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BLOCK-DIAGONALIZATION METHOD
FOR SYMMETRIC STRUCTURES
WITH ROTATIONAL DISPLACEMENTS

Ichiro ARIO* Kiyohiro IKEDA** and
Kazuo MUROTA***

The group-representation theory guarantees that the (tangent) stiffness matrix of
symmetric structures can be put into a block-diagonal form by means of a suitable
(local) geometric transformation. This transformation decomposes the linear equi-
librium equation of symmetric structures into a number of independent equations,
and hence is advantageous for parallel analysis. The block-diagonalization method,
which so far has mainly been applied for translational displacements, is extended
here to rotational ones. The interrelationship between the symmetries of rotational
and translational displacements is investigated by means of group theory to arrive
at the transformation matrix of rotational ones.
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1. INTRODUCTION

Geometric symmetry has extensively been ex-
ploited in structural analysis of symmetric struc-
tures. For example, only a part of a symmetric struc-
ture is cut out and analyzed to reduce the degrees
of freedom involved. It is customary to impose the
axisymmetry in shell analysis. The description and
use of symmetry, however, are currently done in a
semi-empirical manner.

A systematic strategy for exploiting symmetry has
already been established in many other fields of
physical science and engineering. For the descrip-
tion of symmetry (e.g., the structure of the crys-
tal lattice etc.?), it is standard to use groups? that
consist of rotational and reflectional transformation.
The block-diagonalization method is used to decom-
pose the governing equation of a symmetric system
into a number of independent equations by means of
a suitable transformation®. This method is system-
atically and completely described by means of the
group-representation theory in the field of applied
mathematics¥5)8),

The method has come to be put to use also in the
field of structural engineering ) ~'®). Since the (tan-
gent) stiffness matrix of symmetric structures can be
transformed into a block-diagonal form by means of
a suitable local geometric transformation, their equi-
librium equations can be decomposed into a number
of independent equations. This method, thereforé, is
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suitable for parallel computation, and hence can im-
prove the computational efficiency and decrease the
array capacity. The method, however, has a problem
regarding the compatibility with the finite element
method.

With the use of the concept of the orbit, a
systematic method to compute the transforma-
tion matrix compatibly with the finite element
method¥17)18) has been presented for translational
displacements. The extension to the rotational dis-
placements, however, is a pressing need to make the
block-diagonalization method applicable to general
symmetric structures.

This paper offers a block-diagonalization method
for generalized displacements. We investigate the in-
terrelationships of rotational and translational dis-
placements by means of the group-representation
theory to arrive at the transformation matrix for
rotational ones. The method has thus been made
accessible for general symmetric structures.

2. BLOCK
DIAGONALIZATION

This chapter introduces a method for describing
the geometrical symmetry of structures as a sum-
mary of previous papers!4t7:18),

(1) Equivariance of equilibrium equation

Denote by U(f, u) the total potential energy func-
tion ! of a discretized system, where f stands for the
load pattern vector and w for the displacement vec-
tor, respectively. The (N-dimensional) equilibrium
equation of this system becomes:

1 Although the following discussion is applicable for non-
potential systems, the total potential is used here to make
the discussion more comprehensive.
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(gﬁ) SF(Fou) = 0 ceeeeeein e (1)

In describing the symmetry of the equilibrium equa-
tion we consider a group G composed of geometric
transformation g (such as reflections and rotations).
It is assumed that when an element ¢ of G acts on an
N-dimensional vector w (respectively, F'), u is trans-
formed into g(u) (respectively, F into g(F')). An
N-dimensional (N x N) representation matrix T(g)
that describes the action of g on the corresponding
vector space is defined by '

T(g)'”{ =g(u), T(gF=g(F), geG - (2)
The representation matrix of the load vector * f is
defined by

f’(g)f =9(f), GEG e (3)

The representation matrices T'(g) and T(g) are as-
sumed to be orthogonal.

The symmetry of this system is expressed in terms
of the invariance of the total potential energy U with
respect to the transformation by all elements g of
group G. U is called invariant with respect to G,
when

U(T(g)f,T(g)u) =U(f,u), g€G -+ (4)
is satisfied. Such invariance is inherited to F' such
that

T(g)F(f,u) = F(T(9)f,T(g)u), g€G - (5)
Eq. (5) is a general symmetry condition applicable
for non-potential systems, and is called the equivari-
ance of F' to G. Eq. (5) means that the transform-
ing of independent variables f and u respectively by
T(g) and T(g) is the same as the transforming of the
whole equation F' by T(g).

We consider a linear equilibrium equation 2

FEK’U,—f:O .......................... (6)

that satisfies the symmetry condition (5). By virtue
of this condition, the linear stiffness matrix K in (6)
satisfies the symmetry condition

T(K = KT(g), gEG v vverrrmrnrnrss (7

and hence can be block-diagonalized by means of a
suitable geometric transformation.

The linear equilibrium equation equivariant to
some group is known to be transformed into a set
of independent equations corresponding to the irre-
-ducible representations of the group. .The forms of
the transformation matrix and block-diagonal ma-
trix vary with individual groups.

Define by

2 In general, the representation matrix-of f is different
from that of w and F because the dimension of f in
general is different from that of u and F.

3 Since the symmetry condition (7) holds also for the tan-
gent stiffness matrix of nonlinear problems, the results of
the present paper are applicable also for these problems.

Tlt(g) = Tf(g), i=1,---,a" g€ G, pe R(G) (8)
the irreducible representation matrices of the group
G, which do not depend on the structure but only
on G. Here u indicates the irreducible representa-
tion of G, R(G) denotes the whole set of irreducible
representations, and a* is the multiplicity of the irre-
ducible representation y in the representation matrix
T(g), being given by

a* = IGI 3 x(@)x*(9),

geG

Here (*~) denotes the complex conjugate and x(g)
stands for the character (the sum of the diagonal
components) of T'(g)and x*(g) for that of T(g), re-
spectively. It is a basic concept of the “group-
representation theory” to formulate general prin-
ciples for the irreducible representation matrices
T#(g), and in turn to obtain representation matrix
T(g) and transformation matrix H of each structure.
This corresponds to obtaining H such that

ak
H'T(9H= D PT9), 9€G - (10)
7 RER(G) i=1 ‘
(2) Block diagonalization for dihedral
group :

In this paper we focus on the dihedral group
G = D,,, which represents the symmetry of a regular-
polygon (n-gon), though the block-diagonalization is
a general principle approved to hold for an arbitrary
group. The dihedral group of degree n is deﬁned by

Dy ={l,r--,r" Y s sr, e e e (11)
with 7 = §? = (sr)®> = 1. Here 1 is the iden-
tity element that leaves everything unchanged, the
element s stands for the reflection with respect to
the X Z-plane, and r# for the counter-clockwise ro-
tation around the Z-axis at an angle of 2jr/n (j =
1,---,n — 1). Subgroups of D, are defined by

Di, = {r*/m spkr/mti=l | k=0, ,m =1} (12)

Con {rkn/m | k=000 ,m—1} covveerenns (13)
Here D,, = D}, and C; = {1}; m = gcd(j,n) shows
the greatest common divisor of j and n. The dihe-
dral groups D7, of order m denote regular m-gonal
symmetries and the cyclic groups C,, indicate the ro-
tational symmetry with respect to an angle of 2 /m.
Deformation patterns of D, -invariant structures are
expressed by these subgroups.

Denote by

R(D,)={p=(d,4)|j=1,,mad=1,2} (14)
the whole set of irreducible representations of D,
(refer to Murota * Tkeda!?) for details of notations).
Here d denotes the degree of the irreducible repre-
sentation g = (d,j), j means the jth irreducible
representation of degree d, and my is the number of
non-equivalent d-dimensional irreducible representa-
tions, being given by

L
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my =4, my=n/2—1, whenn =even

my =2, my=(n—1)/2, when n =odd

The one-dimensional irreducible representation
matrices of D,, are uniquely determined as

TON(r) = 1, TOD(s)= 1
T(112)(T) = 1, T(lyz)(s) =-1r (16)
703 (r) = -1, T3 (s)= 1

T (r) = -1, TOH(s) = -1
The two-dimensional ones, which are not unique, are
chosen-to be

25) i cos(2mj/n) —sin(27j/n) ..
1600 = (Gnemfm) eotonim) 07

T (g) = (é _01) ...................... (18)

according to Murota * Tkedal?.

The character is given by

x9N (r) = 2 cos(2mj /1), x®(s)=0 .-+ (19)

The geometric transformation matrix which de-
composes equilibrium equation (1) into the compo-
nents of irreducible representations is defined by
H E["',H“,"‘

=[ (L1) s ...’H(lvml) R
HE@Y o gm)
H@Y= .. gEma)- ]

Here H(9) indicates blocks for the one-dimensional
irreducible representations (1,7), H®? and H®)-
express those for the two-dimensional ones (2, 5), re-
spectively. By means of this transformation matrix
H, the stiffness matrix can be transformed into a
block-diagonal form:

K = HYKH = diag[---,K*,- ]
= diag[K®D) cee Kma)
E(Zyl) y ot .7E(2vm2) N

Ken | ... Rem) |

where diag|- - -] denotes a block-diagonal matrix with
the diagonal blocks in the parentheses. It is to be
noted that two identical diagonal blocks correspond
to a two-dimensional irreducible representation. It is
computationally efficient to compute each diagonal
block by the formula

f(‘#=(Hu)TKHu, € R(D,) <vveenens (22)
which exploits the orthogonality of H* among ir-

reducible representations. For the translational
displacements”'® H* has the following symmetry

S(HOYY = D, S(HD) =C,

S(HO) = Dy, B(HOD) =D -+ (23)
S(H®)) = Dgeagim
; DF™I2  when n' = even
b H(zyl)— — ged(4m)? 24
( ) Ceca(jm), When n' = odd (24)

(15)

1<k<n/, j=1,---,mg, n'=n/ged(j,n)

where X(+) means the group that labels the sym-
metry of the deformation patterns expressed by the
column vectors of the matrix in the parentheses (see
Fig.6 and Fig.7).

The coordinate system associated with the irre-
ducible representation is defined by

U = Hw = Z H”w“’ .................. (25)
wER(G)
= S HO 1)
j=1
SO (HE @) 4 HODap®i) (26)
=1 .

where the new independent variable

w=] (Wt ... (wdm)T
(w(zvl))T R (1_0(2»"7‘2))'1‘7 e (27)
(w7

is expressed as the assemblage of the components
for the irreducible representation. The linear equi-
librium equation (6) can be decomposed into a set
of independent equations

(H(d,j))Tf = K (di)gy(did)
(HED)T f = R
j=1,eyma; d=1,2 cooieiiieiiaeenn (28)

compatibly with the irreducible representation
through the transfomation by Eq. (26). The so-
lution u is obtained by substituting the solutions of
Eqgs. (28) into Eq. (26). :

3. EXTENSION TO ROTATIO-
NAL DISPLACEMENTS

(1) Representation matrix of nodal dis-
placements ’
Consider the generalized displacement vector

"=(3)=(%11i253§§§jiii}3) ........... (29)

which consists of a translational displacement vec-
tor v' and rotational one 8 of node ¢ (i = 1,2,---)
shown in Fig.1. Here

v = (véﬁ v;h 'UiZ)Ta 6 = (03(7 0;./7 01Z)T """ (30)
and the arrow — in Fig.1 shows the translational
displacements, and - shows the rotational displace-
ments around the axis. Since a D,-invariant struc-
ture has rotational symmetry around the Z-axis,
the X- and Y-directional displacements, and the
Z-directional ones have different properties in the
framework of the present theory. In order to exploit -
such a difference, which will turn out to realize the
sparsity of H in Eqs. (47) and (48), we decompose
vt and 8" as follows:

viz(v%y), 0‘:( )fY) ............. (31)
vz Z




BLOCK-DIAGONALIZATION METHOD FOR SYMMETRIC

STRUCTURES WITH ROTATIONAL DISPLACEMENTS “ARIO - IKEDA - MURQOTA

Fig.l Definition of displacements

e

. o

(a) translational (b) rotational
displacements displacements
Fig.2 Action of rotation r

) rotational
displacements

a) translational (b)
dxsplacements

Fig.3 Action of reflection s

where the subscript XY of each vector (respectively,
. Z) shows that the relevant vector is associated with
the XY-direction (respectively, Z-direction).
Because translational displacements v' and rota-
tional ones #' are independent, representation ma-
trix T(g) of each node with 6 degrees of freedom is
expressed as:

T(g) = (T”(()g) Tg?g)) , GEG e (32)

which is the direct sum * of representation matrices
Ts(g) and T, (g) associated with the translational and
the rotational ones, respectively. Because rotation
causes the same action on the translational and the
rotational displacements as shown in Fig.2, we have

To(r) = Ty(r) covevemrerminnenen (33)

The reflection s transforms the translational and
the rotational displacement vectors in opposite di-
rections, as shown in Fig.3. This leads to

. N 1 0 0O
To(s)=-Ty(s)=10 =1 0 | «evvvvve (34)
0 0 -1

The representation matrices Tp(s) and T.(s) have
opposite signs to show the difference of the action
of the reflection s on the translational and the ro-
tational displacements. Such difference arises from
the fact that the translational ones are of an axial
vector, while the rotational ones of a'polar vector.

4 The representation matrix for one orblt is a tensor prod-
uct of T(g) and the permutation representation, and 7(g)
is given as a direct sum of this matrix over all orbits. Re-
fer to Murota - Tkeda!?) for details.

(2) Transformation matrices

Murota + Ikeda!¥ has obtained a concrete form of
the geometric transformation matrix H = H, asso-
ciated with the representation matrix

T(g) = Ty(g) +vvvrerrervmeeenrenmeenennes (35)

for the translational displacements. Note here that
the representation matrix

T(g) = (T"(()g ) T:()g)) ,

and the geometric transformation matrix for each
irreducible representation

Huz(}g‘ I?,;‘)’ BER(G) wvveenns (37)

both have block-diagonal forms.

Eq. (10) for v and @ becomes
%y
H3To(9)Hs = D PTH(9)
' HER(G) i=1
geEG, ®=vorf ---- (38)

where a4 (® = v or §) denotes the multiplicity of
the irreducible representation p for the representa-
tion matrix Tg(g). We obtain below the interrela-
tionships between a¥ and a4, and HY¥ and Hf, and
in turn to obtain the concrete form of af and H§ with
reference to that of a” and H¥ obtained in Murota
Tkeda'®).

Since Eqgs. (33) and (34) for the vector u' of the
7th node hold also for the vector u of all nodes, we
have

Te(g) = 0(9)Tu(g), gEG « vvvrvvrrennns (39)
a'(g) = { _}: i:"‘; .................. (40)

L
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v " 2

Fig.4 Four types of orbits -

For a pair of irreducible representations y and ji de-
fined as listed in Table-1, the relationship

c(@)T*(g) =TMg), gEG ~worvvrrvverns (41)

is satisfied.

The following relationships concerning the multi-
plicity and the coordinate transformation matrix are
obtained from Eqs. (38), (39), and (41). Transla-
tional displacements v and rotational ones 8 have
the same multiplicity

a,g‘ =al e e taesasananaanan (42)

v

The irreducible representations g and fi, which sat-
isfy the relationship in Table-1, are associated with
the translational displacements v and with the ro-
tational ones 8. The combination of these relation-
ships with Eqgs. (23) and (40) leads to

He(l,l) _ Hﬂ(]l,z)’ H§]’2) — Hf;l’l) .......... (43)
H§1,3) _ H,Sl"‘), H£1’4) — Hi(}lﬁ)’ .......... (44)
Hg(z,j) — H1(’2,j)—’ H{gZ,J’)— — H52,j) ......... (45)

(j =1,++,mz). The blocks Hy for the rotational
displacements can be calculated by Eqs. (43), (44),
and (45) based on H of the translational ones. Then
the transformation matrix H can be calculated from
Eqgs. (20) and (37) with the use of Hf and Hy
obtained in this manner.

Table-1 The relationship between irreducible
representations y and fi

Two-dimensional
irreducible rep.

i

One-dimensional
irreducible rep.
p i 2
11 (1,2) 21 (1)
(L2) (1,1 22) (2,2
(1,3) (1,4) : :
(1,4) (1,3) (2,m2)

(2,'7'7?,2)

4. ORBITS AND SPARSITY OF
H

A set of nodes of D,—invariant structure can be
decomposed into a. series of Dy-invariant minimum
subsets, which are called the “orbits.” An orbit is
defined by a set of points

{Tk(m)’ srk(a:) |k=0,1,---,n— 1} -eeeeee (46)

where r*(x) (respectively, sr*(2)) denotes the point
transformed from a point @ by means of the trans-
formation r* (respectively, sr*) (k =0,1,---,n—1)
of D,. Though an individual node may be moved
by the transformation caused by D,, the orbit as a
whole remains unchanged. A set of D,—invariant
nodes can be classified into the following four types
of D,-invariant orbits?'® as shown in Fig.4.

Center type (0)
n-gon type (LV)
n-gon type (1M)
2n-gon type (2)

type of orbits

The column vectors of H can be defined orbit by
orbit to assemble them systematically and to make
it sparse, and in turn to enhance numerical efficiency.

The substituting of the formulas¥'® for the
transformation matrix H, of the translational dis-
placements into the right hand sides of Egs. (43) —
(45) leads to Hy of the rotational ones.

The blocks H* of H with No orbits are expressed
as

H* 0 0 0 O
O - 00 O

H*=| 0 0 - 0 O |,peR@G) @47
0O 00 - O
0O 0 0 O Hf

and hence are very sparse due to the independence
of orbits. The representation matrices of the trans-
lational displacements v and rotational ones @ are
independent. Furthermore, the representation ma-
trices for the X- and Y-directions and those for the
Z—direction are independent as shown in Eq. (37).
Owing to such independence, each block H of Eq.
(47) has a further block-diagonal structure

Hagger HE‘) 8 8
f - q,v e
=1 o 6 m4,, O (48)

o o 0 HY,

When we calculate the blocks K* of the stiffness
matrix by Eq. (22), the sparsity of the H matrix due
to Egs. (47) and (48) is very advantageous. Refer
to Ikeda et al.® for the efficient calculation of K*.

]
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v5(6%)
0Y(UY)

0% (v%)

Fig.5 Regular-triangular plate element

5. ANALYTICAL RESULTS

The block-diagonalization method is applied in
this section to regular polygonal plates.

(1) Regular-triangular plate element

We consider the regular-triangular plate element
shown in Fig.5, the three nodes of which form the
orbit of type 1M. Each node of this element has six
degrees of freedom (three translational and three ro-
tational displacements). The stiffness matrix of this
element can be block-diagonalized by the present
method. The transformation matrix (20) for this
element is

H = [H(l*l),H(1'2),H(2’1),H(2*1)‘] .......... (49)

The deformation patterns represented by the column
vectors of H are shown in Fig.6, while their com-
ponents are listed in Fig.7. As can be seen, H is
very sparse due to the double block structure in Eqgs.
(37) and (48) In numerical analysis, one needs not to
compute H but to refer to the information on the or-
bit shown in Fig.6 to decrease the requisite amount
of storage and the computational cost.

The substituting of the element stiffness ma-
trix K. of this regular-triangular plate shown in
Fig.8 into the transformation

K, =H'K.H
— diagf(8, K09, Ko, Ko

yields a block-diagonalized form shown in Fig.9.

(2) Regular polygonal plates

The D,-invariant plates in Fig.10 with triangu-
lar meshes are considered. We employ ACM (Adini,
Clough and Melosh) 9 linear element, which has
three degrees of freedom for each node, consisting of
rotational displacement 0% around the X-axis and
rotational one ¢ around the Y-axis and the vertical
translational displacement v%. The shape functions
of the bending and the bending angle are assumed
to be C'-continuous ®.

The stiffness matrix of D,-invariant plates (with
D, -invariant meshes and with uniform material and

- (50)

5 Though the bending angle between elements is not con-
tinuous, it does not affect the present formulation, be-
cause this formulation is applicable both for compati-
ble and non-compatible elements so far as Eq. (7) is
satisfied.

stiffness distribution) shown in Fig.10 can be trans-
formed into a block-diagonal form in Fig.11, regard-
less of the numbering of nodes. Here (-) shows zero
values and (+) shows positive ones and (—) nega-
tive ones, respectively. For example, for n = 3, the
whole set of nodal points consists of four orbits, in-
cluding: one type 0 (original point), two type 1M,
and one type 1V. In association with the increase in
the degree n, the number (m; + 2m;) of the block
increases, but the sizes of block matrices remain al-
most constant. Though further block structures are
observed for some blocks, these structures do not
arise from the group-theoretic nature but accidental
one. Fig.12 compares the stiffness matrix K and
the block-diagonalized matrix K. When n increases
the band width of K increases significantly, while K
has a very narrow band and independent blocks.

Fig.13 compares the variation of the array capac-
ity in association with the increase of n for various
methods. Here the ordinate denotes n and the ab-
scissa in the left shows the array capacity of K by
the present method (e), the capacity by the sky-
line method (o), and that for the whole array of
K (o). All these capacities are normalized with re-
spect to the whole array of K for n = 20. The
present method requires far less array than the sky-
line method, which is usually noted to save array.
The ratio of the capacity of K relative to that of K
(shown by the line graph without symbols and asso-
ciated with the abscissa in the right) converges to 0
with a slight oscillation , and hence demonstrates
the advantage of the present method.

Fig.14 shows the ratio of the computational time
consumed by the NEC workstation EWS4800/350
with non-parallel CPU for the present method and
the Cholesky method, though such time may be ma-
chine dependent. This computational time is nor-
malized with respect to the time of K for n = 20.
The present method, which demands less than half
computing time of the Cholesky method does (for
n = 20), is'far more computationally efficient. The
use of parallel machines will further enhance the ef-
ficiency of the present method.

6. CONCLUSION

In this paper, the block-diagonalization method
has been extended to the rotational displacements,
and its usefulness and validity are assessed. Al-
though the numerical examples employed are limiited
to plates, the present formulation is general and is
applicable to other structures.
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Fig.10 D,-invariant plates (n = 3,4,6)
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Fig.12 Stiffness matrix K (left figure) and block-diagonal matrix K (right figure)
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Fig.13 Computer memory Fig.14 Computing time
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