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ON THE GENERALIZATION OF CERRUTI’S PROBLEM
IN AN ELASTIC HALF-SPACE
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A singular boundary-value problem of an elastic half-space subjected to a force vector at one point of the surface
is solved. The force vector has three components which are two tangential and one normal forces to the surface.
Solutions to the problem are expressed in orthogonal curvilinear coordinates and are applied to rectangular
Cartesian, cylindrical and spherical coordinates, as examples of the orthogonal curvilinear coordinates. The
expressions for displacement and stress components are demonstrated in these coordinate systems. They are
coincident with the solutions of Cerruti’s and Boussinesq’s problems when the three components of the force vector
are specialized.
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1. INTRODUCTION

This paper is concerned with a method of

As some of three-dimensional problems of
elasticity, there are singular boundary-value prob-
lems for an infinite elastic medium and an elastic
half-space. Kelvin’s, Cerruti’s and Boussinesq’s
problems”? are well known. Kelvin’s problem is
one where one point in the infinite elastic medium
is subjected to a concentrated force. Cerruti’s and
Boussinesq’s problems are ones where one point at
the surface of the elastic half-space is subjected to a
tangential force and a normal force, respectively.
The problem where one interior point of the elastic
half-space is subjected to a vertical or a horizontal
force has been solved by Mindlin®. His solution is
applied to some boundary-value problems for finite
solids by integrating the solution.

For Cerruti’s problem among these problems,
Saada" has briefly stated the process of induction
which used the superposition of the Galerkin
vectors. On the other hand, Lur’e? has stated the
process of induction which used potentials of
simple layers with densities equal to given forces.
Their methods of solution seem, however, to
slightly lack the details and the simplicity of the
analysis as far as they are concerned with methods
of solution to boundary-value problems. Judging
from their methods, Cerruti’s problem seems to be
a little more complicated than Kelvin’s or Bou-
ssinesq’s problem.

solution to a singular boundary-value problem
where one point at the surface of the elastic half-
space is subjected to a force vector with three
components, i.e., two tangential and one normal
forces. The problem reduces to Boussinesq’s
problem when two tangential forces are neglected
and to Cerruti’s problem when one normal and one
tangential forces are neglected. Therefore, the
problem is considered to be the generalization of
Cerruti’s or Boussinesq’s problem. Although the
solutions of Cerruti’s and Boussinesq’s problems
have been represented in specific coordinate
systems so far, the solutions in this paper are
represented in the expressions for a displacement
vector and a stress tensor which are applicable to
arbitrary coordinate systems belonging to orthog-
onal curvilinear coordinates. From the viewpoint of
practice, the solutions are applied to rectangular
Cartesian, cylindrical and spherical coordinates
and demonstrate the concrete expressions for
displacement and stress components in these
coordinate systems.

2. BASIC AND SINGULAR SOLUTIONS

We consider a singular boundary-value problem
where the surface of an elastic half-space is
subjected to a force vector 8 at one point, as shown
in Fig.1. In this case, the force vector S is given in
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Fig.1 Coordinate system of elastic half-space.

the form

S: S,z'i+ Syj+Szk: [S.Z‘y Sl/r SZ] ( 1 )
in which i, j and k denote unit vectors in
rectangular Cartesian coordinates.

(1) The Generalized Boussinesq Solution
Using the generalized Boussinesq solution® for a
three-dimensional elasticity solution, it is expressed
in orthogonal curvilinear coordinates as
2Gu=grad (Ap+r-1)—4(1—v)a
+2rotd (2)
in which
V=0, VZ22=0, V29=0 (3a-c)
and G and v denote the shear modulus and
Poisson’s ratio, respectively, and u and r denote a
displacement vector and a position vector, respec-
tively. If we let £, denote a stress vector, it is
expressed as”

t,,=2c[?”2undivu+ (n-grad)u

+%(n><rotu)] (4)

in which n denotes a unit normal vector. Furth-
ermore, if we let o, denote a stress tensor, it is
expressed as

On = tnl ( 5 )
in which [ denotes a unit tangential vector or a unit
normal vector. From Egs.(3a-c), the particular
solutions to scalar and vector potentials are
obtained as

D.
ho=Blog (o 2) + (6)
_ P
'2_87r(1-u)p (7)
9=Clog(p+2z) (8)

in which B, D, P and C denote an unknown
constant scalar and unknown constant vectors,

respectively, that is,
D= Dyi+ Dzj= [Dy, Ds, 0] (9)
P=Pii+P;j+Psk= [Py, Py, Ps] (10)
C=Cii+Cyj=1[C,, Cy, 0] (11)
If we substitute Egs.(6), (7) and ( 8) into Eq.
(2), we obtain an expression for the displacement
vector. Furthermore, from the expression, Eqgs.
(4) and (5), we obtain the stress vector and the
stress tensor. To make the explanation brief, we
express the displacement vector, the stress vector
and the stress tensor in the sum of four solutions.
Then, we have

26u=2G (u+u?+u®+u?) (12a)
b=t 6P+ £+ 0 (12b)
O = 0 + 0P+ 0 + o (12¢)

To induce the four solutions as stated below, we
use the following formulae” :

grad(@¢ ) =¢gradp+pgrad¢ (13a)
div(@A)=(grade)-A+¢divd (13b)
rot (@A )= (gradg ) X A+g¢rotd (13¢)
div(AXB)=B-rotA—ArotB (13d)
rot(AXB)=(B-grad)A— (A-grad)B
+AdivB— BdivA (13e)
grad(4-B)=(B-grad)A+ (A-grad) B
+BXrotA+A XrotB (13f)
(A-grad)r=A, rotr=0 (13g,h)
divr.=3, divgrade="VZp (131, §)
rot gradg=0, divrotA=0 (13k, 1)

in which ¢, ¢ and A, B are scalar fields and vector
fields, respectively.

(2) Solution to Double Line of Center of
Dilatation
The first term of Eq.(12a) is a solution corre-
sponding to a double line of center of dilatation
which is concerned with a double force along the x
and y axes with moments about the y and x axes
and is as follows :
D-r
otz
Substituting Eq.(14a) into Eq.( 4 ) and performing
very complicated vector operations, the stress
vector is obtained in the form
1
W <D(n' rt+onk)
+ (n-D) (rt+pk)+(D-r)n
D-r

—_— + .
Flot2) {r(Bo+z)(n-r)

+2p2(n~k)]+2p2k(n-r+pn-k)}>
(14b)

2Gu'Y=grad (14a)

(1) —
n

Then, from Eq.(5), we obtain
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(0 —

m<(D r)é,+(D-1)(nr

+on-k)+ (n-D)(rl+ok-1)
_Dr .. )
(012 {(r-)[Bpt+z)(nr)

+20°(n-k)1+20°(k-1)(nr
+pn-k)}>

in which 0. denotes Kronecker’s delta :

5= 1 for
0 for

(14¢)

I=n

I*n (15)

(3) Solution of Kelvin’s Problem

The second term of Eq.(12a) is the solution of
Kelvin’s problem where one point in an infinite
elastic medium is subjected to a force vector P and
is as follows :

1
@) _ . —_
2Gu 877.'(1‘“”)0[(3 4JJ)P
+~i(P'2")"] (16a)
0
Substituting Eq.(16a) into Eq.(4), the stress
vector is obtained in the form
1—2yp
Dom = ZZ . — .
Byl (LU CRAT
3
—(nP)r——————(P-r)
) (1—2»)92(
. (n-r)r] (16b)

Then, from Eq.(5), we obtain

2 1—2y . —(n- .
ofp = 8n(1_u)p3[(Pr)5nz (nr) (P-1)
—(n-P)(r'l)‘“(T_*ZSDW(PT)

() () (16¢)

(4) Solution to Line of Center of Rotation

The third term of Eq.(12a) is a solution
corresponding to a line of center of rotation which
is concerned with a double force along the y and x
axes with moments about the x and y axes and is as
follows :

2Gu®=2rot[Clog (o+2)]
Substituting Eq.(17a) into Eq.(4),
vector is obtained in the form

;3)-—£<(ka)(" r) p_lr_z[r

(17a)
the stress

ok (P IR K)

1

—on- (ka)] _m{(r'C)
‘[an
0

]

Then, from Eq.(5), we obtain
o nr_ k-l
o {(ka) -
MM_)
otz
nxl
—on- (ka)] +m

+oky)ocl]

p+z(an+ank)]

(17b)

'[r'(CXk)<%+

: [(r- c) (% (17¢)

(5) Solution to Line of Center of Dilatation

The fourth term of Eq.(12a) is a solution
corresponding to a line of center of dilatation which
is concerned with a single force along the z axis
without moments and is as follows :

2Gu*®=B grad log (p+2) (18a)
Substituting Eq.(18a) into Eq.(4), the stress
vector is obtained in the form
B k
4) — - . .
—L [ (20+
2( + )[(Zp z)n'r
+p2n-k]] (18b)

Then, from Eq.(5), we obtain
ol
(4) — —
Oni _p(p+z) O 0
__rl
o*(otz)

l
1, (nrton-k)

[@o+2)n-rtptn-k1] (180)

3. BOUNDARY AND EQUILIBRIUM
CONDITIONS

Boundary conditions at the surface except the
origin of the elastic half-space become
atz=0, 0.=0, 0.=0, 0,=0 (19a-c)
in which ¢.., 0.; and o,, denote stress components,
and equilibrium conditions become
R+8=0,M=0 (20a, b)
in which

r=/ fz t,do= Ry, Ry, R.] (21a)
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M= [ (rxtydo=1M., M, M) (21b)

and X and do denote the surface of a hemisphere
with radius p and the infinitesimal area on the
surface, respectively. Introducing spherical coor-
dinates (o, ¢, ¢)), boundary conditions (19a-c)
become

(0'¢¢)¢=7[/2:O, (223, b)

(046) p=r2=0 (22¢)
and resultant force (21a) and resultant moment
(21b) are expressed as”

2r n/2 .
erpzﬁ fo [(0pp sin@+ 0p4 cosgp )cos O

(O'mﬁ) g=n2=0

— Gy 5inf 1singdpdod (23a)
Re=0* [ [ 100y sing+ 0y cosg )sing

+ 0,6 cos B 1singdpdf (23b)
Re=0* [ [ (6,5 cosp—0s sing)

singdgdt (23¢)

2 /2
M= _paj; j; (054 sinf+ 0,5 cospcos )

-sinpdodo (24a)
21 n/2
M,,=,o3j; j; (056 cos— 0p cospsind )
“singdpdd (24b)
2m w/2
Mz=psj; j; Ops singsingdpdt (24c)

As seen in Eqs.(22a) to (24c), the stress compo-
nents in the spherical coordinates are needed to
satisfy the boundary and equilibrium conditions.
They are directly written from Egs.(14c), (16c),
(17c) and (18c) by making use of the following
relationships :

r=1[p,0,0], z=pcos¢ (25a,b)
i= [sin¢cos b, cosgcosfl, ~sinb ] (25¢)
J= [singsind, cos¢sind, cosb | (25d)
k=[cos¢, —sing, 0] (25¢)
From Eq.(14c), we obtain
o1 =0;
(1) — 1—cosg - .
O3 2 (1+o0sg )sing (D1 cosf+D; sinf);
(1) — 1 .
os = (D 0+D,; sinf);
Opg p2(1+cos¢)( 1 COS 2 S1N )
(1) 1—cos¢ .
= D — .
O p2(1+cos¢)sin¢( 18in@—D, cosf);
1 .
oé},)zm(Dl sinf—D, cosf) (26a-¢)

From Eq.(16c), we obtain

2— . .
05;27):?_]”))02[(& cosf+P; sinf )sing
+Pscos¢l;
o= %gﬁ[(ﬂ cos 04 P, sinf)sing
+P;cos¢ |;
Gﬁ»):iz"a—[(ﬂ cosf+ Py sinf )cos¢
8r(1—v)p?
—Pysing 1
05 =0;
1—2 .
o8 = —W_:)‘)E(Pl sinf—P; cosf) (27a-¢)

From Eq.(17c), we obtain

o= —ﬁiqﬁ—)(a sinf—Cy cosf);
oéﬁeﬁs—ifi?(cl sinf—Cy cosf);

o9 = —#(2—%) (C sinf—Cs cos8);
ogy:;;(li”;—ﬁsm(cl cos6-+Cy sinf);

058 = _%(2 ;> (Cycosf+C,smb);

0 1 +cos¢
(28a-¢)
From Eq.(18c), we obtain
B B cos¢
oW=—2 Gw-_ Dcos¢
o o # 0?(1+cosg¢)
Bsing
W= 2SNP .
o0 o*(1+cos¢) 7%
o¥=0 {29a-¢)

The required stress components are each sum of

four solutions with superscripts ( 1), (2), (3) and

(4) and are expressed in the form
G0 = 0ay + 055 + 055 05y
................................. (30)
Cos=0s8 + 03+ 0,3 + a8

From Eq.(30), stress components Gy, 0,0 and 0y at

¢=mn/2 become

__cosfl 1—2y
(O4g) g=nre= e [D1_87r(1—u)P1_2C2]
sinf 1—2v
+ 0 [DZ 87r(1—u)P2+2C1]
(31a)
(0'045) g=n/2= C(z)szﬁ (D1_ Cz) - Sulﬁ (D2+ c1)
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1 12y
[87r(l—u) ~ ] (31b)
(0¢e) p=m/2 ™ _ﬂnz_q( —Cpt+—— cosf
o 0°

Substituting 0,,, 0,5 and o0, in Eq.(30) into
Eqgs.(23a-c) and paying attention to

/2 sm¢ _
j; 4—1+cos¢d¢*bg2 (32a)
T2cos¢psing ..
[reesgng P dg=1-log? (32b)
we obtain the resultant forces as
R=— n(DZ—ﬁHCI) (33b)
RZ=%—27IB (33¢)

Furthermore, substituting 0,, and 0,6 in Eq.(30)
into Egs.(24a-c), we obtain the resultant moments
as

M=o [Dr%%ﬁcl] (342)
P1 -

M,=—np [Dl—g;r(—%l*_%%)‘—ZCz] (34b)

M,=0 (34c)

Substituting Egs.(31a-c) into boundary conditions
(22a-c), we obtain

1—2y ‘
Dl—mpl—2(:2=0 (35a)
1—
D;— m&ﬂcl— (35b)
— (=0, D,+C=0 (35¢,d)
1—2yp _
gr(i—p)ls B=0 (35¢)

Next, substituting Eqs.(33a-c) into equilibrium
condition (20a), we obtain

—a(Di— = 3C.) +8.=0 (36a)
—n<D2—%+3C1>+S,,=O (36b)
5 prB+8.=0 (36¢)

Last, substituting Egs.(34a-c) into equilibrium
condition (20b), we obtain

1—2y
Dz”ml’z-k?cl— (37a)
1—2p
D,— m —2C,=0 (37b)

If Eqgs.(35a, b) are satisfied, Egs.(37a, b) are

automatically satisfied. Therefore, solving the
system of linear algebraic equations (35a-¢) and
(363"C) with Dl, Dz, Pl, Pz, P3, Cl, Cz and B, the
unknown constants are determined as

1—2y _1=2y

Dl——— SI, DZ_ 27[ Sll;
P1:_4(1_V)Sz, Pz=——4(1—u)S,,;
1—2
Py=—4(1-v)S,, C=—"5"S,
1—-2v 1—2p
C,= B=—-525, (38a-h)
That is
p=1 o S (39a)
P=—4(1—v)I[S,, S,, S, (39b)
c=1- 2”[ S, S, 01 (39¢)
1—2v
B=——5""5, (39d)

Thus, the present problem was completely solved.

4. SOLUTIONS OF THE GENERAL-
IZED CERRUTI PROBLEM

If we substitute the known constants obtained in
the foregoing chapter into Egs.(14a, c), (16a, c),
(17a, ¢) and (18a, ¢) and find the sum of four
results, we obtain the solutions to the displacement
vector and the stress tensor.

Substituting known constant vector (39a) into
Egs. (14a) and (14c), we obtain the following
solution :

2G (1>_1A S

o <9fadp+z

—S-kgrad (40a)

p+z>
o _ 172y

27 p(p+z)z
+on-k)+8-n(rltpk-l)

__8r )
o (ot2) {rilBo+z)nr

+202n~k]+2p2k‘l(n-r+pn-k)}

(S rdut S Un-r

— (8- k) ket L Lo

+20°n-k1+ (o—2z)k'n

1>

Substituting known constant vector (39b) into
Eqgs.(16a) and (16c), we obtain the following
solution :

p+z[

(40b)
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2Gu(2)_. [(3 Av) S+ (S- r)r] (41a)
o
n_1—2v
021)—?03[S'r5n’,—8-l(n-r)—S'n(r-l)
___38r . .
—__“(1*2)))102(" r)(r l)] (41b)

Substituting known constant vector (39¢) into
Eqgs.(17a) and (17¢), we obtain the following
solution :

2Cu @_1= 2V(S><k)><gradlog(p+2) (42a)

Les: N

12y nr_k
ap="_Hls 0"

__nxl
2(ot2z)

)-o(sxm)]

rmrigk) s

Jesxar (T

oS-k }
——=——Akl)(n'rtonk

Gy kD (et pnk)

Substituting known constant (39d) into Eqs.(18a)
and (18c), we obtain the following solution :

r+pk
otz

(42b)

2Gu(‘“:—1 (43a)
e 172V k-l
Onf'=— an(p+z)s k[ﬁnl o+ (n r
+pn'k)——2(“+—)“[(2p+z)n r
+p2n'k]] (43b)

As a result, substituting solutions (40a), (41a),
(42a) and (43a) into Eq.(12a) and putting in order,
the displacement vector is expressed in the form

1= 2y +(S- r)grad

2Gu=—5_ {p+z

+ o G—av)s+

_ 1
o{(1—2v
+2(8Xk)Xgradlog(p+2z)

(S)
A

~(s- k)grad[ —+log (o+2) |} (44)

and substituting solutions (40b), (41b), (42b) and
(43b) into Eq.(12¢) and putting in order, the stress
tensor is expressed in the form

1—2y 20+z . .
270 N\ (ots )ZS r(r-k)o,
S-1 [20+z
(p+z)2[ 2 rk(nr)—on k]
S'n
( +2)?

On =

(o+2)?
Gt

-(p+2z)k-l]—s-r{5é’%_%[%

+(er);(n'r+pn'k)]—%
[m{(&o-f-z)n r+20%n-k}
sl e
-r(1+%>—p(sxk)]*79§_.—l‘;z
rI L E————

'[2n'r(r'k)—.0(0—z)n'k]}> (45)

Solutions (44) and (45) to the displacement vector
and the stress tensor can be used for arbitrary
coordinate systems belonging to the orthogonal
curvilinear coordinates.

5. EXPRESSIONS FOR DISPLACE-
MENT AND STRESS COMPONENTS
IN SPECIFIC COORDINATE SYS-
TEMS

In this chapter, we consider solutions (44) and
(45) in specific coordinate systems, for instance,
rectangular Cartesian, cylindrical and spherical
coordinates.

(1) Rectangular Cartesian Coordinates
In rectangular Cartesian coordinates (x, ¥, z), we
have the following relationships :
r=1[z,y,2), p=(z*+y*+z9z (46a,b)
S= [S.r, Sz/, Sz] (460)
From solution (44) and relationships (46a-c), the
displacement components #., #, and wu, are
expressed as

S: 1—2v zt
2Gu,= 27p [1+— otz (p_p-f-z)]
Syzy [;_ 1—2y ]
2rp L (p+2)?
S.x g__l—Zu)
2mo < pr otz (47a)
Sxxy[l 1—2yp ]
2Gu,= —
" 2mp 0> (p+z)?
S, y* 1—2u< oy )
2mp [H_ + o+z 0 p+z]
Sy 7_1—2u>
27p (pz otz (47b)
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2Gu, = Slx< 1—2v>

2mp\p2 = ptz
+S,,y( +1—2y>
2mp\p? otz

Foml2a-m+E 2]

47¢)

Furthermore, from solution (45) and relationships
(46a-c), the stress components 0y, ***, Oz are
expressed as

pom— S 1= (0 200%)]

2ol o* (ptz)? ptz
_M _3;7/;2_*1,1( 2,2 20?/2)]
2mp*l 0* (o+2)? otz
S, {sz 1—2»[ _y2(2p+z)”
27tp o otz 0 (o+2z)
(48a)
Sz [3y? 1*2))( . 2 pr2>]
P Sy 2
w 27rp3[p2 (p+2z)* S otz
_M[_?’_yi___l}i< 2 .2 201'2)]
2Pt 0 (p+z)? o otz
S; [3y22_1-2u[ _x2(2p+z)”
27fp p“ ﬂ+z pz(p+z)
(48b)
_ 3S;xz* 3S47*  3S.2°
Oz 2mp® 2ro®  2mp° (48<)
_ _3Sxyz_3S;y*z  3Syz’
¥ 2mp® 2mp° 2mp® (484)
38.x%2 3S,xyz  3S.x7’
G — _ _
= 2mp° 2m° 27p° (48¢2)
Szy [33:2 1—2y < 2px2>
Oy =~ RE S (g NS
i 2medl o (ptz)? N ]
_ S [§_yi+ 1—2y ( 2_ 2_201/2>]
2ro*l of  (p+z)? e otz
S.xy[3z  (1—2v)(2p+2z)
— 48
27rp3[pZ (o+2)? ] (450
If we set that
S,=P, §,=0, S,=0 (49a-c)

solutions (47a-c) and (48a-f) are coincident with the
solutions” of Cerruti’s problem and Mindlin’s
solution” for the case of ¢=0. Furthermore, if we
set that

S:=0, §,=0, S.=P (50a-c)
solutions (47a-c) and (48a-f) are coincident with the
solutions” of Boussinesq’s problem and Mindlin’s
solution” for the case of ¢=0.

(2) Cylindrical Coordinates
In cylindrical coordinates (r, 8, 2), we have the
following relationships :

r=1Ir,0,21, p=(r*+z9z (51a,b)
S=1S,, S5, S:1, k=e. (51c, d)
S,= Sz cos 0+ S, sinf (51e)
Se=—S; sinf+S, cosf, S.=5; (511, g)

in which e, denotes a unit vector in the cylindrical
coordinates. From solution (44) and relationships
(51a-g), the displacement components #,, #, and u.
are expressed as

2

2Gur:*2?1z;(51c050+5,,sin0)[1+§
Fa-2) =
(5t (520)
2Gus= =5, (Sx sinf=S, cost)
Jr+a- 2u)p+z] (52b)
26U =51 (S:cos0+8, 5ind) (§+ lpfz”)
+2§m[ S+20-v)] (52¢)

Furthermore, from solution (45) and relationships
(51a-g), the stress components Oy, ***, Oy are
expressed as

’ , 372
Oy = —%(SI cosf+S, sinf) [_‘0—2
2
- (1- Zy)ﬁ]
S, [37%z
-2 [ . +z] (53a)
1—29 v rz220+2)
= g Secost+ S, sind) EATES
Sz(l 2v){z __p
ompt \0 p+z> (53b)
2 3
b= — 2728, cos 45, sinf) — L (53c)
270° 2mo°
=0 (53d)
Oy =— 372(5;005(94-5 smﬁ)_gszm (53¢)
2mp°
_ (Q—2v)r .
aye—m(&r sinf—S, cost) (53f)

If we substitute Egs.(49a-c) into solutions (52a-c)
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and (53a-f), we obtain the representations in the
cylindrical coordinates of the solutions of Cerruti’s
problem. Furthermore, by the use of Egs.(50a-c),
we obtain the representations in the cylindrical
coordinates of the solutions of Boussinesq’s
problem, which are coincident with the representa-
tions in Saada’s book".

(3) Spherical Coordinates
In spherical coordinates (o, ¢, ), we have the
following relationships :

r=1[p,0,0], S=ILS,, S, Sl
z=pcosp, k=cospe,—singey
Sp= (S;cosf+S,sinf)sing+ S, cos¢
Se= (S, cosf+ S, sinf)cos¢—S, sing  (54f)
Se=—3Szsinf+ S, cosb (54g)
in which e, and es; denote unit vectors in the
spherical coordinates. From solution (44) and

relationships (54a-g), the displacement compo-
nents #,, #, and #, are expressed as

(54a,b)
(54c, d)
(54¢)

S

2Gu,= ;¢(s,cose+sysina)[2(1~u)
_1=2y ]
1+cosg
—2%p[1~2u—4(1—u)cos¢] (55a)
26u¢=%(510050+5,,sjn0)[(1—21))
1
'<m—2)+(3—4u)cos¢]
S, sing _
2o 1+cos¢[2(1 v)
+(3—4v)cosg] (55b)
2cug=—ﬁ(sxsma*sy cosB)
1—2v
.<1+ 1+cos¢)) (35¢)

Furthermore, from solution (45) and relationships

(54a-g), the stress components 0,,, ***, 0, are
expressed as
Gpo=— L (5, cosb+S, sind)
ey
(2mum 22
v 1+cos¢
+ S [1—2v—2(2—v)cosg] (56a)
2mp?
0¢¢=l;22u(sxcosﬁ+5,, sinfl)
2o
_cotd cosg -
“lﬁ—cosqﬁ (1—cos¢)

n S, (1—2v) cos?¢
21p? 1+cosg

1—2yp

2mp?

cotp(l—cos¢)
1+cos¢

i S.(1—2v) cos¢p—sin’@
277:02 1+COS¢

(56b)

(S; cos8+S, sin8)

Ogs=—

2+cos¢)

(56¢)

Gog =22 (S, cosf+S, sin6)
2mp
_cos@(l—cosg)
1+cos¢
n S:(1—2y) sing cos¢
21p? 1+cos¢

1;?(5} sinf—S, cosf)
bis

(56d)

Op0—
2

_cotp(1—cos¢)
1+cos¢
1;22”(51 sind—S, cosf)
2o

1—cos¢
1+cos¢

(56¢)
Ops ™

(56f)

Thus, the expressions for the displacement and
stress components in three coordinate systems, i.e.,
rectangular Cartesian, cylindrical and spherical
coordinates were demonstrated.

6. NUMERICAL EXAMPLES

In this chapter, we consider numerical examples
of solutions (47a-c) and (48a-f) under a force vector
in the form

2° 2" /2

Numerical calculations were made for an elastic
half-space with Poisson’s ratio v=0.3 and a
standard distance ¢. The distributions of Gy, 0y
and ¢, at y=0 are shown in Figs.2-4. Fig.2 shows
that the value of 0., at the surface (z=0) becomes
infinite at =0 and that the decay along the rand z
directions is rapid. Fig.3 shows that the value of g,
at the surface becomes infinite at z=0 and that the
distribution of o, at the surface is symmetric with
respect to £=0. Fig.4 shows that the value of g, in
the vicinity of the surface becomes maximum at x=
0 and that the decay along the x direction is very
rapid.

s=p[b, 1L
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7. CONCLUSION

A singular boundary-value problem of an elastic
half-space subjected to a force vector with three

components, i.e., two tangential and one normal
forces, at one point of the surface was solved, and
Cerruti’s problem was generalized. The use of the
generalized Boussinesq solution is convenient to a
method of solution to the problem, because the
solution of a rotation type is necessary to the
analysis of the tangential forces. On constructing
solutions, it is the point to need deliberation that
the particular solutions to a harmonic function and
harmonic vectors included in the generalized
Boussinesq solution are successfully determined.
Although the calculation of the stress vector in
Eq.(4) needs very complicated vector operations, it
is carried out by combining formulae (13a-1) well.
Since solutions (44) and (45) obtained as a result
can be used for arbitrary coordinate systems
belonging to orthogonal curvilinear coordinates,
they may have considerable generality. From the
viewpoint of practice, solutions (44) and (45) were
applied to rectangular Cartesian, cylindrical and
spherical coordinates and demonstrated the con-
crete expressions for the displacement and stress
components in these coordinate systems. The
expressions may have wide applicability, because
they include the solutions of Cerruti’s and Bou-
ssinesq’s problems.

For the reasons mentioned above, the author
concludes that the solutions presented in this paper
should be useful for a singular boundary-value
problem of an elastic half-space.
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