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A PREDICTION METHOD OF ULTIMATE
STRENGTH FOR STIFFENED PLATES
UNDER BIAXIAL IN-PLANE FORCES

Hidenori ISAMI*

This paper presents a unified prediction method to the ultimate strength for rectan-
gular stiffened plates under biaxial in-plane forces in the elasto-plastic range. For
a given strain ratio in two biaxial directions, the elasto-plastic buckling strength is
obtained from the elasto-plastic material behavior and the residual stresses in two
directions. Then the elasto-plastic ultimate strength is predicted in terms of the
imperfection sensitivity curve in the neighborhood of the particular point, where
the elasto-plastic post-buckling curve intersects the pathological failure mechanism
curve. The ultimate strength is found to be in good agreement with the previous

numerical results.
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1. INTRODUCTION

Thin plates used as members of flange plates of
box girders and chords of trusses and arches, bridge
piers and towers are subjected to compression, ten-
sion, bending, shear and their complicated combina-
tions. Especially, the stability and strength of stiff-
ened plates under biaxial in-plane forces have been
the subjects of the greatest concern of civil engineers.
However, there has been only a little investigation
on the ultimate behavior and strength of stiffened
plates in the biaxial case, comparing with researches
in the uniaxial case.!?))

Prabhakara et ol.9), Libove®, Haslach® and Zhang
et al.”) examined the elastic buckling and the
postbuckling properties of biaxially compressed or-
thotropic plates using the well-known fundamental
equilibrium differential equation. Also, Ueda et al.¥)
proposed a new elastic buckling interaction equation
for rectangular plates under combinations of com-
pression, bending and shear.

Valsgard® proposed a conservative interaction for-
mula of biaxially compressed plates from numerical
results of nonlinear shell analysis. Dowling et al.'®
examined the ultimate strength of rectangular plates
under biaxial forces by the finite difference procedure
using dynamic relaxation. They made several para-
metric studies in order to clarify the effects of as-
pect ratio, slenderness and initial imperfection such
as geometric deformations and residual stresses on
the ultimate strength. Also, Narayanan et all!
presented an approximate prediction of the post-
buckling and collapse behavior for biaxially com-
pressed plates using their energy method.
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In Japan, Inoue et all?) evaluated the buckling
stress and strain of biaxially compressed plates in
the elastic, plastic flow and strain-hardening range
using explicit formulations of the out-of-plane flexu-
ral rigidities at an instance of buckling: Ohtsubo et
al.'® proposed a simplified interaction curve of ulti-
mate strength of biaxially compressed plates, based
on the results by the finite element nonlinear analy-
sis. Also, a design curve of the ultimate strength of

. a single panel under biaxial compression is presented

from the experimental results by Mikami et al.'¥

Furthermore, Kitada et al.'®1%) developed a de-
sign method of stiffened plates under uniaxial and
biaxial in-plane forces, and proposed interaction
curves accurately approximating their numerical re-
sults. Also, Kumagai et al.}”) proposed a simple
equation of prediction on the required flexural rigidi-
ties of stiffeners of biaxially loaded stiffened plates.

These analytical and numerical methods allow the
maximum ultimate strength of biaxially forced plate
members to be determined in an isolated form for a
selected set of several geometrical and material pa-
rameters.

The author has proposed a unified method to pre-
dict the ultimate strength of slender steel structures
such as compressed columns, uniaxially compressed
plates with or without stiffeners, compressed cylin-
drical shells, compressed cylindrical panels and bi-
axially compressed plates with or without stiffeners
in the elasto-plastic range.18):19):20).21)

This paper will present a prediction method of the
elasto-plastic ultimate strength for simply supported
rectangular plates with longitudinal stiffeners under
biaxial in-plane forces of tension and/or compres-
sion. This method will develop the approach in the
author’s previous researches.'¥?Y) Some numerical
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Fig. 1-a Biaxially forced stiffened plates.

S| Sff<!

\té F y ; irs be

= ‘ HrER ¥

== ¢ 1=

A3 b J n ¢

l oy I T
oy \kq Ory

Fig. 1-b Residual stress distributions.

Fig. 1 Stiffened plates under biaxial in-plane forces (ns = 2).

demonstrations will clarify the validity and applica-
bility of the proposed method.

2. BASIC FORMULATIONS

(1) Assumptions.

A simply supported, rectangular steel stiffened
plate with ngs longitudinal stiffeners under biaxial
in-plane forces o, and o, is analyzed using a typical
basic model shown in Fig. 1-a. The torsional rigid-
ity of a stiffener is neglected in this analysis. The
material behaves to be elastic and perfectly plastic.
All the stresses are non-dimensionalized by the ma-
terial yielding stress oy. Also, the stress is taken
positive when it produces compression.

A stiffener has the following parameters:

A El

§= b_f and 5= b—Di ..................... (1)
where 8 and ~ refer to the ratio of the cross-sectional
area of a stiffener and the ratio of its flexural rigid-
ity to that of the global plate panel, respectively.
Herein, E is the Young’s modulus being the con-
stant in both materials of the plate panel and of
the stiffener. Moreover, ¢t and b indicate the thick-
ness and the width of the global plate panel, and
D, = Et3/[12(1 — v?)] and v are the flexural rigid-
ity of the panel and Poisson’s ratio of the material.
As and Ig refer to the cross-sectional area and the
moment of inertia of a stiffener.

As shown in Fig. 1-b, each residual stress in the
cross section perpendicular to the longitudinal 2- or
the transverse y-direction is assumed to be distrib-
uted symmetrically with respect to the z- or y-axis
in the n,- or n,-th order curve of the coordinate z or
y, respectively. o,, and o, refer to the magnitudes
of the non-dimensionalized maximum compressive
residual stresses in z- and y-directions, respectively.

A stiffener is assumed to have a uniform distribution
of tensile residual stress with its non-dimensionalized
magnitude o,; in the cross section. Such distribu-
tions of residual stresses seem to interpolate those
in some previous numerical analyses.1915):16) Then,
the non-dimensionalized average axial stress o, or
o, and the average strain ¢, or &, can be defined
independently in the z- or y-direction:?!)

ag; = 1 + Iii(l + 0'”‘)(1 — K/i)ni

1+Uri n+1
— 1—(1—&;)™
w1 s ®)
e = X140+ — k)™ -0l
(i=zory)

for an in-plane compression, and

ng n; +1

o 1 RPALS:

o; ‘1+ni+1( + 0ri)K;

& =Tt (roglioay] )
(t==zory)

for an in-plane tension, in which

’ _ — '
Ore = Orz — Orsy Ury = Ory
147, 1

Ng = — 5, Ny =

Opy — Trs Opy T (4)
= nsé
Ors = 77 0rs

]. + n56

and &, or &, denotes the ratio of the elastic portion
of the cross section to the total cross section perpen-
dicular to 2- or y-direction, respectively..

Thus, the tangent modulus E;; or F;, can be de-
fined independently in each direction using the ratio
Ky OT Kyt

_ doq

E,; =
¢ de,'

= IiiE
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Furthermore, the global secant modulus Eg of the
stiffened plate can be obtained as follows:
g, gy
Eo=—"2 L F i 6
s= ., E (6)
where o,, denotes the non-dimensionalized equiva-
lent stress, and &, is the corresponding equivalent
strain:

Geqg =4/0L+ 0L~ 0,0,
Eeq = \JEL A €L — 48,

(2) Elasto-plastic buckling strength

Assuming all edges of this stiffened plate model in
Fig. 1 to be simply supported, the buckling mode
and the initial geometric imperfection mode are

mnrx nry
W = wcos cos -
ey e (8)
W, = w,cos cos ——
a b

where W and W, designate the out-of-plane deflec-
tion and the initial out-of-plane deflection, and w
and w, refer to the magnitudes of the buckling mode
and the initial deflection mode, respectively, with
m- and n-half wave numbers in the longitudinal and
transverse directions. All out-of-plane deflections
and modes are non-dimensionalized by the thickness
t of the plate panel.

Using the secant modulus Es in Eq. (6) and the
modified Airy’s stress function F', the nonlinear fun-
damental equations of equilibrium of the orthotropic
‘perfect’ plate with no initial deflections (W, = 0) in
the elasto-plastic range can be written as:

. Es F
V4F = f :J_; {(VVn‘y )2 - Wyza: ‘/Vyyy }
VAW = 2 (P, Wi +F s W, 9)
P Dp L yyy YTT yox 'Yy
2F7zy ery }
where
V4F = Fazzzx +2F,zzyy +F7yyyy
V:W = kyWpws +2(k2 + 2ks)Woosyy - (10)
FhaWyyyy
and
. F D,
= — D, =—
F Uyt2 ’ 4 O-Yt3 .............. (11)

Furthermore, {, and k; (j =1,2,3 and 4) show the
non-dimensionalized equivalent thickness ratio of the
orthotropic plate to the panel thickness ¢ and some
constants to designate flexural and torsional rigidi-
ties of the orthotropic plate in the ‘elasto-plastic
range. Here, the subscripts behind the comma of
W or F' mean taking derivatives with respect to co-
ordinates of « and y. ‘

Expanding the Bleich’s approach®?, these coeffi-
cients k; are defined in the elasto-plastic range as
follows:

ko= k{14 (ns+1)y}
ky = /o /Ry

ks ='ky and k4=

L ce (12)

NG

where «, and %, can be evaluated from Eq. (5) using
Eq. (2) or Eq. (3).

Substituting Es of Eq. (6), W of Eq. (8) and co-
efficients k; of Eq. (12) into Eqs. (9), (10) and (11),
and using the Galerkin’s method, the post-buckling
equilibrium path o, of the ‘perfect’ plate in the
elasto-plastic range can be obtained using the crit-
ical buckling stress o%, in the parabolic form of the
buckling mode w:

Oeg = ggq + Opw2 .......................... (]_3)

where (i)o,-buckling, when the buckling is consid-
ered to occur mainly in the longitudinal direction,
including the longitudinal uniaxial case of o, = 0
for the stress ratio p = o,/0, = 0:-

Oeqg =0a\/1—p+p?
of, =of [l ptp? oo (14)
Co =Cp\/1—p+p?
and
1
0’2 = :17:)0-27 G;ZRZ
b 1200 —v?) oy
) Y S
Cus z R (15) -
K, = z Ky = pK,
ag
c? C.C!
P Jab o Ifad
fx Ca¢ i pz t§¢

(i)o,-buckling, when the buckling is considered to
occur mainly in the transverse direction, including
the transverse uniaxial case of o, = 0 for p — co:

oo =0p\J1—p+p"/p
o'fq :05‘/1_P+P2/P ............ (16)
Cy =prv1——p+p2/p
and
v — P L€ e __ 1
al -—fyay, Uy_ﬁ
Y
b |12(1 — v?) oy
R, =-|—r——
t oK, B (17)
Ca . - :
K, =22 K,=K,/p
59
CP CC'
P Jad _ Tv-ag
fy Cozqﬁ, CP?J tz,qs
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Fig. 2 Interaction curves of elastic buckling coefficients (ns =2,6=1,6 =0.1).

in which,
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and, at the instance of buckling, the stress ratio
p = o0,/0. is evaluated from Eq. (2) or Eq. (3) if
the strain ratio p' = g,/¢, is specified at the critical
buckling point, and the same value of p is used in
the post-buckling range. Also, a = m/n is the ra-
tio of the longitudinal wave-number m to the trans-
verse wave-number n of buckling mode concerned,
and ¢ = a/bis the aspect ratio of the global stiffened
plate. Moreover, R, K, and of refer to the gener-
alized width-thickness ratio of the plate, the elas-
tic buckling coefficient and the non-dimensionalized
Euler buckling stress, respectively, in the longitudi-
nal z-direction: Similarly, R,, K, and o refer to
those in the transverse y-direction.
In Eq. (15) or Eq. (17), if § = 0 and v = 0, then
some parameters are entirely the same that those for

unstiffened plate subjected to biaxial in-plane forces,
expanding the author’s previous methods.’®19) Also,
elastic buckling coefficients K, and K, for stiffened
plates are equivalent to those proposed by Kitada et
al.l®

(3) Minimum flexural rigidity

In the elastic range, the strain ratio p' always
equals to the corresponding stress ratio p = K, /K,.
Hence, eliminating p in Eq. (15) or Eq. (17), an inter-
action curve of elastic bucklirig coefficients for global
buckling of the stiffened plate leads to the following
straight line:

Ky 4 CiEy = Gy covevvreennannarense (19)
where
ta¢~ Cor ’ ¢
Cr=7%, Co= % and top = () -+ (20)

Also, an interaction curve for local buckling of the
plate panel is expressed in the form of the similar
straight line:

K, + CIK, = C4

where Cf and Cf are obtained from C; and Cq, re-
spectively, in Eq. (20) when 6 =0 and v = 0.

Fig. 2 shows the interaction curve of elastic buckl-
ing coefficients when ng = 2, ¢ = 1 and § = 0.1.
Solid lines indicate the interaction curves for local
buckling of the plate panel, and are composed of five
straight lines corresponding to five buckling modes
of L3;ap = 1/3(m = 1,n = 3), L2%jap = 2/3(m =
2,n = 3), Liia, = 1(m = 3,n = 3), Loy =

L
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Fig. 3 Equivalent bifurcation point and ultimate strength.

4/3(m = 4,n = 3) and LS;0p = 5/3(m = 5,n =
3). Moreover, dashed lines indicate the interaction
curves for global buckling of the stiffened plate when
the flexural rigidity v ranges 0 to 10, and each curve
is composed of four straight lines corresponding to
four buckling modes of G2;a = 1/2(m = 1,n = 2),
Glia=1(m=1,n=1), 60 =2(m=2,n=1)
and G4;a = 3(m = 3,n = 1). Herein, as found in
Fig. 2, two global modes of G1 and G2 are only con-
sidered because the other two modes of G3 and G4
little affect the prediction of the ultimate strength.
Therefore, seven failure mechanisms corresponding
to seven buckling modes of L1, L2, L3, L4, L5, G1
and G2 are illustrated in this figure.

Now, if p, ¢, a, ay, ng and § are given, then the
minimum flexural rigidity 4 of a stiffener can be
obtained from coincidence of both types of buckling
coefficients for global stiffened plate and local plate
panel in Eq. (19) and Eq. (21).

CH{1+ (s + )5+ p(2))
(1+Ctp)n? ~
(ns +1)(3)"

Fig. 2 shows that an intersection point of a solid
line and a dashed line specifies an appropriate value
of the stress ratio p = K, /K, when v = v*. In order
to compare the present results with those by Kitada
et al.1® several explicit relationships between 7
and p are defined from Eq. (22) for 0,- and/or oy-
buckling.?!)

(4) Failure mechanism

Ultimate strength of stiffened plates can not be
generally determined by evaluating the elasto-plastic
critical buckling strength and the post-buckling path
from the residual stress. It is further affected by the
initial out-of-plane deflection and the plastic unload-
ing curve forming the failure mechanism.

Herein, the following interaction formula between
the non-dimensionalized equivalént stress o., in

o P,
($+;)

Eq. (7) and the non-dimensionalized bending mo-
ment m, on fold lines of each failure mechanism is
assumed for simplicity:*®

gzq+m]2j = ] i (23)

where m, = M/M,; M and M, refer to the bending
moment perpendicular to the plastic fold line and
the full plastic moment, respectively. Each failure
mechanism has the plastic fold line designated as
the solid line, as shown in Fig. 2.

The failure mechanism curves for G1 and G2 can

be expressed in the following form:2%):21):23)

W= Ap pu
eq
where
1+ 8(hs/t)
It -7 A & R 2
Trpt+@p3E vV —Ptr
for G1
Ap = (25)
3+ 268(hs/t)
1-—- 2
Si+3p 1 (3/3)5 V'~ FPTF
for G2

which hg is the height of a stiffener. Hence, hs/t can
be defined from several parameters as above men-
tioned.

Furthermore, values of A, in Eq. (24) for failure
mechanisms of Li, L2, L3, L4, and L5 are similarly
obtained from modifying those for biaxially com-
pressed unstiffened plates.'®)1%)

(5) Ultimate strength

Now, define an ‘equivalent bifurcation point’ as
the intersection of the elasto-plastic post-buckling
path of Eq. (13) with the failure mechanism curve of
Eq. (24). The point can be obtained by solving the

following cubic polynomial equation:!%)19),20):21)

o2 (qu -Gy AZ ) ofq -G, Ai Y T (26)

eqg
Let o7, and w* designate a proper real root of the
equation and the corresponding deflection calculated

|
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Fig. 4 Interaction curves for square stiffened plates
(be/t = 30, W,t = a/1000).
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Fig. 5 Interaction curves for square stiffened plates
(be/t = 40, W,t = a/1000).

from Eq. (24). Then, the point C(w*,07,) in Fig. 3
gives the ‘equivalent bifurcation point’ of the ‘per-
fect’ plate.

In order to evaluate the ultimate strength of the
‘imperfect’ plate with the initial deflection mode w,,
a pseudo-potential may be defined near the equiva-
lent bifurcation point C. The non-dimensionalized
equivalent ultimate strength o,, can be predicted to
have the maximum value on the failure mechanism
curve. Then, o, is expressed in terms of the follow-

ing unified form through the nonlinear bifurcation
theory,13)119)120),21)

1
Om = 03,[1 + & w) — \/201*1,0;(1 + —2—a*w;) ] -(27)

where o* can be obtained by the slope of the failure
mechanism curve, Eq. (24), at the equivalent bifur-
cation point C:

a*___l_'_i.aﬂ _i‘_;]___\/l_azg . (28)
o3, dw Oeq = ar, A,

and w* is an ‘equivalent initial deflection mode’ de-

fined by

W= (R)Wy <weee e (29)

Moreover, R refers to the generalized width-
thickness ratio, being R, in Eq. (15) or R, in
Eq. (17). Also, R, is a particular value of R, at
which the critical buckling point changes from the
elasto-plastic to purely elastic.

An explicit expression of p(R) is determined tak-
ing into reasonable account the consistency and uni-
fication with strength prediction formulas for other
structural elements such as beams, columns, plates
and shells,1819:20.21) a5 well as comparing with a

few numerical researches:10):11)18):16)

WB) = i) B =20 = 5 = - (30)

P

Finally, the ultimate strengths o, and oy, in the
longitudinal and transverse directions can be cal-
culated from taking 0., = oy, in Eq. (7) through
Eq. (27). Thus,

= I and Oy =P Opm (31)

Uzm_
VI=p+p®

for the specified value of the stress ratio p.

3. NUMERICAL DEMON-
STRATIONS AND
DISCUSSIONS

Now, let us examine square stiffened plates with
two longitudinal stiffeners under biaxial in-plane
forces, and compare these ultimate strengths with
the numerical results by Kitada et al.'® Stiffened
plates considered have ¢ =1, ng = 2, § = 0.1 and
v = «*, and the material is always oy /E = 1/875.
The magnitudes of the maximum compressive resid-
ual stresses in the local plate panel and of the con-
stant tensile residual stress in a stiffener are assumed
to be 6,, = 0,y = 0.3 and o, = 0.2, respectively.
Moreover, two types of global and local initial de-
flections are independently specified as /1000 and
be/150 (b, = b/3). Two types of global buckling
modes of G1 and G2, and five types of local panel
buckling modes of L1, L2, L3, L4, and L5 are taken
into account herein.

Figs. 4, 5 and 6 show the interaction curves
of square stiffened plates for the width-thickness
ratio b;/t=30, 40 and 60, respectively. The ab-
scissa indicates the longitudinal ultimate strength
o.m and the ordinate indicates the transverse ulti-
mate strength &, where both can be predicted by
Eq. (31) through Eq. (27). The global initial de-
flection is assumed to be a/1000. Herein, the solid
lines indicate the ultimate strengths for local panel

L
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Fig. 6 Interaction curves for square stiffened plates
(be/t = 60, Wt = a/1000). :
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Fig. 7 Interaction curves for square stiffened plates
(be/t = 30, W,t = b, /150).

buckling modes of L1, L2 , L3, L4 and LS, and the
regular dashed lines indicate the ultimate strengths
for global buckling modes of G1 and G2. Also, the
long dashed lines are the von Mises’s yield condition
and the ultimate strength by Kitada et al.l®

Therefore, the present ultimate strength can be
conservatively predicted by an envelope curve of
seven interaction curves for seven types of failure
mechanisms corresponding to seven buckling modes.

For the elasto-plastic buckling of stocky stiffened
plates with smaller width-thickness ratio b/t = 30
‘in Fig. 4, it is found that the ultimate strength ob-
tained from buckling modes of G1, G2 and L3 is more
unsafe than the Kitada’s numerical results.

The interaction curves for intermediate practical
width-thickness ratio b/t = 40 in Fig. 5 are shown
to be slightly more unsafe than those by Kitada for
G1, G2 and L3, like Fig. 4.

Also, for the elastic buckling of relatively slen-
der stiffened plates with larger width-thickness ra-

tio bg/t=60 in Fig. 6, the ultimate strength for G2

and L3 is almost in good agreement with those by
Kitada, and is slightly more unsafe than those for
G1.

Figs. 7, 8 and 9 show the interaction curves of
square stiffened plates with local initial deflection of
be/150 for the width-thickness ratio b;/t=30, 40 and
60, respectively. Similarly, seven interaction curves
corresponding to seven types of buckling modes are
presented herein. '

For the elasto-plastic buckling of stocky stiff-
ened plates with smaller width-thickness ratios of
be/t = 30 and b,/40 in Fig. 7 and Fig. 8, it is
also found that the ultimate strength for G1, G2
and L3 is conservatively in-good agreement with the
Kitada’s results. Naturally in the case of pure longi-

tudinal or transverse buckling, the present strength
approximates the Kitada’s result very well. Thus,
the present method provides the proper ultimate
strength for these practical ranges of width-thickness

" ratios.

Moreover, for the elastic buckling for larger width-
thickness ratio b,/t=60 in Fig. 9, the ultimate
strength in o,m < Oym is slightly more conservative
than those by Kitada, while the former in o,,, > oy
is slightly more unsafe than the latter.

The present analysis is seemed to evaluate the ac-
curate ultimate strength for pure transverse buckl-
ing, and however, to slightly overestimate the ulti-
mate strength for pure longitudinal buckling, com-
paring with the Kitada’s results. This overesti-
mation tends to become lighter for smaller width-
thickess ratio.

The author proposed the similar approach to the
ultimate strength of unstiffened plates under biax-
ial compression,®1%) and found that his results are
in good agreement with those by Dowling!® and
Kitada et al.'®)!® Thus, the ultimate strength for
local buckling of the plate panel of the stiffened plate
may be evaluated with wonderful accuracy.

The ultimate strength of stiffened plates with the
flexural rigidity of ¥ = 4* means that the considered
buckling occurs simultaneously for both global stiff-
ened plates and local plate panels. When the width-
thickness ratio b,/t changes from 30 to 60, each ulti-
mate strength for G1 and G2 is found to agree with
that for L2 and L3, respectively, in 0., < 0ym, and
also the strength for G2 and G1 is found to agree with
that for L2 and L5(or L4), respectively, in 0zm > Oym.
Therefore, for elastic buckling with larger width-
thickness ratio, the ultimate strength for the global
buckling tends to agree with that for the local buckl-

]
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Fig. 8 Interaction curves for square stiffened plates
(be/t = 40, Wt = be/150).
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Fig. 9 Interaction curves for square stiffened plates
(be/t = 60, W,t = be/150).

ing. Of course, from Fig. 2, it is shown that, io-
dependent of the value of width-thickness ratio, the
elastic buckling strength, ¢.e. the elastic buckling co-
efficient, for the global buckling coincides with that
for the local buckling when v = ¥*.

The present method does not take into account
an effect of the interaction of several initial deflec-
tion modes on the ultimate strength. However, from
above numerical demonstrations, it is found that this
method can evaluate the ultimate strength for simul-
taneous bucklings of global stiffened plates and local
plate panels with as proper accuracy as the Kitada's
finite element results. In other words, the effect of
the interaction of both global and local initial de-
flections on the strength by Kitada is considered as
the effect of a global or local distinct initial deflec-
tion with the same level of the magnitude in this
method.

4. CONCLUSIONS

The ultimate strength of rectangular steel stiff-
ened plates under biaxial in-plane forces of tension
and/or compression is predicted by this unified sim-
ple method. The main conclusions are: -

(1) The present approach is formulated for general
rectangular longitudinally stiffened plates, and
is demonstrated as ultimate strength interaction
curves for square stiffened plates with two lon-
gitudinal stiffeners.

(2) For given residual stresses and initial deflec-
tions, the elasto-plastic strength for the ‘imper-
fect’ stiffened plate may be explicitly predicted
in the form of the unified imperfection sensitiv-
ity curve near the ‘equivalent bifurcation point’,

at which the elasto-plastic post-buckling equi-
librium path for the ‘perfect’ stiffened plate in-
tersects its plastic failure mechanism curve.

(3) The actual initial deflection mode is modified
and replaced by the ‘equivalent initial deflection
mode’.

(4) The present ultimate interaction curves are
found to be in agreement with the Kitada’s nu-
merical results for intermediate practical ranges
of width-thickness ratios.

(5) All the calculations herein can be executed read-
ily using only a personal computer with small
memory storage.

(6) The general philosophy adopted in this paper
may also be applicable to other types of struc-
tures such as rigid frames, arches and trusses as
well as columns, beam-columns, plates, cylin-
drical shells and cylindrical panels.
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