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Following the development of the proposed consumer theory-based demand model that is discriled in
the paper entitle “Logit Models and Gravity Model in the Context of Consumer Behavior Theory”, this
paper seeks the derivations of the generalized extreme value models (GEV) and the nested logit
models. By the context of this study, the so—called quasi-GEV model and quasi-nested logit models are

introduced.
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1. INTRODUCTION

Utility maximization has emerged as a funda-
mental behavioral principle of travel demand mod-
elling. According to this principle, an individual’s
preferences for the travel options he/she faces can
be described by a utility function, and each indi-
vidual chooses the option that maximizes his/her
utility. Logit model is one of the typical applica-
tions that is based on this principle and is mathe-
matically derived within the framework of the
random utility theory wherein the Gumble distri-
bution of the random part is assumed. Traditional-
ly, the application of the logit model to demand
behavior, however, often assumes that the total
travel volume of transport services is fixed ex-
ogenously. Though this assumption proved signifi-
cant in most of the practices, especially in regards,
to commuting trips in urban areas, it is not
always satisfied as far as the generated trips are
concerned. Again based on the theory of continu-
ous consumer again and following the same idea
as demonstrated in the study “Logit model and
Gravity model in the Context of Consumer Behav-
ior Theory”, (Morisugi and Le'”), this paper aims
at providing a different derivation of the demand
- models wherein the share models are mathemat-
ical resemblances to the generalized extreme value
models (GEV), and the nested logit models (NL).
These models permit us to deal with the generated
demand.
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In the paper of H. Morisugi, and Le D.H.'®, we
have proposed a different derivation of the logit
models and the gravity models within the frame-
work of the consumer behavior theory. As the
results showed, without loss of generality, first, we
can endogenously calculate the total demand of a
certain group of commodities/services rather than
assuming a fixed level as is usual with logit
models. And because of this, second, the model
enable us to extensively analyze the generated
demand. Third, since the demand model is formu-
lated as the product of two separate—but—consis-
tent components: the total travel volume and the
share, the model provided a different travel
demand forecasting technique that is quite the
reverse process as compared to the conventional
one. By the proposed forecasting technique the
influences of the commodity other than transport
service can be considered and the absolute quan-
tities demanded for these composite goods can
also be calculated by using only the observed tra-
nsport data.

This paper is an attempt at extending the pro-
posed consumer theory—based logit demand model
for the further derivation of the generalized ex-
treme value models (GEV), and the nested logit
models (NL). The basic difference in the develop-
ment of this model as compared with the random
—based model is that this model depends on the
specification of the systematic part of utility func-
tion. Thus, by different specifications of the indi-



rect utility function, firstly, the derivations of the
looks-like-GEV models are introduced such as the
Extend GEV Model, the Quasi-GEV Model and the
Conditional GEV Model. Secondly, following the
idea of Mc.Fadden (1979) in deriving the nested
logit models within the framework of the GEV
model that is consistent with random utility max-
imize (RUM), derivations of the Quasi—Nested
Logit Model and Conditional Nested Logit Model
are derived, though, in the framework of the pro-
posed conceptual continuous-based—-GEV model.
Finally, some conclusions are added.

SOME IMPLICATIONS OF CON-
SUMER BEHAVIOR THEORY

2.

Consumer Behavior

In this paper, we derive various probability
models that are mathematical resemblances to the
GEV models and nested logit models by utilizing
the microeconomic theory of consumer behavior in
depicting the household’s decision problem which
can be transformed into a demand function. The
representative consumer demand function ex-
presses the action of a consumer. To situate our
derivations, we first briefly review the consumer
theory before introducing our models.

It is assumed that the consumer maximizes his/
her direct utility under a given budgei: constraint

Max U(X, X,, ..., X,),

St jipjxj:[ (1)
where U () :direct utility function ; X;: the demand
of commodity/service j that is generally assumed
to be a non-negative continuous variable ; P;: price
of commodity/service j;I:income of an individual
1jEQL,2,-+-, n} a label of commodities/services.

Then the solution which gives optimal amounts
of X, to the above maximization problem (1) is as
follows

X' =X,(P,D (2)

Equation (2 ) known as the demand function for
the commodity 7, describes the choice of consumer
with respect to the consumption level of commod-
ity ¢ for a given price vector p=(p,, P, p.) and

income I. The demand functions which provide an.

expression for the optimal consumption of com-
modities/services can now be substituted into the
given direct utility function to obtain the maxi-
mum utility level that can be achieved under the
given price vector and income. This is known as
the indirect utility function V (p, I) which is def-
ined by the following

VP, D=
U(Xl*; e X1*)EM3X[U(X)y ‘lej)(j:[]y
x i=

(3)

where X is the consumption vector, X=(X,, -,
X.).

In many applications it is convenient to deal
with the normalized indirect utility function. The
normalized indirect utility function is an indirect
utility function where prices are divided by
income so that the expenditure is identical to one.

~It is given as

(4)

Where ¢; is called normalized price, ¢;=p;/I.
Note that all the four properties of the indirect
utility function as specified by Varian (1992) are
held w. r. t. the normalized price q vector. One of
the important identities of the indirect utility fun-
ction which will be used as main access to this
research work is Roy’s identity. Roy’s identity
shows that the demand function can be expressed
as the function of the normalized indirect utility
function. It is given as (see Varian (1992), p. 155).

_ 0V (g)/dg; (5)
]«Equ’aV(Q)/aqf’

V{(g)=Max, U(X), s t ﬁl gX,=1
x j=

X(p=

One may by more familiar with Roy’s law whe-
rein the demand function is expressed by a system
of partial derivatives of V (p, I) than the one
showed in equation (5). Potentially, they are the
same and we can derive one from the other. For
convenience, Eq. (5) is preferred throughout this
study.

3. EXTENDED GEV MODEL

Generalized extreme value model (GEV) is a
large class of models which includes the multino-
mial logit model (MNL) and nested logit model
(NL), (Ben-Akiva and Lerman (1985), pp. 126).
This model was first derived by McFadden (1976)
from within the random utility maximization fra-
mework. In this section, our aim is to show how
the GEV models can be derived within the frame-
work of consumer utility maximization by extend-
ing the proposed conceptual model that was ob-
tained ‘in the paper by Morisugi and Le (1993).

Suppose that the indirect utility function is
given as

*© 5
VO=f] B3 6060, 6D
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( —dy;(s) ) ds,],

ds; (6)



Where y; is the non-increasing function of ¢,
and G is ¢ homogeneous function of a vector
associated with y. We assume that G is a function
with the following properties: (Ben—Akiva and
Lermann (1985, pp. 126) ).

1.G is non—negative.

2.G is homogeneous of degree u>0.

3.Ly]ig.; G (y, v, y)=00

4.the Ilth partial derivative of G with respect to
any combination of [ distinct y,’s, ¢=1,---n, is non
—negative if [ is odd, and nonpositive if [ is even.

With these properties, the above line integral
function (6) satisfies the following integrability
condition (appendix)

7]

aq][ GO, yn)><dy, )jl
g, K“_G(yl, . yn)>< A >]

From Roy's identity (5), by a simple modifica-
tion, the corresponding total demand for com-
modities ¢, j&], is therefore

(7)

ov oV ov
Og _ i'=70qy _ Ogy
X, — i i j 8
@) S A (8)
i aq, zEQ Gq, el 6q]

Where j is a subset of Q and its element labels
transport services. Note that the demand for com-
modities ¢, X; (¢) , is formulated as the product of
the total demand of group commodities J, N; (g),
times the share in the group j x; (¢).As an il-
lustrating behavior for this, we can give an exam-
ple of shopping trip or recreation trip. We can
interprete total demand N, (¢) as total number of
trips and x; (¢g) as the share of trips to the shop-
ping area or resort place 4.

V(g 9 dyi(g)
el A CIORINEACN] Crme IEED
For convenience, let us set
0
6_311»6(3]1’ e Y =G,
ay;
oy, 10
g e 1o
1404
Tszi ",

Now from equations (9) and (10), the demand
for commodity ¢ is obtained as

Z GJ’J Yigs’ Gyiyiq,'

’ ZGy o
],/E] Y147

X = ap

2 - G, Yio %

It is worth to point out that the first term of the
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right hand side (RHS) of equation (11), mentioned
as the total demand of a group commodities J is
endogenous and it depends on the relative price of
the outside commodities j&/. The second term of
the RHS of (11) is the share of commodity j, jEJ.
Although this general share model is similarly for-
mulated as the GEV model, it has the “interrup-
tion” of the partial derivative components showed
as Yj,;. Due to this, it is called the Extended GEV
Model because of its mathematical similarity.

In the GEV model an independent variable y;
seems lo represent the altractiveness of each com-
modity/services, and G () does the interdepend-
ency in stochastic choice. Definition (6) is an
interpretation of such a structure of the GEV
model in the context of classical consumer theory,
and (11) gives us the determination of demand
derived from it. Based on the Extended GEV
Model, next let us show its variants.

4, QUASI GEV MODEL

In the above section, we have derived the so-
called extend GEV model by specifying the indi-
rect utility function as given in Eq. (6). Now let
us relax the partial derivative terms in equation
(11) by specifying the function of y () as follows

yj:J:exp(—ki(Si))dSi 12

Where k; (¢.) is the non-increasing function.
Thus

(13)

Then the demand function of commodity ¢ is
obtained as

Y= —exp(—k; (qz'))kiqi

X(@)=N{g), x,(q) (14)

where the logistic components of equation (14) are
given as follows

N(q)zifg’(;yjym (15)
26, * 4
and .
x(q) e k@) * ki (6)

Z]Gy,exp( ki (@)) + kg,

Equation (16) looks like the GEV model. But it
is not exactly the same due to the existence of an
extra term, k;;, that is the first derivative of func-
tion k; (g;) wur.t. g, For this extra component we
prefer to name the model given in equation (16)
as the Quasi GEV Model.



5. CONDITIONAL GEV MODEL

More specifications of equation (6) in terms of
the functional form of y; (k) and k; (g;) will be
demonstrated in this section. Suppose that func-
tions y; () and k; () are given as

w=] exp(-rs)as an
where in )
kjb(sj) =aq;+bs; (18)
Then
1
V= —?exp(—aj—bqj)
Vig=exp(—a;—bg;) 19
ki, =b

a5

Recalling that G is a differentiable function that
is homogeneous of degree . We specify G () as
an additively separable junction,

GCO=H(, + y-) +G (v, -+

Where 1,---, j—1€ and j, -
law, equation (16) becomes

’ yj—l) (20)

n&J. Thus by Euler’s

G, exp(—a,—bg)

2,(@=—2
ZG,,iexp(—aj—bqj)

G e —k (qz)

,uG[e K@ e

@D

—ky(q,) ]

where define
e P =g by

Equation (21) is exactly the so—called GEV
model in the context of Ben—Akiva and Francois
(1983) where in the context of this paper, function
V; that is the systematic component of the random
utility function, is replaced by the so—called sub-
utility function k; (g;) assuming as linear form.
Due to this conditional derivation, the model as
shown in (21) is called a Conditional GEV Model.

However, it is noteworthly the conditional GEV
model is consistent with endogenous total demand
for a group of commodities/services J, while it has
the exactly same form of share expression as the
GEV model.
6. QUASI NESTED LOGIT MODEL

McFadden (1978) has shown that the generalized
extreme value model is consistent. with the
random utility maximization, and from that he has
provided a generalization of nested logit models.
We have derived the GEV models from within the
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ordinary consumer behavior theory. The following
is an attempt to derive the nested logit models
within the framework of the proposed conceptual
GEV model (21). In equation (21), suppose that
given function G () as

C@=% (% 3" 22)
m=1 jeD,,

where

y,-=f: exp(—k;(s))ds; (23)

Where m&EM={1,-h} and h<n, label a subgoup
of commodities/services. D, is subset of com-
modities/services coresponding to m. It is needless
to say that a subgroup means destination and its
element is the mode available in travelling to the
destination. Therefor, subscript j labeling a com-
modities/services in group J denotes a combina-
tion of the destination and the mode. Then, D, C
J and D.ND, =¢. With these specifications, equa-
tion (20) can now be given as

o H@(Z yj)ﬂ-‘

[Zq e ““f)( Zy,)“ ol

meM, JED,

Purposely, equation (24) is rewritten and given
in the following equation.

= [2e “"f)(zw 1

X, = meM, JjED,
im 5 [qu k(qj)(zy);z 1]
meM, jED,
lz(ql)( b y);z 1 Z e —k;(gp
jED,
[ e T I y,)” ; e ] @)
JjED,

It is recognized that the first term of the right
hand side (RHS) of Eq. (25) presents the total
demand of a group of commodities/services, €. g.
total demand for transport service, is denoted as
Now (@). Obviously, Ny (g) is not an exogenous
variable, rather it can be endogenously computed.
This result concurs with the one we first obtained
in Eq. (11). Now our interest turns to what the
second term of the RHS of (25) means. To be more
visible, the second term can be rewritten and def-
ined as

x(G, m)=xGim), x(m)

— E e MV y)
— . JED; jED,,
T etY T xe “‘b’( S @6
jE€D, meM, jED,

x (4, m) is known as a joint probablhty in the
context of random theory, wherein the combina-
tion of mode (m) and destination (¢) is chosen. It
consists of two choice probabilitis ; the conditional
choice probability, x (i|m), and the marginal



choice probabilities x (m). The conditional choice
probability is the probability that destination ¢ is
chosen on condition of the given subgroup m. The
formulation

exp(—k;(g))

T exp(— k@) @0
JED,

x(i|lm)=

is given by the logit model with the exponential
component exp. (—k; (g;) Which is the separable
function w.r.t. g, The second term of the RHS of
(26)
eln;e}g,,,e ~5@ + (u—1) In/s%,,.yi
5 eln}_giﬂ e—kj(qj)ﬂuﬂ)lnl_e%my,-
meM,

x(m)= (28)

is the so—called marginal choice probability by
the context of random utility wherein transport
mode m is chosen. Though this model looks like
the “original” logit model, it is not exactly the
same due to the extra term of In e ¥. Due to
this extra problem, the nested probability as der-
ived in equation (26) is not a perfect nested logit
model. Rather, in the context of this paper, we
prefet to name it the Quasi—-Nested Logit Model.
Moreover, if the scale parameter y is normalized to
1, the marginal choice probability given in Eq.
(28) becomes the logit mode. Thus, the nested
probabilities (26) has become the multinomial logit
model (MNL) with the normalized scale parameter
u=1.

Clearly, the demand of the mode—destination
choice, X, is again generally formulated as the
product of the two separated-but—consistent com-
ponents;the total demand of transport services
and the nested probability wherein the combina-
tion (i, m) is chosen. The only difference is that in
this model, the probability model is given by the
so—called quasi nested logit model with its logistic
components a depicted in Eqs, (27) and (28). Not-
iceably, all the merits of this general demand for-
mula with regards to the generated demand that
have been discussed in the paper by Morisugi and
Le (1993), are still faithful to this model.

As the result shows, though we may not be able
to derive the general nested logit model directly
from the theory of consumer behavior, we have
succeeded in generating the general probability
model, as well as the multinomial logit model
(MNL) within the framework of the continuous
behavior theory.

7. CONDITIONAL NESTED LOGIT
MODEL

Though we still have to derive the nested logi‘t
model, we have already derived the so—called
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quasi nested logit model due to the extra term as
shown in equation (28). This problem itself has
hinted that we can derive the “exact” nested logit
models by specifying the suitable functions of y;
() and k; (). Suppose that with the specifications
v; (g7 & k; (g) as given in Egs. (17) & (18),
equation (28) now becomes

In ¥ ™% %+ @u—-Din 3 ¢ %%
€ jeDy €Dy
x(m) = In & —a—bg+@-Din & %% *
—a;—bgi+ @—1In
Y e T €Dy,
meM,
e;dn T eI
€Dy
= . (29)
n X e %0
2 &,
meM

With this logit-like marginal choice model, the
joint probability choice, x (7, m), as given in (26)
becomes

x(G, m) =x@i|m) * x(m)

—a;—bg; In T e~ %%
e 7" é €Dy
= * &)
Z e-ai—bqj Z eﬂln}_é%)me—a]--bqi
JED, meM,

Equation (30) is the formula of the nested logit
model with the scale parameter 4. The exponential
component in (30) appears as the linear one vari-
able function. The looks-like—nested logit model
(30) is derived from conditions on the functions of
vi(g;) and k; (g;), therefore it is named the Condi-
tional Nested Logit Model. The conditional Nested
Logit Model has exactly the same form as the
nested Logit Model that has been a stylized model
in transport analysis. However, let us again em-
phasize that the model proposed here has been
derived from the classical consumer theory.

8. CONCLUSION
Within the context of the “ordinary” consumer -
behavior theory, though we have not yet be able
to obtain the general framework from which to
derive the “exact” GEV models and -the nested
logit models as well, the study has shown several
different derivations of the likeness—-models such
as the Extended GEV Model, the  Quasi-GEV
Model, the Conditional GEV Model, the Quasi—
Nested Logit Model and the Conditional Nested
Logit Model. In spite of the involvement of differ-
ent density functions in the conventional deriva-
tions, e.g. normal distribution, Gumble distribution,
etc, these derivations are depending on the func-
tional form of the indirect utility function as addi-
tive and separable functions. While retaining the
distinguished properties that are obtained in the
paper by Morisugi and Le (1993), the potential of
the proposed model in deriving the alikeness—-GEV



models and nested logit models gains three impli-
cations. Firstly, it grants another alternative of
deriving the GEV models and nested logit models
possible with the random theory-based model. Sec-
ondly, with the derived demand models, the study
provides a more consistent demand forecasting
model wherein the models of different alternatives
(refering to the trip generation and mode choices)
are separable but consistent with regard to its
formulation, parameters, and variables. Thirdly,
the study gives more significant ground to gener-
ate an ‘entire general framework from which the
demand models and the evaluation measures of a
transport system can be carried out consistently
and accurately with regard to the users behavior
preferences.

ANNEX

As previously mentioned, this is the expands on
a previous one entitled. “Logit Model and Gravity
Model in. the Context of Consumer Behavior
Theory”. To help the readers follow the extended
development of this study more easily, a brief
summary of the results and comments that were
obtained in the first paper are mentioned here.

(1) General logit model

As mentioned above, suppose that given any
indirect utility function V (g), the resulting con-
sistent demand function with that indirect utility
function is given by Roy's identity formula (as
shown in Eq. 5 of this paper). Now by multiplying
the numerator and denominator of (5) by jél ov
(g) /8q; where J is a set of commodities/services,
and obtaining the total demand for commodity ¢
as

X(@) =N *xy(@,iE] a)

where
~N, (g) is the total consumption of a given group
of commodities/services J, that is explicitly ob-
tained as

E](?V(q)/é‘qj

N(Q=—————— @)
Z]q]’ - 0V (g)/8g;
=

-x; (g) denotes the frequency (probability) of
purchasing commodity ¢ within group J. It is for-
mulated in the form of a share model

v )

V(g /og . e/

Zov@/og’ ' @)

xi](Q) =

1t is clearly recognized that the total demand for
commodity i, X; (¢), as shown in Eq. (1") is formu-
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lated as the product of the total consumption of a
group of commodities/services J, N; (¢g) and the
share of the commodity ¢ in the total consumption
of the focused group of commodities/services J, x;
(gy). This share model takes the form of a logit
model and satisfies the requirement that ; x=1, 1

eJ.

(2) A specific Indirect Utility Function
In practice, it is necessary to specify the indirect
utility functions in all applications. There are a
number of different functional forms of V () from
which to choose, depending on the purposes/re-
quirements of the analysis. The following specific
indirect utility function is one of the most signifi-
cant functions which is chosen to verify the pro-
posed model and to further discuss the interpreta-
tion of the share model under the framework of
this study. Suppose, the indirect utility function is
given in the additive and separable form as
n (oo
Vig=F EEIL_ exp(k;(s))ds;) @)
- 7
Where, F is the increasing monotonous function of
;J‘ exp k; (s;) ds; and k; () are arbitrary functions
such that the equation (4") satisfies the character-
istic properties of an indirect. utility function, with
g;=(;/D. In the context of this study, function &;
(g/) can be considered as the subutility function.
Obviously, from (4) the explicit equations for the
total consumption N; (@), and the choice probabil-
ity of commodity ¢ x; (g,), are easily obtained.
Here, we place more emphasis on the study of
travel forecasting through the share type of logit
model. For more convenience, the discussion is
restricted on three goods case, i=1, 2, 3, where
the subscript i=1 denotes the composite goods
and i=2, 3 are transport modes. Following the
proposed framework, the total demand of the tra-
nsport mode 2 is computed by using Roy’s identi-
ty. The result is given as

X,() = - exp(ky(g))

j;lq,-exp(—kj(qj))

(5

By multiplsying the nominator and denominator
of (5) by ,-gz exp (—k; (g;) ), the demand for
transport mode 2 now becomes

%‘e(""f %) o @
j=2
X (@ =35 ° (6)
geH @ D H@
=1 =2

Equation (6") is the product of the two compo-
nents. The first component of RHS of (6) is



Texp(—k,(g))

=9

=2 T
3
§lqj exp(—k;(g))

i

N(Qh G2 Q:i) = (7‘ )

which precents the total demand of transport
service that is the function of not only the norma-
lized prices of the transport goods ¢ ¢; but also
the outside goods (g.). The second component of
RHS of (6") is the share of the transport mode 2 in
the total transport demand. It is the function of
g: and g3 and can be formulated as follows

exp(—ky(g))

xp(—l@) texpl @)

%5(Gy @) =

From equation (6°), the demand for transport
mode 2 is obtained as

X(q1 G @) =N (g, @ @) * %,(g5s @) (¢!

Though this formula is identical with (1), the
difference is that the exponential component exp
k; (g;) is more specified as a separable function in
terms of g. Moreover, since the formulation (7"
includes the characters of composite goods, i=1,
the travel demand as given in equation (9) has
the possibility to consider the related influences of
the outside-factors into the travel forecasting.
This merit provides a comprehensive technique to
the transport demand forecasting, and through
this, the demand for the composite goods can also
be easily computed. The proposed demand fore-
casting technique is the inverse process as com-
pared with the usual calculation procedure. While
the usual operation starts with the estimation of
the total volume and do estimate the modal share,
both are carried in different experiments, this tec-
hnique consistently estimates the modal share
first, and then obtains the relative total volumes.

Note that, due to-being formulas of N () and x;
() as shown in Eq. (6") being separate and comput-
able, all the consequences of the demand forecast-
ing process do not only result in percentage fig-
ures (%), that are usual for the share model, but
also result in numerical quantities, which, of
course, include the generated travel demand.

There are four implications that emerged from
these results. Firstly, with any given indirect util-
ity function, we can derive the logit-like model as
shown in Eq. (3"). Secondly, the total consumption
level of a focused group of commodities/services
N (g), is an endogenous variable that changes
according to the variation of the contributed fac-
tors of both the inside group J goods and also the
outside goods (as refers to j=1). Thirdly, because
of this distinguished merit, the proposed model
can be used to easily and explicitly analyze the

generated demand. Having this property, we have
overcome the restriction of the conventional ap-
proach. Foﬁrthly, the model provides a consistent
demand forecasting technique that is the inverse
of the conventional four-step method. While this
estimation seems to retain the computational ad-
vantages of the previous technique, it is accom-
plished with regards. to consistency and generated
demand.

There still several implications of the proposed
model in regards to the derivations of the condi-
tional logit model, the gravity models, and etc,
For more detail, refer to the original paper.

* %

APPENDIX

The specified integral indirect utility function as
given in equation (6) satisfies the .integrability
condition (7) because:

o ey
og; dg,

= Zz: )[ 6y‘?aij(y1,...,yn)] %)
2 . .
~[ 5 60 (NG

and the symmetry of cross—partial derivatives.

K%G(y,, cer V)
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HHAEBEETHERICB T 3 GEV € 7L & Nested Logit € 7

FHI2=EF - FHAFIT - LE Dam Hanh

FHIZ, BcHEZLLRIT, HTHALHEBETHERICOE SV T Logit EFVEBIEFVERHTEXLL
ZRLz, AR TR EEORNEF L TRMNBEEBTHEF ML LTV, GEV £7 1 & Nested Logit £

FNOFEAERS, L —BHUSIGRGEV  (Nested Logit),

(Nested Logit) & FVOFEBICHKIIL .
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