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"ACTIVE OPTIMAL CONTROL OF ABRIDGE
TOWER AGAINST GALLOPING USING AN

OPTIMAL OBSERVER

S.M. Shahid ALAM* Shunsuke BABA**
and Masaru MATSUMOTO***

An active optimal control algorithm is presented for the suppression of self-excited
vibration such as galloping in towers of long span bridges. Quasi-steady theory is ap-
plied to model the aerodynamic forcés and multimode response is considered to
observe the intermode jnteraction. Gust load is considered as a random phenomenon
and modeled by the power spectra of the along and across wind fluctuating velocities.
The possible error in the response prediction, due to uncertainty in the quasi-steady
theory and the random gust phenomenon, is rectified by the introduction of an obser-
ver. An optimal observer is used to minimize its effect on the increment of the objec-
tive function. The effect of the observer on the change in system parameter and gust
intensity is examined, also the time delay effect on the performance of the controller is

investigated.

Key Words : galloping, multimodal interaction, active control, optimal observer

1. INTRODUCTION

With the increasing need of longer span, the
suspension and cable stayed bridges are becoming
more and more flexible and consequently more
susceptible to aerodynamic forces. The towers of
such structures, which are usually aerodynamically
bluff, show instability above certain wind veloci-
ties. These instabilities result in vortex induced
motion and galloping along with buffeting due to
turbulence in the wind. As the vortex induced
motion is small as compared to the galloping, in
this study, we have restricted our discussion only to
galloping and buffeting related vibrations.

In the past, various passive means have been
employed to control these undesirable vibrations.
The most effective of them is to artificially increase
the damping of the structure. Fujino et al.” applied
Tuned Mass Damper (TMD) for this problem and
increased the damping of the fundamental mode of
the structure by tuning it with the damper.
However, their results showed that TMD is not so
effective at high wind velocities, where higher
modes are excited. Furthermore, their work did
not include the multimode galloping®™ suppres-
sion problem. The limitation of passive control
provides sufficient reason to think of a suitable
active vibration control scheme. To the best of
authors knowledge, the active control of galloping
related vibration has not been studied yet. It is the
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purpose of this study to present a suitable active
control algorithm for a structure galloping in a
gusty wind. Contrary to direct velocity feed back
(DVFB) control, which is simpler than other
approaches”, the proposed scheme suggests an
optimal regulator control with an observer. The
reason is that DVFB, although simple in applica- -
tion, is believed to be a low authority control®. On
the other hand a controller with an observer results
in a qualitative control, which in authors opinion is
one of the prerequisites of an active control of such
important structures like long span bridges. The
use of an observer increases the robustness against
uncertainties like aerodynamic load prediction,
gust load, the spontaneous changes in system
parameters such as change in mass and stiffness
matrices, which are due to the aging of the
structure or the effect of occasional unsymmetric
mass distribution etc®. Although, the scheme is
applicable to either a single or multimode galloping
control, the emphasis is put on a multimode
galloping problem. A particular structure is
selected as the illustrative example to observe the
multimode galloping behavior under smooth flow
and also to see its response under the action of a
control force in a gusty wind.

This paper is structured as follows. In Section
2.1, the equation of motion of a continuous
structure subjected to galloping in a gusty wind and
under the action of control forces is formulated.
The self exciting force is modeled by the quasi-
steady theory with a seventh order polynomial
showing the intermode interaction. The gust load is
considered as a random phenomenon and modeled
by the along and across wind fluctuating velocity
power spectra™ as discussed in Section 2.2. In
Section 2.3, the second order differential equation

]

13 (15)



ACTIVE OPTIMAL CONTROL OF A BRIDGE TOWER AGAINST
GALLOPING USING AN OPTIMAL OBSERVER ALAM - BABA - MATSUMOTO

. of motion is modified to a finite difference equation
suitable for digital control. An expression for the
optimal control force using an optimal regulator
scheme is derived in Section 3. The introduction of
the observer is described in Section 4. The increase
in the objective function due to the introduction of
the observer is minimized by using an optimal
observer as discussed in Section 5. Section 6 gives a
layout plan for the control system with the
observer. In Section 7, an illustrative example is
solved to observe the galloping phenomenon and
its control. Finally, Section 8 contains the conclu-
sions drawn from this study.

2. BASIC ANALYSIS

(1) Equation of Motion

Consider a bluff continuous body like a bridge
tower, under the action of a strong wind and
control forces. The equation of motion perpendicu-
lar to the direction of the wind has been formulated
as

m(z )ay(zt)L( )ay(zt)
0 ay(zt)
az[EI( YLD

=S u(D0(2=a) +Ful2,) +Fi( 2,)

........................................... (1)

where z is the height from the ground and £ is the
time. m(2), ¢(z) and I( z) are the mass, damping
and the moment of inertia of the structure per unit
length respectively. E is the modulus of elasticity of
the structural material and y(z,¢) is the displace-
ment function. Here 7 is the number of actuators
and 0(z—a;)is the Dirac delta function, which
gives the location of the j-th actuator ;( ¢), placed
at height a;. Fs,(z,t) and F;(z,t) are the self-
exciting and the buffeting forces per unit length
respectively.

The self-exciting force appearing in Eq. (1) can
be modeled by the quasi-steady‘theory” which has
been verified” at velocities considerably higher
than the vortex shedding velocities. Hence accord-
ing to quasi-steady theory

Ful2,0) =50hV%(2) SA( 2Ly ))

1=1,3,5,7
........................................... (2)
Here p is the air density and % is a characteristic
dimension, which is taken as the dimension of one
of the legs of the tower perpendicular to the wind
direction. V(z) is the mean velocity of air and 4; is
the aerodynamic coefficient.

The buffeting force appearing in Eq. (1) can be
modeled as™

_ 1 vb( Z,t)

O B o

_*_Ci(_w_{/((‘zz;;)ﬂ Ceseertesisaenaies (3)

where v5(z,t) and w,{z,t) are along and across
wind fluctuating velocities. C; is the lift coefficient
and C'=dC;/da. where « is the static angle of
attack. The drag term of Eq. (3) in reference™ is
neglected, as it is very small as compared to C/'.
The quantities C; and C; etc. are determined
experimentally for a particular cross section of the
structure™. To be consistent with Eq. (2), we have
again defined the characteristic dimension as % in
Eq. (3).

Let the displacement function y(z,f) and the
mean velocity of air V(z) are expressed as

y(z,t)=§31¥fs(2)qs(t) ....................... (42)
V(z)=Vw(z)= V°(zio>p ..................... (4b)

Here ¥,(z) and ¢;( ) are the mode shape and the
generalized co-ordinate of the s-th mode respec-
tively. v( 2z )is the velocity distribution function and
Vs is the mean wind velocity at the reference height
Zo (usually 10 m). p is a constant depending on the
topographic condition. Substituting Egs. (2) and
(4) in Eq. (1), multiplying the resulting equation by
¥, (z) and integrating over the full height / of the
structure, the equation of #-th mode is given by

fo’mu)afnz(z)dz[an<t)+2ﬂnwnqn<t)
+03g(D]= [ ()| S D6(2=a)] a2
+%ph{§A,~Vo -i fo 'vz-"(z)w,_,(z)

|Zwa0] s+ [Aanto)

+=1,3,5,7
........................................... (5)
Eq. (5) is a general equation and represent the
coupling of the aeroelastic terms for infinite modes.
Here w, and B, are the circular frequency and the
damping ratio of the #-th mode respectively. The

intertial, mass and damping terms on the left hand
side of Eq. (5) are linear and decoupled, also the
buffeting force term on the right hand side of Eq.
(5) is assumed to be uncoupled® whereas the
aeroelastic force term which is nonlinear, is the
only term which remains coupled. For the sake of
simplicity, we have limited our study to only two
modes, 7.e. we have considered the intermode

L
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interaction between only- two modes. Let these
modes are denoted as { and n( w:<w,), Eq. (5) is
then written as

F=

0 1)+ 2Buonta )+ ign(£)= 50001, 1)

+22‘”{fm(q)+fbn(i)} .................. (6)

where m, and u, are the equivalent mass per unit
length and the mass ratio for the #-th mode, and
are given as

f’m(z)l[fi(z)dz
Wy = 0 Dn ....................... (7a)

where

!
D,,=j; U2(2)dz n=0,1

and Cp,; is the coefficient of j-th controller
corresponding to #-th mode, and is given as

Cumi=Tp( @;) /Dy ++vvveersrvrensesvnesaiuenanns (7c)
The aerodynamic force term fon(§) in Eq. (6) is
given as

Jen( ) =A1VoCamin(t)

5

3
+A V5t 2 (k_2>CA,nkqg_k( E)GEE(E)

k=2

11 5
+A V53 2 (

=l 6>c,4,nqu-k< D)

19 7
+A V7 2 <k—1 2>CA,M(1%""‘( B)gE(e)

k=12

...................................... e (7d)
where # and k describe the mode number and the
coefficient number respectively, whereas the
coefficients C,x are given as follows

Cam= [ () W2(2)dz/D, k=1

CA,nk=j;IU—1( DU () U3 (2)dz/D,,
' k=2,3,4,5
I
Cank =j; v3(2) Wk (2) W7 (2)dz/Dy,
: k=6,7,-11

Came= [ v (2) W= (2)TFH5 (2)da/D,

k=12,13,---19
when n={=&=1 and when n=np=>§£=2.
The buffeting force term f;,( £) in Eq.(6) is given

aslz)—-l5)

S )= @VoCD [VZZ [ S @l @)l
V() PAw]? cos (wt+ )]
+ (Vo) [VZ [ Sun @l 0

U w)e]? cos (st - (7e)

where S, (w;) and S,, (w;) are the one sided
spectra of the along and across wind fluctuating
velocity components. Also @;=(j—0.5)4w and
Aw=w,/N, where w, is the upper cutoff frequen-
cy, N is the number of sampling. ¢; and ¢; are the
random phase angles uniformly distributed be-
tween 0 and 2z. The joint acceptance function
|72 (w; )]? and the aerodynamic admittances
I (@)? and |72( @)[? in Eq.(7e) are defined in -
Appendix 1.

(2) Power Spectra

The power spectral density for the along wind
velocity fluctuation Sy( w;,2) is given as™?

2
va( a)j,z) 6K1KV2’ PORRRLELEEIED (8a)
2zbi[1+ Coy/27h) s
in which
_ _ 3 ﬁ _E.. 4p-1
K,1=0.4751, by=K,(KV®) 2Vo4< zg)(z()) ,

K;=1.169x107?
where K is the surface drag coefficient.

The power spectral density for the across wind
velocity fluctuation is given as®

17KVOZZ
272V(2) [1+19.5w;2/27V( 2)}13

Sww( Wj,2 ) =

(3) State Equation

From Eq. (6), the equation of motion for the two
selected modes { and 7 is given -as

Q+CQ+KQ=HU-+S{F.()+F,(#)}

........................................... (9)

where @ is the modal co-ordinate vector of size 2 X
1. U's the control force of size X 1 and F.( ¢) and
F,(t) are the modal force vectors of size 2X1. C
and K are the damping and stiffness matrices of
size 2X 2. H and 8§ are the coefficient matrices of
size 2 X 7 and 2 X 2 respectively. These matrices are
given as

= gc(£) e T

Q [qﬂ(t)]’ U ‘{ul ur} s
N fe(D) _ for(2)

Fe(q)_{fen(q)]’ B [fbm)]’
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K= [ a)% 0 ]’ H={ Cu,g/m; bl Cu,;r/m; }’
0 Com/my, CU,T/’/mTI
2 0 2uc/h 0
C= Becoe and S= e/
0 2B, 0 2u/h

Eq. (9) is modified to a first order differential
equation as follows,

@*=AQ*+BU+D{ F.(y+F;(1)} - (10)
where @ is a state vector of size 4X1. A,B and

D are the coefficient matrices of size 4 X4, 4Xr
and 4 X2 respectively and are given as

A

o-[1) s o[

It is noted that because of the velocity dependent
self-exciting forces, Eq. (10) is nonlinear. The
effect of nonlinearity is avoided by assuming F.( )
=F?", where F{* is a known force which is equal

to the aeroelastic force F,(§) at time ¢'=i—At,

where At is the sampling time used in the
discretization of differential equation, which is
discussed in the following paragraphs. This
assumption is justified, provided that the sampling
time is small and the velocity changes are gradual.
With this consideration the state Eq. (10) is
modified as follows

Q*=AQ*+BU+D(FS+Fy) +oeeeeeeeres 11)

To check the validity of the above assumption a
nonlinear step by step numerical integration
procedure (Newmark-3 method) is used. It is found
that the responses calculated from Eq. (11) and Eq.
(10) are almost identical, when the sampling time
At is sufficiently small. Discretization of Eq. (11)
results in the following state equation'®

Qzﬁl =A*Qz*+C*Ui+D*Fe,i—1+D*Fb,i
where

A*=exp(AAt), C*=(A*—I)A™'B and

D¥=(A*—I1)A'D

3. OPTIMAL CONTROL

Using the control force U and the state variable
Q* at each time step 7, the objective function [ is
specified as below

J(Q4U) =35 Q¥ RoQ? + UFR,U)

The diagonal matrices Ro and Ry are positive

weight functions and represented by

Ro=7ro1 Ry=pyl-eveeeeeeenincnininnns (14)
Following the assumption® that the ratio of the
aerodynamic forces to the inertial and spring forces
is small, we neglect the aerodynamic force term
F,;_, in minimization, moreover as these terms -
are the function of structural velocity, they will be
minimized with the minimization of state vector
Q*. Hence in accordance with the optimal control
law, J(Q*,U) has its minimum value when the
matrix P satisfies the stationary Riccati equation™®

P=EQ+A*TPA*_A*TPC*( Ry
F CHTPCF)ICHTPAF e vveviseinennnns (15)

The magnitude of optimal control force U; at each
time step 7 is given by'®

Ui=—EgQF —EpF, yereeeveeemeeeneenieens (16)
As the buffeting force can not be predicted before
hand, it is not included in the control force

equation (16), while the coefficient matrices E,
and Ep are given by .

EA=(EU+C*TPC*)‘1C*TPA* ......... (17a)
Ep=(Ry+C*"PC*)\C*TPD* +vev-.. (17b)

4. OBSERVER EQUATION

The state Eq. (12) can predict the actual value of
state vector @f., only when the gust force is
known. In actual practice the gust force cannot be
predicted and hence neglecting the gust force will
give a different value of state vector @,. When
this simulated value of state vector along with the
self-exciting aerodynamic force is used for the
calculation of control force, the controller may not
be able to control the structure effectively. This
problem can be circumvented by the introduction
of an observer”.

Let us consider that & sensors are attached for
measuring the actual response Y;, then the
observer equation is given as

Yi=GQF o ovvevereninnennininniniie (18)

where G is a £ X 4 matrix used for connecting the
measured value of displacement vector to the state
vector. The state equation and the control force
equation without the observer are given as

i =A*QF+ CH U+ D*F, _yvveeeeenes (19a)

U=—FE QF—EpF,; 1 coooeeeeiiinnns (19b)
The difference between the @ and @F is adjusted
by minimizing the difference between the real
displacement Y; and the simulated displacement
Y.. This minimization is achieved by introducing an
adjustment matrix L in the state Eq. (19a) as
follows

L
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Q51=A*Q}+ C*Ui+ D*F, ., + LG(QF — @)
...................................... e+ (20)
Substituting Eq. (19b) in Eq. (13), the objective
function J is modified as follows

jz_;_' % [ QFT RoQF + (—E Q) Ry (—E.QH

........................................... (21)
In Eq. (21) the aerodynamic force F,,;_; has been
neglected as it is very small compared to the inertial
and elastic forces. Again, since the effect of
buffeting force can be taken into account through
observer, it is also neglected. With this considera-
tion, Eq. (21) can be written as'®

J=31 @7 PQI+(QF — @) (G —@P)]

= Joan T AT cverrereenteenin e, (22)
where

]minz%QSkT PQS‘C .............................. (23a)

A=R @ - @I Qi@ (23b)

where subscript 0 is the initial value at time step =
0. Matrix P is a solution of the stationary Riccati
Eq. (15), and parameter IT satisfies the equation

I=1,+(A*—LG)TIH( A*—LG) ++------ (24)
where .

,=E7(Ry+C* PC*E,

5. OPTIMAL OBSERVER THAT
MINIMIZES AJ

We will now introduce an observer which
minimizes the increase A4/ in Eq. (22). Let @ be a
hypothetical vector with zero mean and unit
variance as

E[ QF1=0, - E[QF QFT1=I, --er-- (25)
Let @¢=0, then the expected value of A] is given
as follows,

ELAJ1=E[ Q" HQF1=tracell ------+---- (26)
For the minimization, we add the constraint Eq.
(24), by introducing Lagrange multipliers A in
Eq. (26).

J=E[A]]1+tracel AT{— I+ 1T,
+(A*~LG)TIH(A*—LG)}] ---eeveee @7

Minimizing J with L and I we get,
%=—IITA*AGT—IIA*ATGT+IITLGAGT
+IILGATGT=0
L=A*AG( GAGT) 1 covvveereerrrverireanns (28)

Contyroller up up
., A

2

™,

Displacement

/ enso;

) .
‘Wind velocity
/ sensor el T

Actual Actual Mearl wind Simulated

wind structure v structure

1

FEM model

Actual system Simulated system

Fig.1 Control system layout with observer

Actual
Structure

Fig.2 Block diagram for control system with observer

%=I—AT+(A*_LG JA(A*—LG)"=0

A=I+A*AA*T— A*AGT ( GAGT) ' GAA*T

6. CONTROL SYSTEM LAYOUT
WITH OBSERVER .

Two systems are shown in Fig.l. The actual
system and the computer simulated system. The
actual system is subjected to a natural wind force.
In this study, the natural wind force is assumed to
consist of two components. The self-excited force
which corresponds to the mean velocity V(z) of
the wind and the gust load which is due to the
fluctuating wind velocity components ( #;( z,¢) and
ws( z,t)). This model of the natural wind force will
be referred as the actual wind force hereafter. The
simulated system represents a prototype of the
actual structure. This system is subjected to a self-
excited force due to the mean velocity ¥(z). The
difference in the mean velocities of the two systems
has been assumed to take into account the
measurement error of the mean velocity and also

]
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Point P 40 tons load Table 1 Structural Properties of Tower
I_'M - . S - - Segment Mass per unit | Moment of
. Number Length t/n| Inertianmt
!
{ @ 16.273 2.45
; 5@ 10)] 10.921 235
Alla ) alla ® 16t840 2.50
N o 113 ¢ 13:706 1.308
] 1 S 6 13.353 0.957
1 ® 7.696 4435
= sle g @ 9.812 6.966
@
+ Experimental Values
1st Mode 2nd Mode NS .. Fourth order fitting by
Novak and Tanaka 19
) Ay =1.9142 A =34.789
& Unit:m Ay = —170.97 A, = —22.074
2 ® o 0.6 %, ~— Seventh order fitting in
2 & @ r this study
3 ) . o4 AN A=1912 A=14807
n L & As = —4676.23 A7 = 26853.6
[ [Lh=35_] 210 el = 02{ 4 B
24.0——-] 24 5 p
= .
. 2 00 : T T T
Case I Section AA FEM model Case II & 01 024 03 04 tana
(Symmetxic ) (Unsymmetric ) é’ -02

Fig.3 Dimensions, FEM mesh and mode shapes of the

simulated structure

Table 2 Vibration Properties of the Two Cases

-04

-0.6

Fig.4 Coefficient of lift of a 2:3 rectangular

Vibration Properties Case | Case 11 section in a smooth flow
Mode-1 | Mode-2 || Mode-1 | Mode-2
Circular frequency (rad/s) 2.79 2.99 2.66 2.92
Damping ratio 0.0016 0.0014 0.0016 0.0014
Mass ratio 0.000163 | 0.000167 || 0.000146 | 0.000164
Galloping onset velocity (m/s) 16.3 14.8 17.3 14.8

the uncertainty in the prediction of self-induced
force. Fig.2 shows the block diagram of the control
algorithm with an observer corresponding to Egs.
(12), (19b) and (20).

7. NUMERICAL RESULTS AND
COMPARISONS

Description of structure :

Pheinsusom and Fujino®, while describing the
multimode galloping behavior in structures having
closely-spaced natural frequencies, showed that if
the structural properties are symmetric, galloping is
always a single mode phenomenon. On the other
hand, if the structural properties are unsymmetric,
such as unsymmetrically distributed mass or non-
uniform cross section, galloping is a multimode
phenomenon. With this consideration, we adopted
similar structures to that used in reference® for our
study. Here we denoted the structure with
symmetric properties as Case ] and that with
unsymmetric properties as Casell and described
below.

Case I (Structure with symmetric properties) :

We have considered a tower similar to the
Higashi Kobe bridge tower. The dimensions and
the FEM model of the simulated tower is shown in

Fig.3 and its corresponding structural properties
are given in Table 1. For simplicity, the structural
properties, as shown in Table 1, are modified as
the piecewise average values to the actual values of
the tower. Also in this study, only the in-plane
vibration of the tower is considered. As the in-
plane motion of the tower is not much affected by
the presence of cables, and also as the effect of
vertical in-plane motion is very little on the lateral
motion and rotation, their effects are neglected.
Hence each element is modeled with a beam
element having two degrees of freedom namely an
in-plane horizontal displacement and a rotation.
The first two natural frequencies of this simulated
tower are found to be 2.79 rad/s and 2.99 rad/s
respectively. As these frequencies are considerably
close to each other, they are selected to observe the
multimode galloping behavior of the bridge tower.
The corresponding mode shapes are also shown in
Fig.3. The eigen modes are normalized by the
eigen mode component at the top of the tower at
point P. The modal damping ratios for the two
modes are assumed to be 0.0016 and 0.0014”
respectively. The mass ratio for the two modes are
found to be 1.63 X 10™* and 1.67X10™* . The
vibration properties of the tower are shown in

18 (65)
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Table 3 Aerodynamic Co-efficient for the Two cases

Aerodynamic Case I Case IT
Coeflicients Mode-1 Mode-2 Mode-1 Mode-2
Cam 3.08 x 10° 3.09 x 10° 3.08x10° | 3.09 x 10
[ 8.06x 1077 | —100x 1070 [ 477x 107 | —4.15 x 10°
[ -8.80x 107 | 8.73x 107" | -5.82x 1077 | 1.51 x 10°
Cau 768x 1077 | 458x 1077 | 2.12x10°T | 637 x 107"
Cass 403x1071 [ 837x107" [ 8.93x 1077 | 743 x 1071
[ 2.58x 1077 [ -619x 107 | 1.00x 10T | —1.05 x 10"
Cau ~5.45x 1077 | 2.85x 1077 [ —148x10° | 1.89 x 10°
[ 2.51x 1070 | 144 x 107 | 265% 107 | =177 x 107
[ ~12Tx 1077 | 277Tx 107" [ -2.48x 1077 | 2.80 x 107!
Casr0 244 x 1077 1 3.06x 1077 | 393x 1077 | 2.33x107]
Cau1 2.69x 1070 | 271x 3077 | 3.26x 3077 | 235 x 10T
G2 896 x 1072 | —319x 1071 2.34x 107 | 2.54 x 10
Caui3 -281x 1077 | 1.00x 1077 | -3.86x 107 | 3.97 x 10°
[ 8.80x 1072 | -1.53x 1070} 557 x 10T | =5.06 x 107T
[ ~1.35x 1077 | 983x 1077 [[-730x 1072 | 177 x 107!
Capi6 8.65%x107 | 7.40x20°F [ 2.47x 1077 [ 7.11x 1077
[ 651107 | 968x107% || 9.97x 107 | 8601077
[ 851x 1077 | 1.62x 1077 | 121x 1072 | 8.27 x 1072
Capig 143%x 1077 1 953x 107 || 1.16x 1077 | 821 x 1077
Cy 400x 1077 [-454x 1077 || 2.78x 1072 |-3.07 x 1072
Cua 400x 107> | 454x 1077 || 1.08x 1072 | 7.66 x 107
* indicales the mode number
Table 2.

Because of the unavailability of the aerodynamic
coefficients A, As, As and A; of this cross section of
tower in the literature, and since the tower legs are
similar to the 2:3 rectangular section, the aerodyna-
mic coefficients are assumed to be that of a 2:3
rectangular section. These coefficients are obtained
by the curve fitting of the coefficient of lifts for a
2:3 rectangular section” and are shown in Fig.4.
Although the coefficient of lift in a gusty wind is
different than smooth wind®, in this study, for
expediency, we have used the same coefficients for
both smooth and gusty wind. The coefficients Cy
and Cy,»; (two controllers on the top of each leg of
the tower) are shown in Table 3. The critical wind
velocities ( Vern=Butwnh/1t,CanAy) for the onset of
galloping of two modes are calculated to be 16.3
m/s and 14.8 m/s respectively ( at the tower top 25.5
m/s and 23.3 m/s respectively, with p=1/6).

Case [[ (Structure with unsymmetric properties) :

To observe the multimodal galloping behavior,
we added an additional 40 ton load to one of the
legs of the actual tower to make its mass
distribution unsymmetric as shown in Fig.3. The
additional load may be considered as a crane
mounted on one of the legs of the tower during its
construction”. The first two in-plane natural
frequencies of this modified tower have been
changed to 2.66 rad/s and 2.92 rad/s, respectively.
The mass ratio for the two modes are found to be
1.46X107* and 1.64 X 10~* respectively. The coeffi-
cients Cpux and Cy,y; for this tower are shown in
Table 3.

Displacement (cm)
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0.0 heesmaETRe
L0
-299.7 |
0 100 200 300 400 500
Time (sec)

(a) 1st Mode
Displacement (cm)
299.7

0.0
-299.7

500
Time (sec)
(b) 2nd Mode
Fig.5 Time history response of Case Il
in smooth flow

Along wind fluctuating
velocity spectra <Hz'no7))
Across wind fluctuating
velocity spectra (Kaz'mals))

Normalized power spectra

0.0 0.4 0.8 1.2 1.6 2.0

Frequency (Hz)

Fig.6 Along and across wind fluctuating velocities
power spectra (z=10 m)

(1) Galloping Phenomenon

Casel : The simulated tower with symmetric
structure and mass distribution is examined for
galloping behavior under smooth flow with a mean
velocity at reference height as V,=35m/s (tower
top velocity=55 m/s). For the various combination
of initial excitations it is found that the galloping is
always a single mode phenomenon. The steady-
state value depends on the initial mode of
excitation.

Case Il : The modified tower is also checked for
the galloping behavior at the same wind velocity
t.e. Vo=35 m/s under smooth flow. We checked
several cases and found that galloping is always a
multimode phenomenon irrespective of the initial
disturbance which is in accordance with reference®.
However, because of lack of space we have not
reported all the cases and only a typical example is
shown in Fig.5, where the tower is excited in the
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Fig.7 Time history of across wind fluctuating velocity, uncontrolled and controlled

R,
displacement responses and control forces at the top of tower(f‘-'-=3.0><101°>
u

mixed mode and the simultaneous galloping of two
modes leads to a multimodal galloping.

(2) Galloping Control

For the galloping control, we considered several
examples of Case ] and Case I, and in all cases we
obtained a reasonably good performance of the
proposed control scheme with an observer. Again
lack of space restricted us to include all the cases
and only the galloping control of the modified
tower (Case [l ) is included in the illustrative
example. However, in the parametric study, the
results of both cases have been included.

In the illustrative example, we assumed that the
control system is not fed with the information
about the mass change. Hence our simulated
structure corresponds to Case I and the actual
structure corresponds to Casell . To show the
uncertainty in the mean velocity measurement and
the aerodynamic force prediction, it is supposed
that the controller assumes a mean velocity of 25
m/s instead of 35 m/s. This introduces a discrepancy
between the measured and the actual values of the
mean velocity. There are two displacement sen-
sors, one at the top and the other at nearly mid

height of the tower as shown in Fig.1 and two
controllers are placed on the top of each leg of the
tower also shown in Fig.l.

For the gust load, the surface drag coefficient is
assumed to be K=0.003®. The power spectral
densities of the fluctuating winds, at the reference
height =10 m are shown in Fig.6. Again because
of the unavailability of actual C; and C; for this
section of tower in the literature, we have
conservatively assumed C;’ as the slope of steepest
part of Fig.4 . Which is approximately 8.0 and C;
=0.4 (C/=4.22 and C,/=0.27 for bridge deck™).

The tower is excited in the mixed mode and the
time history of across wind fluctuating velocity,
responses and the control forces are shown in
Fig.7. Fig.7(a) shows the across wind fluctuating
velocity at the reference height z,=10 m. Similarly
Figs.7(b), 7(f) and 7(d) show the uncontrolled and
controlled vibration at the top of tower at point P
with and without observer respectively. It can be
seen from Fig.7 (d), that in the absence of an
observer, the control scheme is not very effective,
this is because of the reason that the controller is

“unable to predict the actual response of the

L
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Fig.9 Effect of the observer on the system mass and stiffness changes, gust
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Fig.8
controlled displacements with and without
observer after 150 sec.

Fourier magnitude spectra of uncontrolled and

structure and the control force (controller location
at point P) approaches to zero as shown in
Fig.7(c). Whereas in the presence of an observer,
the controller can predict the actual response more
correctly and hence can accurately calculate the
control force as shown in Fig.7(e). The corres-
ponding power spectra is shown in Fig.8. The
geometrical figure, the firm line and the dotted line
show the power spectra of uncontrolled, controlled
vibrations with and without an observer respective-
ly. The peaks at 0.42 Hz and 0.46 Hz are due to the
first and the second natural modes of vibration.

(3) Parametric Study

A parametric study is also carried out to see the
effect of an observer at different turbulence
intensities and the change in system parameters
such as stiffness and mass matrices. The time delay
effect on the performance of control scheme is also
investigated. Following are the results of this
parametric study

1. Figs.9(a) and 9(b) show the effect of change

]
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in system mass and stiffness respectively on the
controlled response with and without an observer.
For the system with mass change, we assumed the
symmetric structure (Case T) as the simulated
structure and the actual structure is simulated by
adding a percentage of each nodal mass to the
corresponding mass. Results are plotted between
Ri, R; and percentage mass change as shown in
Fig.9(a). Where R, is the ratio of the 7ms value of
the controlled vibration without an observer to that
of the 7ms value of uncontrolled vibration.
Similarly R, is the ratio of the rms value of
controlled vibration with an observer to that of the
#ms value of uncontrolled vibration. All #ms values
corresponds to 150 sec. measurement. It can be
seen that the performance of the controller scheme
without an observer deteriorates continuously,
whereas, there is a very little change in the
performance of controlled vibration with an
observer. Similarly, in case of system stiffness
change, we simulated the actual structure having
certain degradation in the modulus of elasticity E.
The results are shown in Fig.9(b) in terms of Ry, R,
and the degradation of stiffness (E). The inspection
of Fig.9 (b) reveals the same trend as that of Fig.9
(2.

2. Fig.9(c) shows the effect of an observer at
different turbulence intensities. For this purpose,
we considered the modified tower (CaseIl). To
observe the effect of turbulence intensity more
effectively, we assumed that the controller is
maintaining the full knowledge of the change in the
system mass matrix. In other words, our simulated
structure is also the modified tower (Case Il ). The
intensity of turbulence is characterized by the
surface drag coefficient K. Again the results are
plotted between R,, R; and K values, where R, and
R, have the same meaning as defined earlier. It can
be seen from Fig.9(c) that with the increase in
turbulence intensity the increase in R. value is very
small, whereas the increase in R; value is
appreciably large.

3. Fig.9(d) shows the effect of time delay on
the controlled response with and without an
observer. For this study, both simulated and actual
structures correspond to Case I . From Fig.9(d), It
can be seen that the performance of the controller
scheme without observer deteriorates continuous-
ly, whereas in the scheme with an observer, the
change is almost negligible until a time lag of 20 A¢
(4t=0.02 sec.). However, when the time delay
reaches a value of 25 Af, a deterioration in
performance takes place. It can be noted that at 25
At, the time lagis 0.50 sec., which is nearly equal to
one-fourth value of the time periods of first and
second modes which are 0.59 sec. and 0.54 sec.

respectively. Thus, when the time lag reaches one-
fourth value of any of the controlled modes, the
proposed system performance deteriorates. The
time delay problem in higher modes consideration,
where the time periods of the modes are smaller,
can be avoided by considering a smaller sampling
time Af.

8. CONCLUSIONS

An’ active optimal control algorithm with an
optimal observer is presented for the control of a
bridge tower subjected to galloping in a gusty wmd
The following conclusions are drawn

1. The proposed control scheme with an
observer is found to be effective for both the single
and multimode galloping control problem. The
scheme is found to be robust against the uncertain-
ty due to the prediction in the aerodynamic forces
and the gust forces.

2. The proposition is efficient to account for
the inherent effect of aging of the structure, which
leads to a spontaneous variation in the system
parameters, such as change in mass or stiffness
matrix. Moreover, it is found to be equally efficient
against the effect of occasional unsymmetric mass
distribution. The presence of an observer also
makes the control scheme robust against time
delay. However, a large time delay resuls in the
deterioration of scheme, which can be compen-
sated by taking a smaller sampling period.

ACKNOWLEDGMENT

The writers wish to express their special
gratitude to Prof. M. Suzuki and Mr. D. Baldelli of
Nagoya University (Aeronautical Dept.) for their
invaluable advice and contributing suggestions.
Mr. A. Usman and Mr. K. Yabunaka are
acknowledged for their assistance in the prepara-
tion of the manuscript.

Appendix 1. Anaiysis of Buffeting Force

From Eq. (5) the mean square value of buffeting
force for # th mode is given as™™

szn(t) ZDfoFb(Zt)Fb(Z t)

. w'n(Z)w.n(Zl)dZdZ """"""" (Al)
where bar denotes the time averages. Fy(z,t)
F;(Z,t) represents the covariance of the buffeting
force at points z and z’. Substituting Eqgs. (3) and
(4b) in Eq. (A.1) and neglecting the cross terms
due to along and across wind fluctuating
velocities™, we get

szn(t)=M1D£ﬁlj;l(%phVo)zv(z)v(z’)
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]

. [(ZCL)ZUb( z,t)vb( Z,,t) +( CL,)Z
wy( 2,t )y (2,8)1- W (2) U, (2) dzdz’

But

(20 (7 ) =2 fo " S )+/COH des

' v,,(z,t)vb(z’,t)=2_/;ms,,,,(cu)

Similarly

wb(z,t)wb(z’,t)=2ﬁm5ww(w)

.......................... (A.4)
where COH is defined as the coherence function
and £, is the decay factor. Az is the separation of
points z and 2. Substituting Egs. (A.3) and (A.4)
in Eq. (A.2), we get

szn(t)=(—2%£DL71>2_/:]:0(z)v(z’)yfn(z)%(z’)
[ encor2["su(w)
-exp<—k1#%4z)dw+( VoC)22
. J:OSW (w )exp(- klﬁovo Az) da)]

Eq. (A.5) can be simplified as

Fa(5) =(22){@vico®2 [ sl w)
a0 Pdert (VoC)22 [ "Sun( )
0

A )lzdw} ..................... (A.6)

where

@)=z [, [ 82 w2

w ’
. exp(— leVoAz> dzdz’ -+ (A7)

Introducing aerodynamic admittances 7:( @ ) and
72( @)™ in Eq. (A.6), we get

P =22 {@vic2 [ sul ) In(w)l
Vnl@)Pdo+ (VG2 [ Sun( @)
0

I @) Pl (@)dw) oo (A.8)

where 71(w) and 7.(w) are given as

()= 2f lb—l—l:exp(—/?b)]
(Ab)?

L e ST P (A.9)

where A= —k,w/27V, and b is the dimension of the

tower along the wind direction as shown in Fig.3.

Eq. (A.8) in time domain can be simulated as

an(t)=22‘nfl;n(t) ......................... (A.10)

ITI(CU)IZ=,TZ

where

Il )=2ViC{/Z ST Sul @)l @)l
y I]n( wi)lew ]—;- COS( a),t—l-qb,)} +VoCY
. [ﬁé[ Suo( @) 72 w))|?

Un( (Dj)leCU ]]—Z-COS( w,-t—i-go,)
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