely spaced
conditions (s/d<0.6), in all three ranges of
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reinforcement content. For higher spacing a general
tendency of overprediction by FEM analysis is
observed.

As further verification Fig.22 shows the core
strength gains due to confinement at the peak
strength by experiment and analysis, in the same
ranges as discussed above. It is observed that for
lower to medium reinforcement content (p=1.5% -
p=3%) the strength gains are predicted quite well for
all spacing. For the higher reinforcement content
(p=6%) a general tendency of under-prediction of the
strength gain is shown by the analytical method.

In consideration of both confinement effectiveness
index and strength gain at the peak strength of
confined concrete core, it is seen that the FEM
analytical method is successful in simulating the
behavior when the lateral reinforcement is closely
placed (s/d < 0.6) and the content less than 4.4% by
reinforcement ratio. Reinforcement content of 4.4%
with lower spacing was also seen to produce good
comparison in both confinement effectiveness index
and strength gain as indicated through Fig.22. This



verified range is of much practical importance since
it represents the mostly adopted lateral reinforcement
configurations. Higher spacings are not suitable due
to the low confinement effectiveness and higher
lateral reinforcement ratios are not practicable in
generally confined columns = with longitudinal
reinforcement.

5. CONCLUSIONS

This study was aimed at verifying the non-linear
three-dimensional elasto-plastic and continuum
fracture model on laterally reinforced concrete
member level through FEM analytical method. For
the verification purpose, idealized experimental
results on axially loaded confined columns reported
elsewhere were used.

Based on the results of special experiment which
applied confinement only at corners with contact
between tie arms and concrete eliminated, the truss
idealization of the lateral steel in the FEM method
was verified. Through this verification it was
identified that steel should be modeled as beam
members capable of resisting flexure and shear, in
order to simulate actual confined concrete cores.
This is in contrast' to the common analytical
assumption of modeling reinforcement as truss
members. Comparisons were carried out between
typical experimental results and analysis based on
beam idealization of reinforcing steel. Mean axial
stress-strain relations until the peak strength of
confined concrete were compared in conjunction with
spatial average confining stress. Special attention
was paid to the peak strength level due to its
significance.

FEM simulations of axial cyclic loading of
confined concrete indicated that the confinement level
does not influence the residual strain when the
maximum induced strain experienced in the loading
paths be the same. This was verified by experimental
results of cyclically loaded concrete cores.

From the comparisons it is concluded that the
behavioral trends observed in experiments were
closely simulated by the analytical method
throughout the lateral reinforcement detailing ranges.
On a quantitative basis, the 3-Dimensional FEM
method is identified to be effective in simulating the
confinement effectiveness and strength enhancement,
when smaller spacings (s/d <0.6) are adopted with
medium to low reinforcement ratios (p<4.4%).
These ranges are significant since the verified
applicability of the analytical method represents the
practical application domain.
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In the case where much heavy reinforcement be
arranged (p>4.4%), computation based on the
constitutive model brings about underestimation of
the strength of confined cores. This is thought to be
rooted in the insufficient accuracy of the fracture
evolution model in the constitutive law under higher
confinement conditions as being pointed out in the
reference 10). For further improvement of the
constitutive model, the plasticity and fracturing
evolution rules under much higher confinement
conditions should be promoted.
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