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DEVELOPMENT OF MICROPLANE MODEL
OF CONCRETE WITH PLURAL TYPES OF

GRANULAR PARTICLES

Ahmed M. FARAHAT* Zhishen WU**
and Tada-aki TANABE***

A fracture or damage model for monotonic behavior of plain concrete using micro-
plane mechanism is developed. The microplane is defined as the contact surface be-
tween particles inside the material. Plain concrete is idealized to contain two types of
particles which are aggregate and mortar particles in contrast to the Bazant’s single
particle model. It is assumed that the normal stress on the microplane of any orienta-
tion within the material is a function of the normal strain on the same microplane. This
strain is assumed to be equal to the resolved component of the macroscopic strain ten-
sor. In addition, shear strains are considered on the same microplanes. The model can
represent experimentally observed macroscopic softening or damage behavior of con-
crete under the effect of different types of loading conditions.
Keywords : concrete, fracture, softening, microplane, aggregaie and moriar

1. INTRODUCTION

In investigating the characteristics of concrete,
which is composed of granulates in brittle cement
paste matrix, a large research effort has been
devoted to its constitutive modeling. The common-
ly used are the macroscopic models such as classical
plastic models, deformation theory models, frac-
ture models and continuum damage models.
Despite of the significant initial success during the
last 20 years, however, the macroscopic approach
_ showed gradually its limitations. As pointed by

Bazant es al.”?, probably only relatively minor
further improvement can be expected depending
on the expanding experimental data. The main
" reason is the difficulty to deal in general with the
microcracking and the actual failure of microstruc-
ture due to the fact that the microcracking make
characteristics of concrete of a very complex nature
with dilatancy, strain localization, softening and all
other sorts of nonlinear phenomena. We can not
expect to model all these aspects of the material by
unified general theory, although some investigators
recently tried to introduce microscopic considera-
tion or damage parameters due to microcracking
to the macroscopic models (Mazar', Wu and
Tanabe™). Analyzing the material through the
micromechanism seems to be rational and powerful
because it enables us to look into far insight of the
true damage or failing mechanisms of concrete
under the effect of different types of monotonic
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and repeated loading. For these reasons, it appears
preferable to describe the behavior of the material
not globally but individually for the contacts
between the particles of various orientation within
the material and then superimpose the contribu-
tions from all the contact planes.

Micromechanical models were also analyzed for
different kinds of materials such as metals,
concrete and granular materials. Routhenburg et
al.®®, Chang et al.”® and Christoffersen et al.”
investigated the micromechanical behavior of
granular materials. In their studies, only one kind
of particle and one kind of contact were consi-
dered. Bazant et al.”” used the microplane model
to obtain tensile strain softening curves of concrete.
In his model, concrete has been assumed to have
only one kind of microplane, which exists at the
contact surfaces between aggregates. This assump-
tion is not practically true because the main source
of the damage or softening is the spreading of the
microcracks into the mortar through the contact
surface between aggregate and mortar. Moreover,
in his analyses, only the normal microstrain was
considered and an additional volumetric elastic
strain was introduced to adiust the value of
Poisson’s ratio.

In the present study, as a continuation of
modeling concrete through the microstructure, the
development of the microplane model is investi-
gated. To represent the different kinds of micro-
planes, concrete is idealized to have two types of
particles, which are aggregate and mortar particles
(refer to Fig.1). This idealization helps us to
investigate the micromechanical behavior not only
on the contact between aggregates but also on the
contact between aggregate and mortar. In addition,
to explain the behavior more reasonably, shear
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(a) Actual Distribution of Particles

(b) Idealized Distribution of Particles

Fig.1 Distribution of Particles in Concrete.

X (a) General Notations
1

(b) Circular Particles

nAB = contact normal

|AB = contact vector
AfAB = contact force
increment

(c) Non circular Particles

Fig.2 Contact Force, Contact Normal and Contact Vector.

strain on the microplane is considered. The current
formulation has been shown to be capable of
modeling the available macroscopic data of con-
crete.

2. THEORETICAL CONSIDERATION

(1) Generalization and idealization

The overall macroscopic stress in concrete is
¢éxamined by considering the contact forces that
transmitted by the contacting particles at the
microscale. Concrete is idealized to be composed
of two types of particles which are aggregate and
mortar particles. In addition, every mortar particle
is assumed to be surrounded by a specified number
of aggregate particles as illustrated in Fig.1(b).
(2) Average stress tensor from averages of

contact forces

If a region v is subjected to an incremental stress
of Aci; and the stress state of this region is in
equilibrium, the average stress increment Agy; is
defined™?>™ as :

Using this definition, the average stress increment
for aggregate and mortar particles is written as :

where v® and v™ are the volume of an aggregate
particle and a mortar particle respectively. Using
the equilibrium condition (i.e. A40;;;=0) and the

divergence theory, the volume average integral in
Eq.(1) can be converted into surface integral. The
average incremental stress tensor Aoy; is reduced as
follows :

AB{,':%IAO},‘dU=%fAO'ikxj,kdU

1 ‘ 1
=;j;A0;kxjnkds=;£At;xjds """"" ( 4)

where v is the volume of the particle, s is the
boundary surface of the particle, x; is the
coordinates of a point on s, #; is the normal on s at

x; and At; is the traction increment on s at x; as
shown in Fig.2(a). For a finite number of contact
points, the surface integral of the boundary contact
forces increments can be replaced by the summa-
tion of these contact forces increments. Eq.(4) can
then be written in the form :

Aaij:;mglAﬁmxjm ............................... (5 )

where # is the number of contacts per particle, x; is
the contact vector (position vector) for the m
contact and Af; is the contact force increment at the
m contact. The contact vector can be measured
from the centroid of the particle to the contact
point’??9_ The average stress increment within the
aggregate and mortar particles can be represented
as :

A;;;.:;la_;ﬁﬁal,gl ............................... (6)
s 1 azjaz
AO-UZF‘!ZZAﬁ le .............................. (7)
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where a; and a, are the notation to identify each
contact point along the boundary of the aggregate
and mortar particles respectively. Terms Af” and If
refer to the scalar components of the contact forces
increments  Af% and contact vectors [* at the
contact locations (refer to Fig.2(b) and(c)).

Furthermore, we will use volume average to
define the incremental mean stress for any
representative volume by summing the stresses
increments for all particles within this-volume as
follows :

AEij=iV§A(—7,",~U" _Q_lV%:A}gzvm ............... (8)
Eq.(8) can be simplified to :
o= | Safeip+ Sageip+ Sarer]

where ¢ is the total number of contacts between
aggregate particles, ¢; is the total number of
contacts between aggregate and mortar particles,
and Vis the total volume. This equation is for large
but finite number of particles. In Eq.(9), the first
part, which represents the contribution of the
contacts due to aggregates has two components.
That is because of the assumption that every
aggregate particle have two different kinds of
contact points, which are the contacts bétween two
aggregates and the contact between an aggregate
and mortar particles. On the other hand, the

_second part of that equation which represents the
contribution of the mortar has only one component
because we have assumed that only one kind of
contact exists around every mortar particle. This
‘single contact is between aggregate and mortar
particles.

The total number of contacts do not take into
account the orientation of the contact normals.
Because the case of two dimensional system is
considered in the current study, a function
E (8) which considers the relative frequency of
contacts with different orientations of normals will
be defined. The number of contacts with normals
between 6 and 6+ A8 will be cE(8)A(6). This
function satisfies the next expression :

j;an(ﬁ)dt?:l ......... e ——————————— (10)

For isotropic granular assemblies, Rothenburg’?

defined the orientational distribution function
E(6) as :

1
E(®) =—2—7[ ......................................... (11)

Since the current study is restricted to isotropic
material, the definition proposed by Rothenburg”?
will be used.

Unfortunately, the calculation of the average
incremental stress tensor using Eq.(9) requires
exact knowledge of contact forces increments and
contact vector terms for all particles. Equivalent
simpler expressions can be developed by consider-
ing certain averages of grouped information. If the
contacts are grouped within a finite number of
orientational intervals, then, the grouped averages
Afl(6) in Eq.(9) can be calculated.

Assuming that the number of contacts is very
large, while the orientational interval A(6) is very
small, Eq.(9) can be expressed in the next form

Aoy =| SAFI O (E®) 46)
+ SAFPI(0) (E(6) A)

+SAFEI(O) (czE(B)Aﬁ)] ........... (12)

For finite but large number of particles, the
average incremental stress tensor from the discrete
information . is an accurate analogue to the
incremental stress tensor of continuum mechanics
and we will assume that Ao;;=A40;;. In the case of
isotropic analysis (i.e. [;(6) =in;(6) and E(0)=
1/27), Eq.(12) can be written in the form :

A0, =4% [T afelr ) E(B)do

+& (" Afeio () E(6)d6
V 0 1 v

C2 2
+-2 | T AL E(O)dO e (13)

V4adoe
where [ is the average radius of aggregates and [ is
the average radius of mortar particles, which can be
obtained by assuming that every mortar particles is
surrounded by # particles of aggregates (refer to
Fig.1).

(3) Relation between average contact forces
and strain tensor
Neglecting the possible rotation between parti-
cles, the average contact force is linked with the
contact displacement using the linear contact law as
follow :

[ [
Af;fanA(ﬁTln)y Afsc=KsA<éllJ_> ........ (14)
where (015/1) represents the relative normal
displacement between particle centers; (6If/1) is
the relative tangent displacement at the contact ; /
is the distance between particle centers in contact.
These terms are illustrated in Fig.3, where K, and
K refer to the normal and shear stiffnesses of the
contact, while, 4f, and Af; are the components of
the contact force increments. Eq.(13) for the
average stress tensor contains only the averages of
forces of the same orientation. Therefore, it is

]
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(a) Shear Contact Displacement

(b) Normal Contact Displacement

Fig.3 Contact Displacement Components.

necessary to equate these averages of forces to
quantities describing average displacement compo-
nents for similarly oriented contacts.

If 64(6) and &¢(6) are the average nmormal and
shear displacements for a groups of contacts having
the same orientation, thus, Eq.(14) can take the
form : ’

A (0) = K,A55(6) ]

Aj'g (0) =KSA5‘; (0) ............................ (15)

where

4556y =4( 20 %), dw@=a("2)
........................................... (16)

Here, we will assume that the normal and shear
microstrains (g,, ¢;), which govern progressive
cracking and failure of microplane are equal to the
resolved components of the macroscopic strain
tensor on the same microplane, i.e.

En= 5; = EiiNiN;, &= 6ll =gty (17)

In which » are the direction consines of the unit
normal of the microplane and ¢ are the direction
consines of the unit tangent of the microplane i.e.,
n="{cos (), sin(#)) and t=(—sin(H), cos(d)). It
can be expected that Eq.(17) will hold true when
exprcssed as averages taken over the microplanes
of similar orientations. It is reasonable to expect
that :
Ad5(0) =A (51"—1-(6)) =¢{(deynmy)

51:(0) ) o (Aeiiting)

45:(6) = A(

where ¢ is a .functlon of &; and the direction
cosines.
(4) Stress strain relation

If the average normal and tangential contact
forces in Eq.(15) are combined with Eq.(18) and
the resulting value is introduced into Eq.(13), we
can obtain the following incremental stress-strain
relation :

D057 Dijrrleg -+ vveeeeveeemsemsesanesinneann, (19)

where

Divi= Cll-lgﬁl
g oV

+ Czllﬁaz
2rV

2
(k,,ninjnknz + kst,-njtkn,) de
(knninjnknl + kst,«n,»tkn,) 2de

!
+ 0223?“/12,[ (knnmmn,+ kstinitin,) *d6

.............................................. (20)
where @ and @, are the averages of contact areas
between aggregates alone and between aggregate
and mortar particles, respectively. k, and k; are the
normal and shear stiffnesses which can be obtained
through the stress strain relationship of the
microplane. Because of the lack of experimental
data which can distinguish the behavior of different
contacts, all contacts will be assumed to have the
same properties in the current study. Now, Eq.(20)
can be simplified to :

2r
Dijkt=77_[; (knaijkl+ksbijk1)d0 .............. (21)
where

_ ¢ [Clllal Czllaz Czlzdz
=2zl v v v

At = NN AN, bijri=timtan

(5) Normal and shear stiffnesses of the micro-
plane (k,,k;)

Normal stiffness of the microplane is taken as the
ratio between the incremental microplane normal
stress and normal strain, while, shear stiffness is
defined as the ratio between the incremental
microplane shear stress and shear strain as follows :
do" k 2@
d&n ’ s d&m
where g, and &, are the normal stress and the
normal strain on the microplane, while, 7,; and ¢,;
are the shear stress and the shear strain on the same
microplane. Here, we made an assumption that ks
is related to k, in the form :

ksz Z kn ............................................ (23)

k” e I e (22)

where A is constant. This assumption will be valid
in both tension and compression.
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(6) Normal stress and normal strain relation
on the microplane

a) Microplanes in tension

Since the normal microstress and the normal
microstrain relation governs the progressive de-
velopment of cracking on the microplane of any
orientation, and since our aim is to describe
softening, damage and the real failure of the
microstructure, at which g, reduces to zero, g, as a
function of &, must first rise up to the maximum
limit, then, must decrease gradually up to zero.
Hence, the following expression is assumed if
£,20 :

On=E €pe 5 cooveriiiiani (24)
Where E,, k: and p are positive constants.

b) Microplanes in compression

In the same manner, the next expression for
microplane in compression (i.e. if &, <0) is
assumed

On=E,;£,0" 0" ceveeeriiiiianiii (25)
where E,, k; and p, are also positive constants.

3. THEORETICAL DERIVATION OF
POISSON’S RATIO AND THE RELA-
TION OF INITIAL MACROSTIFF-
NESS AND MICROSTIFFNESS

To check the value of Poisson’s ratio, the case of
uniaxial strain is considered (i.e. e,=0 and ¢,*0).
Assuming that for small strains 6,=E.&,, ka=E,
and k;= Ak, the following results can be obtained
- by using Eqs.(19) and (21);

af—‘r;Enj;m(sinz(ﬁ)cosz(@)
C —2sin®(0)cos?(8)) dbe,

6,=4E, f " (sin*(6)+ A cos*(0) sin®(6)) dbe,

=77En (3.}.])%5” ............................. (27)

Thus, 6,/0,= (1 —2)/(3+ 1) and, in view of
Hook’s law of 6./0,=v/1—v, the relation be-
tween v and A is obtained as follow :
1—24
p= 4 ........................................... (28)

Since the elastic Poisson ratio of concrete is around
0.20, A is suggested to be 0.20. In addition, from
Eq.(27), the relation between the initial macrosco-
pic and microscopic elastic stiffness £ and E, can
be observed as follow :

E= [%(34_2) 1]] E, coooerrrerinesiininien (29)

where 7 is a material parameter. This parameter,

as defined in Eq.(21), depends on the size of
particles, contact areas, number of contacts, and
total volume of both aggregate and mortar. The
value of this parameter will be selected to obtain a
consistent values between the initial stiffnesses of
the macroscopic experimental data and that of the
microplanes.

4. NUMERICAL IMPLEMENTATION
AND COMPARISON WITH THE
TEST DATA

To insure the capability of the current model and
to calibrate its results, different types of plane
problems are examined, in which, these plane
problems are subjected to several types of loading
conditions. The results are compared with the
available macroscopic test data as shown below.
(1) Uniaxial tension

In the beginning the parameter E, is obtained
using Eq.(29). In Eq.(29), the values of 1=0.20
and n=1.0 are used. Then, the values of the
parameters k; and p of the model which can
describe the tensile behavior of the microplanes
have been found to fit the experimental data of
Evans and Marathe®. A careful attention has been
made to obtain identical initial stiffnesses, peak
stresses, and a reasonable hardening and softening
tendencies. The other parameters for compressive
microplanes k. and p; are kept constant. The fits
iltustrated in Figs.4(a) ~ (f). In these figures,
concrete has different characteristics. According to
the experimental data, the peak stresses of
concretes shown in Fig.4(a)~(f) are 16.14, 15.60,
21.10, 21.40, 26.70 and 31.70 kgf/cm?, respectively.
The values of 107*E (E is the initial stiffness) of
these concrete are 15.50, 16.50, 17.50, 20.0, 15.25,
and 13.5 kgf/cm?, respectively. In Fig.4, the
current model is shown by the solid lines, while, the
dashed lines represent the experimental data®. For
all cases constant values of p=1.5, p=2.0 and k.=
20 X 10* are used. The values of 107°E, for
concretes shown in from (a) to (f) of Fig.4, are
6.17, 6.565, 6.963, 7.96, 6.068 and 5.37 kgf/cm?’,
respectively, and those of 107* k, are 29.5, 34.7,
24.0, 28.4, 13.3 and 8.70. As seen, a reasonable
agreement with the test data can be noticed to be
achieved. It should be noted that, we have only one
parameter, k;, to determine a good fitting with the
test data. Through this small number of data, we
try to obtain the relation between & values and
macroscopic compressive strength and Young’s
modulus. Finally the obtained relation is shown in
Fig.5. From Fig.5, it can be noticed that, as the
compressive strength of concrete increases, the
value of k&, decreases. This may be due to the fact
that the stress strain relationship for high strength
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Fig.4 Fits of Current Study to Test Data of Evans et al.®.

k|= af;+bE+C

a =-882.
b=o0-814

40

30)

20

P
100 200 300 400 500 600  'C
fe=compressive strength of concrete, E=Young’s modulus

Fig.5 The Relationship between &, and f/ for Different
Values of E.

concrete, which is almost linear up to the fracture
limit, is followed by a sudden drop of stress. This
sudden drop occurs due to the highly softening
phenomena which is controlled by the k; para-
meter.

(2) Uniaxial compression

In the same manner, in the beginning E, is
obtained using Eq.(29). In this quation, the values
of 2=0.20 and n=1.0 are used. The parameters p,
and k. have been obtained to get a good fits of the
data of Desayi et al.” and Kupfer et al.'”, as shown
in Figs.6(a)~(d). For all cases, p=1.5, k:=26X
10* and p;=2.0 are used. The values of 107*E, for
concretes a,b, ¢ and d are 8.22, 13.08, 20.0 and
10.98 kgf/cm’, and those of 10~*k, are 18.8, 22.2,
19.6, and 13.8. As can be seen, a good agreement
with the experimental data is obtained, although,
all parameters are fixed constant except k.. Here
again, the relation between k. values and macro-
scopic compressive strength of concrete and
Young’s modulus were obtained and shown in
Fig.7. From that figure, it is noticed that the
variation of k. due to the increase of the
compressive strength of concrete is not too much.
This may be due to the fact that a sudden failure
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Fig.7 The Relation between kc, and f for Different
Values of E.

occurs in all examined cases just after the peak
stress. This sudden failure means that the softening
phenomena which are governed by the parameter
k. are almost the same.
(3) Biaxial loading

In Fig.8, the comparison between the model
results and test data of Kupfer et al.'® are
presented. A reasonable agreement of fitting the
test data is obtained. In Fig.8, the following values
of the parameters are used, n=1.0, 1=0.20, p=
1.5, 71=2.0, k,=24.5X10%, k,=13.8X10* and E,=
10.80 X 10" kgf/cm®. These values are obtained to
satisfy the uniaxial behavior (tension and com-
pression) and obtained from the proposed relations
of k; and k..
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L

5. CONCLUSIONS

The monotonic behavior of plain concrete is
investigated. The microplane model is analyzed to
recognize the actual damage or failure of the
microstructure under the effect of different types of
loading conditions. The analysis is based on the
micromechanical behavior of granular materials.
Furthermore, to represent the different types of
contacts in the material, plain concrete is idealized
to have two types of particles (aggregates and
mortar). This idealization enables us to study the
actual micromechanism not only between the
aggregates as investigated before in the previous
research work but also on the contact between
mortar and aggregates. It can be concluded that :

(1) Progressive fracture or damage of concrete
due to microcracking can be described using the
microplane model.

(2) Through the proposed model, the relation
between the initial macroscopic and microscopic
stiffnesses can be obtained.

(3) The macroscopic elastic Poisson’s ratio is

found to give the ratio between the shear stiffness -

and the normal stiffness of microplane.

(4) The proposed model, considering only one
kind of microplane, is found to be consistent with
the experimental data. However, this model can
also consider two kinds of microplanes, but,
experimental data are necessary to distinguish the
behavior of the different microplanes. Also, a more
comprehensive research must be conducted to
study the density distribution, the nonuniformity of
strain distribution, and the cyclic behavior of
microplane to have a better understanding of the
characteristics of the microstructure.
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