Structural Eng. /Earthquake Eng. Vol. 11, No.3, 141s—I44s, August 1994
Japan Society of Civil Engineers (J. Struct. Mech. Earthquake Eng. No. 501/ ] —29)

A CONSIDERATION ON THE SLACKENED

AND TIGHTENED CABLES

Masahiro AI* Tomofumi NAKANQO**
and Shinichi MASUDA**

On the exact equilibrium configuration of an elastic cable spanned, the potential of
uniform self-weight and the strain energy in stretching are analytically estimated. Those
quantities are related to the work done by the chord force into an energy conservation. By
the differentiation of the energy relation with respect to the span elongation, the chord
force is separated into two components reflecting the sag effect and the elastic elongation.
In a numerical analysis, it is shown that a characteristic magnitude of the stretching exists
between the slackened and the tightened states.
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1. INTRODUCTION

As a practical analysis of cable structures, a cable
element is dealt with as the simple — tension
member : straight in configuration and irresistible
to compression. At the same time, we have the
sagged elastic curve under the uniform self-weight
per unit natural length."® The state of an actual
cable is continuously changed in this exact
configuration called elastic catenary. In this study,
the potential of self-weight and the strain energy
existing in that catenary are derived in analytical
form. Then, by the use of a relation of energy
conservation, it is presented that the cable force
can be divided into two components which are
associated with the sag change and the elastic
elongation, respectively. Their relative magnitudes
in the cable force can be of a practical use to
estimate to what extent a cable is stretched.

2. ELASTIC CATENARY

Consider that one end of an isolated cable of
length [/ is anchored at the origin of two-
dimensional Cartesian coordinates {x,y}. The
exact equilibrium configuration under the self-
weight is written as
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Fig.l Elastic Cable Spanned on a Slope
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where s=material coordinate along natural length
(0<s<); EA=extension rigidity; w=weight per
unit natural length; and Ty (= { T4z, Toy})=tension
components at the initial end. In this expression,
components {7y, Ty} can be regarded as para-
meters to determine the catenary curve : If the
other end is not anchored, but is subjected to a
known force, they are directly obtained as the sum
of the external forces acting on the cable. On the
other hand, if that end is anchored at another {z*,
¥*}, a numerical iteration is necessary to find { Ty,
Tot satisfying 2(To, )=x* and y(To, )=y*.

3. ENERGY QUANTITIES IN SPAN
STRETCHING

Let an elastic cable be spanned on a slope with
angle 7 from the horizontal, as shown in Fig.1. At
the roller end, an external force S is applied into
the slope direction, with the normal reaction being
denoted by N. The equilibrium curve for a given S
is obtained by the following iteration : First, an
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initial value is given to N. Then, the distribution of
tension components {7, T,} is statically deter-
mined : {7, Ty} = {Scost+ Nsinz, Ssint— N
cost} at the roller support, and { 7o, Toy} = { Tiz,
Ty+wl} at the fixed end. In a catenary curve
drawn by (1.a,b), as the result of N being not true,
we have normal incompatibility #* at the roller
end. Then, by the use of the derivatives of (1.a,b)
with respect to {Te, To,}, We can estimate the
correction of N to diminish the incompatibility.
The calculation is continued by the Newton-
Raphson method. If the convergence is difficult by
reason of the initial N assumed far from its true
value, the iteration can be switched to the method
given in Ref. 3), for instance.

In the equilibrium curve (1.a,b) with {Tq., Tp,)
determined, we can develop the following integra-
tions for the strain energy and the potential of self-
weight, respectively :
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where To=+ T&+TE, and Ti=4 T2+ T3,. The

system of our simply-supported elastic cable is
conservative in energy. The work done by the end
force S is stored into strain energy U(S) and self-
weight potential @,(S). Denoting the work in
stretching from S=0 by ®@4(S), we have the
following energy relation :

D5 (S)=(U(S)—UW©))+(9,(S)—D,(0))
=U(S)Y+P,(S)+const.veereeee (3)

In the cable spanned on a slope (t#0), since the
compatible configuration is determined by a
numerical procedure, we can not obtain the explicit
expression for @s(S). But, if supported horizontal-
ly as shown in Fig.2, we directly have N=wl/2 and
{Toz, Toyt = {S, wl/2}. Then, the following integra-
tion can be carried out for a change of span length

I*(8) (=x(S,1)):
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Fig.2 Horizontally-Supported Cable

1\? 4wl
O vl P
wl) _wl

SZ+< 2 2
By the use of this @s(S) and the former (2.a,b),
relation (3) is actually confirmed.

For end force S given, our analysis has been
developed. We now have this force again from the
differentiation of its potential @(S) with respect to
span length [*. Applying this differentiation to the
energy relation (3), we have the following separa-
tion of end force S :

SZ

S(:d@jl(*5)>=su(5)+5w(s) ........... (5)
where
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Those Sy (strain force) and S, (sag force) come
physically from the changes of the strain energy
and the self-weight potential, respectively, in
displacement into [*. The relative ratio of Sy and
Sy is a direct parameter for how end force S is
exerted in the elastic cable.

In case of a sloped cable (r#0), by the same
reason stated before, it is difficult to develop the
analytical differentiations, (6.a,b). But, by the
following expressions in finite differences, we can
estimate those strain and sag forces, numerically:
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L1/ 0u(S+AS)—Bu(S)
Su(S)= (l*(S+AS)~l*(S)

L

48 (142s)



Structural Eng./Earthquake Eng. Vol.11, No.3, 141s—144s, August 1994
Japan Society of Civil Engineers (J. Struct. Mech. Earthquake Eng. No. 501/ 1 —29)

I
“u

Potentials (xwi?)
"

.85

@
] ///
e 25 58 75 180
End Force (xwl)

Fig.3 Strain Energy and Self-Weight Potential
for 7=30°
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Fig.4 Sag Force and Strain Force for r=30°
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4. NUMERICAL EXAMPLE
A 54-mm-diameter spiral-bridge cable is

considered (I=50. m, w=0.0144 ton fim, and EA
=28,016. fon f). In stretching from S=0. to 100. X
wl on a slope 7=230°,U(S)and @, (S)are
obtained as shown in Fig.3 (normalized by wl?), in
which @*, is a quantity defined by - f wy*(s)ds as a
potential of self-weight from the slope line. We can
see a parabolic increase for U, and a plateauic
increase for @,. After the numerical differentia-
tions by (7.a,b), the separation of Sinto Sy and S,
is plotted in Fig.4 (normalized by w/). In the initial
stretching, as is expected, the end force S almost
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Fig.5b Sag Force and Strain Force for r=—30°

comes from the sag force to balance with the self
weight in a small elastic elongation. Then, after the
plateau of @, in Fig.3 is approached, the strain
force Sy becomes dominant in S with a steep
descent of S,. In the sag force, a clear peak (6.86 X
wl) is seen at S=10.38 X wl. This value can be
regarded as a critical point to divide the cable states
into the two stages : slackened and tightened. In
case the cable is stretched on a slope of t=~—30°, a
similar result is obtained as shown in Fig.5. But,
since the two cables are approaching to the
different slope lines, their values are different :
the peak for t=—30° is at $=10.88 X wl (S,=7.36
Xwl).

Here, we re-decompose the tensile force at the
both ends into the slope and vertical directions :
{T*,Vo} and {T*, V}}. In this expression, T* is
the same at the both ends, and then the same in the
two cases of opposite chord angles. Let this T* be
called chord force, related to the former S and N by
T*=S+ Ntant. The following is confirmed in the
numerical analysis : any two critical states in
opposite chord angles have the same chord force
(T%=10.62 X wl for the former r= %+30°). In
Fig.6, those critical chord forces in various 7 are
shown for a logarithmic range of EA/wl.

5. CONCLUDING REMARKS

Presented in this study is a theoretical separation
of the cable force into the two components: one is
the strain force, associated with the elastic elonga-
tion, and the other is the sag force, balanced with
the uniform self-weight. In the numerical analysis,
it is shown further that there exists a clear peak
value of the sag force in increase of the cable force.
This magnitude of stretching can be employed as a
theoretical boundary to define the slackened and

]

49 (143s)



A CUNLPERALTIUN UN 1THE SbAaChriviy) ARD 1lGR1piNED CADLLEOS

/Al - NAKANO - MASUDA

48.

(1]
fx)
—_—
<
o

/ P 60"
28
— :>& ///////// v 7@
» f/ < ’// =
* /./' -
|l -
15 ;/E’:?/ﬂx = 'F-/ < =
5. e ,
.
- _,::“”df 4 / " .
__.—:—iffﬁ'i:ﬁ —'j:_,__ _'__.Fr-P"-"”"J ‘_Ff_d—r-f_,,,-”"‘:ﬁ-/ — 85
g 4 | T | T
vt _H—P'—_______F__.,_,-:___________.
. e —
18°3 104 184S 10°6
EA/wl

Fig.6 Critical Chord Force

tightened states of a cable. If a good accommoda-
tion is found with the existing practical analyses of
the sag effect such as concerning the vibration
modes of a cable member,®#* the present result
can be used for various purposes, for instance to
confirm sufficient tensions as the simple-tension
members in the analysis of a tightened cable
structure.

REFERENCES
1) O’Brien, W.T. and Francis, A.J.: Cable Move-
ments under Two-Dimensional Loads, J. Struct.
Div., ASCE, Vol.90, No.ST3, pp.89-123, Jun.

2)

3)

4)

1964.
Jennings, A.: discussion to “Cable Movements
under Two-Dimensional Loads,” by W.T. O’Brien
and A.J. Francis, J. Struct. Div., ASCE, Vol.91,
No.ST1, pp.307-311, Feb. 1965.
Ai, M., Nishioka, T. and Okumura, T. : A
Theoretical Analysis of Cable Assemblies, Proc.
JSCE, No.260, pp.17-32, Apr. 1977 (in Japanese).
Shinke, T., Hironaka, K., Zui, H. and Nishimura,
H.: Practical Formulas for Estimation of Cable
Tension by Vibration Method, Proc. JSCE,
No.294, pp.25-32, Feb. 1980 (in Japanese).
(Received December 27, 1993)

— T NDubiE L BEIRICE T 5 —EEK

BrIFFIERE - B - BEE—

=T NOBEHFF) —ELTODVEVBRTOEERT VY Y ¥ VEOTHILA
M- ERIFNCEELT, T 7VENINTAHELOTIANT —RELBIOILEX
T3, 20MSBRICEY, BHEY TPROBSIEMOVTEORPITHBET S
ETE, F—TVEAOEMOHRTY SROOHELBRAENIEL S O & BB
ehdtz b, FOMEICE > THEEE TRV TS EERLTVS

50 (144s)





