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OPTIMUM DESIGN ANALYSIS OF
STRUCTURAL CABLE NETWORKS

Yoshio NAMITA* and Hiroshi NAKANISHI **

A method of optimum design calculation for structural cable networks is presented. In
the analysis, the solution satisfies not only statical and design conditions regarding the
equilibrium shape and member forces under stationary loadings, but also conditions
under superimposed loadings as to member forces and deformation as well as cross-sec-
tional areas of members. Optimization technique is used, in which the objective func-
tion is formulated in terms of “Desirability” with regard to shape, deformation and
member forces. Numerical examples show that a variety of solutions are possible in
accordance with the design philosophy by adjusting the value of a weight attached to

each term of the objective function.
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1. INTRODUCTION

In structural cable networks, such as cable net
and cable truss, the equilibrium shape of the
structures, in many cases, does not conform to the
preset target shape because of the geometrical
nonlinearity of the cable members. In such-a case
attempts are made to bring the equilibrium shape
as close to the required shape as possible by con-
trolling member forces and lengths.

The numerical process used for this purpose was
named shape determination analysis first by the
authors”® and later several practical methods were
presented”™. Among them, Refs.4) and 5) show
the method utilizing the optimization technique in
which the objective function is formulated in terms
of “Desirability” as to shape and member forces
and solutions are obtained as the stationary point
of the objective function.

All the above mentioned methods”™®, however,
discuss the shape determination problem under
fixed loads only (such as dead weight), which sets
limit to the practical application of the theory. As
the fixed loads include the dead weight of
members, sectional areas of members must be
assumed prior to shape determination. On the
other hand, member sections should be so designed
that stress and deformation satisfy design condi-
tions (allowable stress, etc.) under superimposed
(additional) loads. The shape determination,
therefore, should be finished before these addition-
alloads are applied. Hence, in practical design, it is
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not rational to make shape determination and
section calculation separately and, from the
viewpoint of optimum design, to  establish the
method which enables us to perform both of these
analyses in an automatic process becomes indis-
pensable.

Until recently we could find out only a few works
of this category. Jendo® discusses the minimum
weight design of a catenary cable under fixed loads
and shows the method for equistressed cable
design, in which, however, stresses and deforma-
tion under additional load are not considered.

Nishino, Duggal and Loganathan” recently
presented a new method of cable design analysis.
In it they claim that the method copes with the
analysis under multiple loading conditions which
have never been discussed in the foregoing shape
determination analyses and that a variety of solu-
tions are possible owing to setting appropriate
design criteria (Five criteria are mentioned regard-
ing shape, stresses, dead weight etc.). Perhaps, at
present, their method of analysis can be the most
refined and sophisticated one as an optimization
technique of cable assemblies.

The basic idea of coping with such multiple
loading conditions, however, was already pre-
sented, though orally, by the authors more than a
decade ago® and, later, one of the authors”, though
in a limited publication, discussed in detail the
optimum design method of cable networks.

This paper gives a unification of the above-
mentioned authors’ previous works®” together
with a newly tried numerical example to show a
method of optimum design analysis of cable
networks which covers totally the shape determina-
tion analyses by the authors®” in the past.

]
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2. STATICAL AND DESIGN
CONDITIONS

In the following analysis, while the solution
satisfies both statical and design conditions preset
as to the equilibrium shape and member forces
under stationary loadings (“Completed state”
under fixed loads), it satisfies the design or
restraint conditions under superimposed loadings
(“Deformed state” under additional loads) as to
member forces and deformation as well as cross-
sectional area of members.

Followings are the statical and design conditions
prescribed in this analysis :

Statical condition S-1 : Internal and external forces
shall be in stable equilibrium :

Statical condition S-2 : No compressive force shall
act on any members :

Design condition D-1: The shape in the equilib-
rium state is to be as close to the preset target
shape as possible :

Design condition D-2: Tension of preset value
shall act on a specially assigned member :

Design condition D-3 : Tension of an arbitrarily
selected member is to be as close to the preset
objective value as possible :

Design condition D-4: Member forces shall not
exceed the prescribed allowable values both in
the completed state under fixed loads and in the
deformed state under additional loads :

Design condition D-5 : Nodal displacements due to
additional loads shall be as small as possible :

Design condition D-6 : Total weight of structural
members shall be as small as possible.

D-1 is the design requirement of shape pre-
scribed from the structural scheme or functional
viewpoint. D-2 is to assume a situation in which the
design of a cable anchorage can be made easy by,
for example, setting the tensions of boundary
members beforechand. These member forces, there-
fore, are no longer design variables but ones
specified as constants. D-3 is the condition imposed
on the member forces that become design vari-
ables. This is to cope with, for example, the design
requirements for achieving a nearly uniform
distribution of the member forces over the whole
structure by preventing the member forces from
becoming too large or too small locally, or for
keeping the tensions of prestressing members at
prescribed values wherever possible. D-4 is an
ordinary design condition for calculating a member
cross-section. D-5 controls the extent of structural
deformation when additional loads are applied to a
completed cable network, so that the function of
the structure shall not be spoiled. D-6 is self-
evident with regard to the cross-sectional design of

Fig.1 Equilibrium at a joint.

members.

3. FORMULATION AS AN OPTIMIZA-
TION PROBLEM

(1) Conditon S-1

First, we consider the equilibrium equations of
completed state under fixed loads. At an arbitrary
nodal point : of a cable assembly (Fig.1)

Ni Ni

> (Xi_Xj)(pm—__FiX > (Yi_Yj)(Pm=FiY

m=1 m=1

.......................................... ( 1 )
where m is number of members connected to point
1; N, is total number of members joined at point ¢ ;
7 is number of the other end of member i ; X;, X;
etc. are nodal coordinates of member m ; @,—
P,/L, is temsion coefficient (P, and L, are
tension and length of member 2, respectively) ; Fix
etc. are applied forces to point i. Similar equations
are obtained at every nodal point and their total
number is equal to f, the degrees of freedom of the
structure. Eq. (1) becomes in matrix form

DX =T veveeeenrereneni. ( 2)

where @7 is an fX3#z matrix consisting of ¢,(» :
total number of joints) ; X7 and F are 3# X1 nodal
coordinates vector and X1 external force vector,
respectively. Here, we classify the nodal points of a
cable network into two kinds, boundary and non-
boundary (free) points. Writing the nodal coordi-
nates of the former X¢ and the latter X, we rewrite
Eq. (2) in the form :

X
[@: Dl [=F eeereeeieiiiniiannn (3)
X

c

where @ and @ are fXf and fX (3 n—f) matrices,
respectively. Therefore,

X=@ W(F—DX) - ovovvvrvrmeenrmmmmnnennes (4)
The fixed load F is rewritten in the form
F=F ot Fyoeeeervesnreoneninnnennnn. ( 5)

where F is a vector of member dead weight and
F¢ is a vector of fixed loads except member dead

weight. We rewrite Fy in the following form

L
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FR=C7[Lm]A or FR=C7[AmJL """ ( 6 )
where [L,]) and [A,] are diagonal matrices of
Mr-order consisting of member lengths and cross-
sectional areas, respectively (M7 : total number of
members). L and A are vectors of Mr-order having
member lengths and sectional areas, respectively,
as their elements. [L,,]JA and [A,]L, therefore,
mean member volume vectors. C, is an fX My
matrix which connects the member volume vectors
with fixed load vector Fk.

Assuming that the weight of a member is
distributed equally to both ends of the member, we
can write the m-th.column of C; in the form

1 1 1
Crm= [O, .. 0, ETmCX, ETchy ETMCz,

1 1 1
0,..,0, ET”’CX’ §TmCY, “Z‘Tmcz,

O’H.’,O]T ................................ (a)
where 7, is weight per unit volume of the m-th

member and Cx, Cy and C; are direction cosines of
gravitational force with regard to X, ¥ and Z-axes,
respectively.

Meanwhile, a cable network is composed of
many structural ropes,each of which is erected
between two anchoring points and is considered to
be divided into several structural members span-
ning two adjacent nodal points. This means that
members within a single rope have certain uniform
sectional value. Hence, the sectional area vector A
is rewritten in the form

where Ap is a vector of Nporder with uniform
sectional areas and Cp is an My X Np matrix, of
which m-th row is

1 k N»

[0,...,0,1,0,..,0]
when the cross-sectional area of the m-th member
is in common with that of the A-th member. (Np
means the total number of uniform sectional
values.) Hence, Eq. (6) becomes

Fe=C,LL ] CpAp - vverrveernnnesmnnuennnns (8)

From Eqgs. (4) and (5), nodal coordinates in the
completed state are

X=@ N(Fet Fr—@cX() r-wovererrreeeess (9)
and in the deformed state under additional loads,
the equilibrium equations are written in the form

X/=¢[I(F0+FR+FL_@L0X(;) """""" (10)
where X’ and F; are joint coordinates vector after
deformation and an additional load vector of X1,
respectively. @, and @;¢ are matrices consisting of
tension coefficients in the deformed state, i.e.

¢L=¢|%=¢p ¢LC=¢C'¢,=¢,_ ................. ( c )

where ¢r and ¢, mean tension coefficient vectors
in the completed and the deformed state, respec-
tively. The elements of ¢, are

p=Bt P 5 M (4)

m

where P, is tension in the m-th member in
completed state and P, means its increment in
deformed state. L), is member length in deformed
state, i.e.,
EnAm

"

P, ="

en—aE,AnAT, Lp=L,+en

m=1,2, .. Mp--eoeeeeee (e)
where L, is length of the m-th member in
completed state and E,, A, and e, are Young’s
modulus, sectional area and elastic elongation,
respectively ; « and AT are coefficient of linear
expansion and temperature change, respectively.
In the following analysis, we use the approximation

Pim =7Pm: Lic =@ +"——EZ:4M em— a'—EmAmA T

m=1,2, ... Mp-eereeeeeees (11)

by considering the small difference between
member lengths in the completed and the de-
formed state.
(2) Condition S-2

The conditions of incompressibility of members
are

©>0 k=1,2,...M

@ngo m=1,2,...,MT
for completed and deformed state, respectively,
where M is the total number of members excluding
those which are under the control of the following
design condition D-2.
(3) Condition D-2

We rewrite the tension coefficient vector ¢r (in
completed state) in the form

@c

where ¢ is an MX1 unknown tension coefficient
vector and ¢@¢ is an (Mr— M) X1 vector of tension
coefficients in members which are under control of
Condition D-2. The elements of ¢c¢ are no longer
design variables, but prescribed constants.
(4) Condition D-4

We express this condition in the form

Pcm EmAm P
< cm
P, pra P,+ T, em—ak,A,AT é—ns

m:l,z’.”’MT .......... (13)

for completed and deformed state, respectively,
where P, is ultimate strength of the m-th member,
and #, and #, are safety factors for completed and
deformed state. In the following analysis we

]
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assume P, is proportional to sectional area A,
i.e.,

Pon=kAn (k : proportional constant)
m=1,2,.”’MT .............. (g)
Egs. (13) become, therefore,
Lyom=C.An,
Lnpmt E’L"A'” en—AEnAnATE Chn

m=1,2,..,My----- (14)
where C.=k/n. and C.=k/ns.
(5) Conditions D-1, D-3, D-5 and D-6
We define the quantity

-5 (88 (g

qri ok
+Z <qz;> mZI (Lq,Zim)z

=Q=RI*+1Qs (9~ 00 I +| Qx|
FNQALL AL - -vvvveeeeeeeeeiiineeenns (15)

where R; is difference between joint coordinates of
target shape and those of completed equilibrium
shape, ¢, is an unknown tension coefficient, ¢, is
a target tension coefficient (target tension divided
by member length in target shape), x; is joint dis-
placement and R, ¢, ¢ and x are vector expression
of the above quantities.

In Eq. (15), the reciprocals of qzi, ¢, ¢=: and
d4m mean the weights given to design variables R;,
@« — Qor, Zi and LA, in compliance with designer’s
requirement ; @z, Q,, Q. and Q, are diagonal
matrices of which elements are (1/g)-values. The
mathematical meaning of these weights is discussed
in detail in Refs. 4) and 5).

Vector R in Eq. (15) is rewritten in the form

R= @_I(Fc'f‘FR_ ¢(;Xc) _Xo

by using Eq. (9), where X, is the coordinates vector
of target shape. Joint displacement vector x has the
form

=@ (Fo+Fr+F.— 0. X:)—

We call the reciprocal of W of Eq. (15)
“Desirability”®” in cable network design and con-
sider that we attain to the design optimum when we
enhance the desirability at a maximum.

Consequently, the prime subject of the analysis
boils down to the solution of the optimization
problem : “Obtain the values of ¢ and Apr which
minimize the objective function W of Eq. (15)
under the conditions (12) and (14), where m
unknown tension coefficients and Np uniform
sectional areas of cable members are taken as
independent variables”. '

4. NUMERICAL PROCESS
OF SOLUTION

We use Gauss’s method to get correction
vectors. Let ¢ and A be approximate solutions
at the i-th iteration, and 4¢® and 4AA¥ be correc-
tion vectors for each of them. In order to express
the vectors R, x and [ L, ] A in Eq. (15) in terms of
correction vectors, we expand them in Taylor series
with respect to 4¢® and AA{, and rewrite them
R;,x; and {[L,]A};, respectively, i.e.,

RL=R(i)+M1(i)A¢(i)+MZ(i)AAg)

xL=x(i) +M3‘(i)A¢(i)+M4(i)AAI(j)

{[Ln) A} = {[LW] A} O+ MA@ + M ALY
.......................................... (18)

where terms of higher order are neglected.
Superscript ¢ means the value at the é-th iteration
and

OR,1® . oR; 1@
(£) — () = |22 3
M [a<p,,] M [aA,,,,,] ;
1@ ’ (i
e
i (LA, 1@ ) L A1 ¢
M= [_%13_)_ , M= [(aTm:i)
j=1y2’ “.’f , m= 3 &~y yMT
k=1, 2, M ; n=1,2, -+, Np
.......................................... (19)

We will now formulate M, through M¢? in Egs.
(19) omitting superscript ¢ in the following.

M, is easily formulated by using Eqs. (6) and (16)
and through some calculative process in the form

M1=_(E_@_1 TN4)—1¢_1[AXk] """" (20)
where E is a unit matrix, and
(oA
N= 2o =ma [F2] | (o1)
=12,..f
m=1,2,...,M7

AX, is an fX1 vector of which elements are the
coordinates differences of both ends of the ‘k-th
member and is written in the form

AXk: [07 sees 09 XA_XBy Y:Q_ YB, ZA-—ZB,
~’0’XB_XA, YB—- YA, ZB—ZA,
O’ _”’O]T .................................. ( h )

M, is derived directly from Egs. (6), (7) and (16)
and takes the form

M,=(E—®'C,N) '@ 'C,IL,]Cp -+ (22)

Next, from Eqs. (17) and (h)

x _ aq)L aq)Lc
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oF: 0X

+ -1 —_—

o Opr 09k

Here, we write the tension coefficient vector in
deformed state ¢, in the form

where ¢ and ¢¢c mean the unknown and the known
tension coefficient vector in completed state and ¢
is an incremental tension coefficient vector due to
additional loadings. The element of ¢ are
, _ Enhn
.......................................... ( i )
@, and @;c in Eq. (23) are also rewritten in the
form
@L=¢+¢/, QLC=¢C+¢(,3 ................ (25)

where the first terms consist of ¢ and ¢¢, and the
second terms consist of ¢ only.
Differentiating Egs. (25) and substituting in Eq.

em—a%AT m=1,2,..., Mr

(23) we find
X 0¢’
g—(pk*——‘ L"{AX,C-FAx,,-l-Nsa—gk}
0F, 09X
4@t —O0A i,
o; 0, Oy (26)

where Ax; is a similar vector to AX; (Eq. (h)) and
consists of joint displacement differences and N; is
an f>X My matrix having a column vector AX,,+
Az, for the m-th member.

Eq. (26) is further rewritten through certain
calculative process in the form

o __ o R
5(;—— Ll {AXk+Axk+N5<N1 a@k
ox _ OR OR
+N28—(pk>] + @71C, N, 90r  00s
.......................................... ( ] )
where
A Endm  _ EnAw )
N=[2%] o5 en—aty aT)
! 7). 4 0X; >
.
o Endm
_ qu]z 6( 12, em) 3
2 lox ox;
m=1,2, ‘.,MT
]=1’27”"f
.......................................... (27)

Then, by the definition of M; in Eq. (19) we obtain
M;=—(E+ ®;'N:N,) " H{ @7 ([AX, + Ax;]
+N5N1M1_CTN4M1) +M1} """"" (28)

where [4X,+ Axi] is an £}X M matrix consisting of
a column vector AX,+4x, (k=1,2,...,M).

M, is formulated in the similar way to M.
Differentiating Eq. (17) with respect to Ap, and
considering Eqgs. (25) and (26), we get

ox . o 0¢ L O0Fy 08X
dAr, . U'Noga,, T 50, " 4,,
.......................................... (29)
in which we can write
0¢’ =Zf2 d¢ 0X; | L 3¢ Ox;
aAP,n j=1 6X, aAP,n =1 al’j GAP,,,
M 7
1 0@ 0An
+ 2 34, A
N OR o Ox o
_NIaAp,n +N26AP,,, +N3€n (30)

where e, is an NpX1 vector having unity for the »-
th element and zero elements elsewhere and

N3=[f—:(z—fn—au)]cp m=1,2, . My

.......................................... (k)

The bracket [ ] means a diagonal matrix of My X
M;. From Eqgs. (29) and (30) we get through
several calculations

M,=—(E+ ®;'N;N,) ' { @' N; (N1 M.+ Ns)

+ (@' — 0 ) CNM+[ L 1Cp)}
.......................................... (31)
We get Ms and M; directly by using Eqgs. (20), (21)
and (22) in the form
M;=N.M,, Ms=NM,+[L,1Cp- (32)
Thus, the value of objective function at the (z+1)-
st iteration becomes from Egs. (15) and (18)
W0 =|QeR. I + 1@, (0" + 40" — o I
+ Qe +1Qu{ LA ANl
— ”QR (R® +Ml(i)A¢(t‘) +MPAAL) "2
+1Qu(e” +4¢" — g0 I +]1@x (£
+ M2 AP+ MP AAY) "2+ "QA({[ LA
+MP AP +MPAAY “2
............................... (33)

The correction vectors A¢® and A4 which are to
minimize WYY are determined by

aw(iﬂ) aw(i+1)
dAgd T dAAY,

k=1,2,.,M, n=1,2,.. Np--* (34)
From Egs. (33) and (34) we obtain

[Hn H,, [A(Dm =_[G1] or
H, H:||AAp G,
Ao®?
H[ ¢ ) = — G ................................ (35)
AA¢
where
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Hy,= MPT QM + Q3+ M T QM
+MOTQIML?, Y
Hy,= MPTQiM + MO T QM
+MOTQIM?,
H.=HE,
Ho= MO QM+ MO T QRMLP
+Ms(i)TQﬁMe(i), |
Gi=M"T QiR+ Q:(¢" — o)
+MOT Qi+ MOTQI[ L 1A}
GzzMz(i)TleeR(i)+M4(i)TQ§x(i)
+MPTQII L, ]AY®
Q= QF Qe=Q:Q:, Q2=0Q1Q,=Q.Q,,

Qi=Q7Qx=QxQx, Qi=Q.Q.
.......................................... (36)
In order to get the correction vectors in Eq. (35)
with rapid convergence, we use the maximum
neighborhood method proposed by Marquardt™.
Following the method we construct an expression

a o A¢¥ _
{[hjjJ H[hijJ +AE} ) =_thj/‘J ‘G
%
.......................................... (37)
in relation to Eq. (35), where

Ao® Ao

¢A =[h,~,»]‘l[ ¢*] ................... (1)
AAP AAf

and [ k;;] is a diagonal matrix where h;(j=1,2, ...,
M+ Np) is square root of a diagonal element of
matrix H. A is a prescribed positive number which
changes the direction of a correction vector. In
Refs. 4) and 5) discussion is made as to the
numerically experimental characteristics of the
maximum neighborhood method as well as how to
preset the values of A. The solution of Eq. (37)
gives a set of correction vectors A9 and AAY’ with
regard to each value of A.

Further, we improve the correction vectors by a
numerical method developed by the authors®?.
When we preset 7z values for A in Eq. (37), we
obtain #np sets of correction vectors. Then, we
write 7z sets of solutions in the (Z+1)st iteration in

the form
(i+1) () A ;li)
(o,,. =[¢_]+Sn ¢‘ .............. (38)
gol lapl 7 laay,

where subscript # means the »-th value of 2 (=1,
2, ..., ng) and S, is.a step-size to improve correction
vectors given by Eq. (37). We determine the value
of S, (Optimum step-size) so as to minimize

Wi+ =W(pi+P,  AYEY) = W(S,)- (39)

Initial values ®, S
RO x (D
Loop A Compute X7, R, x

*1)

ICompute H, G Eq.(35)|

QU _ U,
Al ,—AC, -
d > I Chi; 3P HO [hyy 31, [y G |
Loop B
n=n+l
PYIT
Choice of

A,

Optimum step size
[Compute 91770, AT, . B0 ()]

1

IEvaluation of object functiord

b
Yes
No Yes

Fig.2 Flow of computation.

*2)

Member forces
Unstrained lengths

n=1, 2, ..., Np
In Refs. 4) and 5) the detailed discussion'is made
as to how to determine the optimum step-size and
we refrain from repeating the discussion here.
Fig.2 shows the flow of computation. Loop A
minimizes the object function and Loop B
determines correction vectors and optimum step-
size. At places marked *1) and *2) finite
deformation analysis is done for finding out the
equilibrium state at each stage. The conditions (12)
and (14) are taken into account at *2). Judgment
of convergence is made by
W @ W(i+l)
T
where ¢c is an arbitrary small number.

5. NUMERICAL EXAMPLES

Following assumptions are made for two numer-
ical examples shown in this chapter :
@ Young’s modulus E=2.0X10" t/m*; @ Unit
weight of member y=8.32 t/m®; @) Proportional
constant between member area and breaking
strength k=132 X 10° t/m*; @ Safety factor
(Breaking strength/Allowable tension) =3.0 (for
completed state) and 2.7 (for deformed state) ; ®
Convergence condition (Eq. (40)) ec=10"°; ®

L
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Fig.3 Example 1: Cable girder.

Tablel Load, shape and displacement (Example 1).

Table 2 Member force and tension coefficient
(TC) (Example 1).

Node Target shape Vertical load Completed shape Displacement
No. X Y Fe k X ¥ X y Member | Target value Completed state | Deformed st.
1 | 995.000 0 0 0 995. 000 0 0 0 No. Tension Tension TC Tension

995, 000 | 259,000 0 0 995.000 | 259. 000 0 0 1 1585.90 | 33.122| 1585.846 | 33.125 1713,218

3 950. 000 16.341 7.974 | 3.680 | 950,008 16,242 0.016 | 0.069 2 1571.80 | 14.905| 1572.045 | 14,906 1698.110

4 | 950,000 252.983| © 0 949.492 | 253.215 | -0.006 | 0.067 3 1568.80 | 29.809 | 1558.944 | 29,812 1683.889

5 | 850,000 49,847 8.203 | 3.786 | 850.026 49,737 0.038 ] 0.193 4 1550.70 | 29.809 | 1547.951 | 29.757 1671.862

[ 850,000 | 240,625 0 0 849.872 | 240.694 |-0.014| 0.189 5 1539.60 | 14.905) 1540.405 | 14,913 1663.682

7 | 800.000 65,160 9.424 | 2.504 | 800.035 65. 002 0.047 | 0.254 [ 1526.50 |29.750| 1525.687 | 29.734 1647,737

8 750. 000 79,519 8.076 [ 3.728 | 749,851 79. 454 0.052 | 0.302 7 1523.60 | 29.811| 1522.884 | 29,797 1644. 590

9 | 750.000| 229.635 0 0 749.883 | 229.336 | -0.020| 0.299 8 1515.50 | 14,905 1515.952 | 14,910 1637. 063

10 | 650.000 | 105.395 8.039 |3.711 | 650.016 | 105,308 0,060 0.402( . 9 1508.50 | 29.809 ] 1508.052 | 29.801 1628. 460
11 850. 000 | 220.019 0 0 649.874 | 219.615 |-0.023 | 0,399 10 1504.50 | 29.809 | 1504.095 | 29.801 1624.142
12 600. 000 | 116.921 9.326 |2.458 |599.895 | 116.803 0.082 | 0.452 11 1499.50 | 14.905| 1500102 | 14,911 1619.772
18 | 550.000 | 127.511 7.945 |3.667 | 549.879 | 127.445 0,061 | 0.488 12 1495.50 | 29.809 | 1495.160 | 29.802 1614, 398
14 650,000 | 211.777 0 0 549.860 | 211.380 | -0.024) 0,437 13 1493.60 | 29.811| 1492.440 | 29,788 1611, 404
15 | 450.000 ] 145,896 7.918 |3.655 | 449.922 | 145.823 0,057 0.562 14 1491.50 | 14.905| 1492.929 | 14,919 1611,901
16 | 450.000 | 204.909 0 0 449.877 | 204.554 | -0.023 | 0.560 15 1490.60 {29.811 | 1489.804 {29.785 1808. 504
17 | 400.000 | 153.697( 10.256 |2.426 | 399.912 | 153.579 0,054 | 0.598 16 8.99 0.038 7,202 0. 030 7.137
18 | 350.000 | 180.574 7.856 |3.626 |349.903 | 160,482 | 0.049| 0.622 17 12.40 0. 065 11. 875 0. 062 11.673
19 350,000 | 199.414 0 0 349.900 | 199,130 | -0.020 [ 0.621 18 12. 40 0. 083 12. 765 0. 085 12.519
20 250, 000 | 171,566 7.840 {3.619 | 249.956 | 171.417 0,038 0.671 19 12. 40 0.108 12,3387 0.108 12.112
21 250.000 | 195.293 0 0 249.939 | 195,171 | -0.015 | 0.670 20 12. 40 0.147 12. 097 0,144 11.867
22 200,000 | 175.684 9,214 | 2,407 |199.949 | 175,455 0.031| 0.696 21 12. 40 0.210 12. 030 0.204 11.819
23 150. 000 | 178.886 7.809 |[3.604 | 149,917 | 178.681 0.024 | 0.706 22 12. 40 0.319 12,118 0.312 11.898
24 | 150.000 ] 162.545 0 0 149,977 {192,769 | -0.010| 0.706 23 12,40 0.523 12,214 0.515 11.984
25 50.000 | 182.543 7.804 |3.602 50.020 | 182.233 0,008 0.783 24 12. 40 0.908 12,335 0.903 12,081
26 50,000 | 191.172 0 0 49,983 |[192.159 |[-0.003] 0.733 25 9,30 1.078 8.760 1,016 8.633
27 0 183.000 5.100 {1.200 0 182.656 0 0.739 26 220. 30 4.852 221,651 | 4.882 208, 227
28 0 191.000( 0 0 0 192.648 | 0 0.761 27 220.10 | 2.184 224.770 | 2.230 211.175
Unit m| ton (1ton=9. 8kN) m 28 219.70 | 2.184 223.566 | 2.222 210.073
29 219. 40 2.184 223.226 | 2.222 209, 791

30 219. 10 2,184 222.960 | 2.222 209.574

Values for A (Eq. (37))=10"% and 107", 31 218.90 | 2.184| 222.802| 2.223 209, 454
(1) Example 1 (cable girder) 32 218.70 2.184 222,633 2.223 209, 321
. . 33 218,60 2.184 222,525 2.223 209. 244

We show an example of design calculation for a 34 218.50 | 2.184| 222.425| 2.223 209,176
two-dimensional cable girder in Fig.3 to determine 35 | 218.40 | 2,184 222,238 | 2.222 209.026
its completed shape and cross sectional area of each 3§it Tz‘lﬁlﬂ " t,i?grc mzzi;j,ig(uﬁ;‘ffa”) 208,115

member. Target shape and joint loads are given in
the left half of Table 1 where F¢ means fixed load,
excluding the dead weight of members, and F;
means additional joint load due to uniformly
distributed load of 0.0478 ton/m along the cable
length and concentrated loads at points 7, 12, 17
and 22. The left half part of Table 2 shows the
target values of member forces and tension
coefficients. (We preset these values referring to
the approximate solution by membrane analysis of
2-dimensional cable girder.) Here, upper chord
members (Nos.1~15), suspension members (Nos.
16~25) and lower chord members (Nos.26~36)
shall have respective uniform cross-sections and it
is assumed that dead weight of a member is divided

into two equal portions applied to both ends of the
member. '

This cable girder is a model of footbridge for the
purpose of erecting main cables of a long span
suspension bridge and its design priority is given to
the conformity of the target and the completed
shape. We, therefore, set the g-value in Eq. (15),
which controls the size of desirable domain for each
design variable, as follows ; gr;=0.01 m, gxi=100
m (i=1, ..., f), gx=1 000 ton/L, (k=1, ..., 15), qox
=10 ton/L; (k=16, ...,25), ¢=100 ton/L; (k=
26, ..., 36) and gan=1m® (m=1, ..., Mr), where f=
50 and Mr=36.

|
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Table 3 Member cross-sectional area (m’?).

Member No. Initial | Optimum
Upper chord 1~15| 0.03 0. 0360
Web 16~25 | 0. 0005 0. 000555
Lower chord | 26~36| 0.01 0. 0105
Upper Nodes
lll|l||l|ll“ [
13 § 78 101213 151718 202223 2527 0
} -100mm
| I 24 2628 o
24 6 9 11 14 16 19 a2l
106mn
Lower Nodes
987T T

(®) 1648
[ N S S L S SN AR I N 0% 3 B A

I 0
(Deflection) 500un

Fig.4 Difference between target and completed shapes,
and deflection due to additional loads.

The background of setting these g-values is as
follows ; upper chord members shall have shape-
weighted solution rather than member force-
weighted one and, on the other hand, web
members shall have member force-weighted solu-
tion, while the solution for lower chord members
shall have in-between characteristics.

The left half part of the structure is analyzed due
to its symmetry. At the beginning of numerical
process, we have to set the initial values for
unknown tension coefficients and sectional areas
and we use the values of target tension cocfficients
in Table2 and values in Table3 given by the
results from membrane approximation. Numerical
results are shown in Tables1 through 4. In the
right half of Table1 are shown the completed
shape and displacement due to additional loads.
Member forces in the completed and the deformed
state are shown in the right half of Table 2 and the
optimum solution for member cross sections in
Table 3. Fig.4 shows the diagram of discrepancy of
the completed shape in vertical direction from the
target shape, together with deflection due to
additional loads. This figure clearly shows the
effect of setting g-values in Eq. (15) as to the
completed shape. As is shown above, the weights
for the shape (1/gr;) are uniform to all members
and the weights for the web member forces (1/¢ex)
are hundred times as heavy as those of upper chord
members. As a result, upper nodes in completed
state show small differences from target shape,

Table4 Convergence of objective
function (Example]),

i o | el
0 | 3.833x107
1 7.289X10% 0.384
2 5.306x10* 0.272
3 5.295X10* 2.073X10°%
4 5. 300104 0.944X10°3
oLy |@ ®  |® \D _y
S ta| Pu| a THO
b ) @
929 8zs 722 617 ®
@ g
2| 11 | 10 ® ey
27 23 g =
@ |®
gls ®
19
®
15 @
20
¥
e @ am -
(a) Plan
@
: o 74
Ny IS g
E 29 z7z.® ® :7':_
@ . hl
(unit:m)

(b) Elevation

Fig.5 Example 2: Diagonal cable net.

while lower nodes show rather big differences due
to the member force-weighted solution for web
members.

Table4 shows how the objective function
converges with the increasing number of iteration.
The CPU-occupying time for this numerical
process by scalar computation in FACOM VP-200
was eight seconds.

(2) Example 2 (3-dimensional diagonal cable
net)

We analyze a diagonal-type cable net of which
target shape is shown in Fig.5 and in Table 5. This
is the same structure as was already analyzed in
Refs. 4) and 5). We will here determine the
completed state and member sectional areas. In
Tables 5 and 6, fixed loads F. excluding dead
weight, target shape and target tensions are given.
Fixed load Fr due to dead weight of a member is
equally divided into two joint loads. Additional
loads F; shall have half the magnitude of F¢. All
the main suspension cables (Nos. 1~15) shall have
a uniform cross section and all the secondary cables
(Nos. 16~30) another uniform cross section. We
specify the desirable domain of solution by
quantities

L
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Table 5 Load, target shape, compléted shape and joint

Table 6 Tension coefficient and member

displacement (Example 2). force.
Joint | Load Target shape Completed shape Joint displacement Member | Target value | Completed state | Deformed state
No. Fc X Y 7z X Y . % ¥ 2 No. Poa | Pon| Pu Py (Member force)
T T om0 0 2 0 0 0.0 0 o 0.0 1 |2.828 [10.0] 2.826 9.732 11,033
2 | 0.262| 3.536( 0 0 | ss1| o | 0.218[-0.003] o0 | 0.040 2 12.829 110.0| 2.827 9.744 11. 088
3 | o.25¢] 7.0m) 0 0 | 7.015| o | 0.600]-0.004] O | 0.035 3 12750 110.0) 2,748 9,751 11,079
4 | 0.256|10.707| o0 0 |10.502| o | 1.156|-0.003| o0 | 0.023 4 |28l 110,01 2,910 8.734 11.107
5 | 0.259|14.142f o 0 |13.972| o | 1.886|-0.003| o0 | 0.015 5 2187 110.0) 2136 9.185 10.630
6 o [1m7s| o | 205|178 o | 26| o 0 0 6 12.828 110.0) 2.826| 9.832 | 12.534
7 | o025 o |35 o o | 3.443|-0.172| o | c.oo1] o.018 7|28 | 10.01 2.828] 0.852 | 12.573
8 | 0503 3.5% | 3.53| 0 | 2.514| 3.468| 0.093 |-0.008| 0.002| o.038 SO Eiodl et Bt el I
9 0.508 | 7.071] 3.536 0 7.021| 3.505{ 0.470|-0.003| 0.002{ 0.033 10 g 828 10‘8 2 ggg ggg; g i?;
10 0.515 | 10,707 | 3.536 0 [10.593 | 3.515( 1.010|-0.003 | 0.001 [ 0.019 u {282 t100] 28210 030 12,578
1 0 |14.142| 3.536| 1.768 |14.142| 3.536| L.768| 0 0 0 12 |25 |10.0] 27810 104 12. 788
12 | o282 o0 | 70| 0 0 | 6.874|-0.510 0 | 0.002] 0.020 13 288 |10.0] 28| 9971 11 807
13 [ 0.506] .58 | 7.071| 0 | 3.520| 6.928|-0.266|-0.002| 0.003| 0.033 4 2780 l10.0] 27910 021 11,881
14 | 0510 7.07| 7.070 o0 | 7.0844| 7.021| 0.081)-0.002] 0.002| 0.022 15 |252 |10.0] 2.5%] 8984 9. 036
15 0 [10.707| 7.071| 0.589|10.707| 7.071| 0.589| 0 0 0 18 o707 | 25| 0.708| 2454 1745
16 0,255 0 10,707 0 0 10.874 | -1.079 0 0.003| 0019 17 0. 707 2.51 0.708| 2.471 1.760
17 0,510 | 3.536 | 10.707 0 3.523110.465 | -0.876 | -0.001§ 0.003 | 0,019 18 0.688 2.5| 0.689| 2.452 1.727
18 0 7,071 | 10,707 | -0.588 | 7.071 1} 10.707 | -0.589 0 0 1] 19 0,728 2.50 0.720] 2.484 1.752
19. 0.259 0 14,142 0 0 13.635 | -1.806 0 0.003 | 0.015 20 0,534 2.5 0.584| 2.046 1,246
20 0 | 8.53|14.142|-1.768 | 3.536|14.142[-1.768] © 0 21 |L414 | 50| 1.415] 4.958 4,201
2 0 0 {17.778|-2.946| 0 |17.778|-2.946] 0 0 22 | L414 | 5.0| 1.415| 4944 4,174
it | (ton) . () 28 | L.37 | 5.0| 1.37| 4.931 4.144
N, B. Joints Nos. 8, 11, 15, 18, 20 and 2l are anchoring points (See Fig. 5). 24 1,294 5.01 1.295| 4.643 3.775
(1ton=39. 8KN) 25 |L414 | 5.0 L415] 4.978 4.307
26 |1.414 | 5.0 1.416| 4.989 4,320
27 | 1357 | 5.0 1.359| 4.993 4.313
28 |L414 | 5.0 1.415| 4,977 4,433
20 (1395 | 5.0| 1.397| 4.968 4.412
30 |1.265 | 5.0 1.266| 4.540 4.194
= tm | )] ¢/m (t) (t)
2 (Tton="5.8kN)
o
Table 7 Cross-sectional area (m?).
| 17. 7781 l Momber Initial value | Solution
" g (0 oy Nos. 1-15| 2.0Xx10°% | 2.61x10-*
— Nos. 16-30 | 1.0X10°4 1,14%10°4
:Completed state
-:Deformed state

Fig.6 Completed shape and deformation.

qu=]..0 m, q¢k=1.0 t/m,

4 =0.05m, gan=10"m’ (m)
where j=1,2,....f; k=1,2,. ., M; m=1,2, .,
My ; f=35, M=30 and Mr=30.

It should be noticed that as to completed shape
and member forces the design conditions of this
model are unchanged from those of the model in
Refs. 4) and 5) except that fixed loads due to
member dead weight are not taken into account in
Refs. 4) and 5). Solutions as to shape and member
force are shown in the right half of Tables 5 and 6,
and optimum sectional areas are obtained as shown
in Table 7, where initial value means the initial
assumption for starting numerical processing.
Fig.6 shows the sketch of the completed and the
deformed shape of the cable net. The completed
shape in Table 5 is quite similar to those of Refs. 4)
and 5). Refs. 9) and 11) also analyze the same
model cited from Refs. 4) and 5) as a shape
determination problem. Ref. 9) gives a slightly
different, though almost similar, shape, which is

mainly due to the difference of objective function.
Ref. 11) shows quite the same result as the authors’
where maximum difference of vertical coordinate is
0.076 m.

6. CONCLUSION

We presented a method of design analysis of
cable network by utilizing the optimization techni-
que, where not only the design conditions for shape
and member forces in completed state but also the
constraint conditions for stresses and displacements
in deformed state and for member dead weights
were taken into account, to determine the design
shape, design member forces and sectional areas of
members in an automatic process. Gauss iteration
and maximum neighborhood method are used in
minimizing the objective function, which has
tension coefficients and member sectional areas as
inde-pendent variables, together with authors’
method for finding out optimum step-size.

By the present method, various kind of solutions
are obtained in compliance with the design

]
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philosophy. By increasing the weight of constraint
for deformation, for instance, we can obtain a cable
network with high stiffness or we can reduce total
dead weight by setting large weight to dead weight
term of objective function.

The so-called shape determination analyses
presented by the authors in the past are totally
covered by the present method.
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