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SUPPLY MODEL FOR COMMON BUS
ROUTES UNDER DETERMINISTIC

CONDITIONS

Toshikazu SHIMAZAKI*
and Sutanto SOEHODHO**

Transit systems are characterized by networks with extensively overlapping routes, and
frequently operating at or close to its capacity. This research addresses the problems of
scheduling the buses from terminals and allocating a fleet of buses between routes in
the system. An attempt is given to develop a model which recognizes the information
on the time dependence of passenger arrival rate, running time between stops, bus
capacity, O-D trip pattern and some parameters related to the relationship between
dwell time and boarding and/or alighting passengers known under deterministic condi-
tions. The solution developed is based on the decomposition of bus routes into single
bus routes and proposed to be the central element of a short-range bus service plan-

ning process.

Keywords . common routes, dwell time, running time, bus availability

1. INTRODUCTION

On large bus networks operating  important
service, the problem of common bus routes where a
passenger must select an appropriate bus which he
will use to move within the common section must
be taken into consideration’. These common
routes are often observed in the bus networks in
many busy cities in the developing countries. The
illustration of common bus routes is shown in
Fig.1. The common bus routes are represented by
solid line while the other bus routes that do not
deal with common sections are drawn with dashed
line. The passengers who are waiting for the bus at
bus stops, S; and S,,, may have choice to take any
bus from any route to take them traverse within the
common routes.

There are many research works on the schedul-
ing of public transit, such as minimum waiting time
on a single O-D?, the case where bus makes more
than one trip”?, effect of boarding passengers on
pairing of buses and the scheduling”®, and multiple
O-D pattern with constant arrival”. However, the
situation of common routes was ignored. In this
paper, we solve the problems of determination of
scheduling policy for public transit dealing with
common routes for multiple O-D pattern, as well as
“providing the number of buses required to operate
on each route in which arrival rate of passengers is
regarded non-constant. In the scheduling policy,
the problem faced in the common routes is quite
difficult to be handled simultaneously. However,
our approach allows the consideration of route
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decomposition for common bus routes which are
treated independently as single routes.

2. GENERAL ASSUMPTIONS

Our goal is to minimize total wait time and travel
time as well for all passengers rather than to
minimize average wait time. Here, we do not
consider the transferring process of passengers who
intend to use more than one bus line in this system,
since their arrivals at the next bus stops are
included in the given arrival pattern at those bus
stops. The operation of supply model developed
does not allow passengers to board the buses at the
terminals, which is merely aimed at the conveni-
ence of formulation. However, the situation in
which passengers are allowed to board the bus at
terminal can be involved easily by creating a
dummy link connecting terminal with bus stop with
zero travel time. Furthermore the following
assumptions are adopted.

(1) Time dependence of passenger arrival

In this scheduling problem, deterministic but
time dependent passenger arrivals are considered,
which implies that we are treating average arrival
pattern remain unchanged. For the situation where
the bus frequency is high, the arrival pattern will
not be affected by scheduling policy. Although this
condition may not always hold, it is sufficient to
assume this condition for the beginning stage of this
sort of research. Arrival of passenger is given as
some smooth function of time within a specific time

" period of interest, such as morning peak hour, day

off-peak hour, afternoon peak hour or night off-
peak hour. This kind of arrival can be represented
as the cumulative number of passengers who arrive
at a bus stop at an instant .

]
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Fig.2 Captive and Variable Arrivals.

(2) Captive arrival and variable arrival

As mentioned above, in this model we deal with
the situation where there are some stops partially
served by common bus routes. Because of the
duplicate services at stops on common routes, we
therefore, separate the arriving passengers at those
bus stops into two portions. Those who can only
take the buses from a single route, as captive
arrivals. These captive arrivals will also include
some passengers in the common routes who can
only take buses from a single route by some reason
such for their commuting tickets. And those who
can take any bus from any route as variable
arrivals.

The condition of these two different arrivals is
illustrated in Fig.2. All stops have captive arrival,
CF (), which is the cumulative arrival of passen-
gers at stop ¢ of route 7 at an instant £. At any stop
which does not deal with common routes, there is a
single captive arrival. But when the stop deals with
common routes, there are multiple captive arrivals
corresponding to each route. In addition, these
common routes have also a single variable arrival,
VF;(H), which is the cumulative passenger arrivals
at stop ¢ at an instant # who can take buses from any
route, since they will travel within the common
routes.

(3) O-D transition probability

Since passengers may board and alight at any bus
stop, we need to know where each of them goes in
order to obtain the optimal dispatch schedule as
well as the total number of buses required. We
assume that the number of passengers on board
from stop ¢ to stop ! is proportional to the number

of passengers boarding at stop ¢ Since the
passengers’ arrival rate at each stop is time
dependent, the number of passengers traveling
from stop ¢ to stop I changes over time. The ratio
mentioned above is called ‘O-D Transition Prob-
ability’ from i to I. Furthermore R;;, denotes the O-
D transition probability from stop ¢ to stop [ of
route 7 for the captive arrival, and has the following
characteristic,

Dr .
DI AT LY SRR TR P PRSPPI PPEILPRILIRY (1)
=i+l

where D, is the destination of all buses of route 7.
While Ry denotes the O-D transition probability
for the variable arrival, and for each of the
common route considered has the following
characteristic,

E
> Ry=1Vi;l within the common routes
1 .

e, ( 2 )

where E is the last stop on the common routes
considered. Since the R;,’s and Ry’s are constant
over a given time period, the number of passengers
carried along some links (adjacent stops) can be
obtained easily, by multiplying the number of
passengers boarding the bus at all stops before
those links by their R;,’s and R;/’s and summing
them all up.
(4) Vehicle movement

a) Running time

Travel time of transit system comes out to be
crucial, because incorrect estimation may result in
the delay in the schedule or bunching of buses.
However, most of the available research works on
the scheduling problem under deterministic condi-

L
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Fig.3 Components of Transit Travel Time.

tions assumed that this travel time is constant. In
fact this assumption is not realistic. The compo-
nents of transit travel time is illustrated in Fig.3.
The four components are : Dwell (A), the time
used by each bus to load and unload at a bus stop ;
Accelerate (B), the time used by a bus in effort to
attain its normal speed ; Cruise (C), the running
time of a bus between two consecutive stops at
normal speed and ; Decelerate (D), the time used
to halt the bus®. However, in this model we
separate these components into two major compo-
nents ; (i) running time which includes accelerate,
cruise, decelerate ; and (ii) dwell time.

Running time of road transit system is highly
influenced by the traffic condition of that road
which is characterized by the level of flow of the
vehicles™. Moreover the flow level of vehicles on
the road varies within a specific time of period, ie.
morning peak hour, day off-peak hour and so
forth. Therefore in this model we assume that
running time is time dependent and given as some
function of time. The presentation of running time
of a bus between two consecutive stops (4, ¢+1)
along route r is given by, ‘

Ath‘:f;'r(t)vi;?’""”"""""”'; ............. (3)

b) Dwell time

In the operation of public transit, dwell time is
affected by either boarding or alighting passengers.
Consequently in this model we adopt that the dwell
time of a bus at each stop is a function of number of
boarding and alighting passengers. The dwell
time of the jth bus at stop ¢ of route 7 is
represented as,

DW,;, = max (a X boarding passengers., 3 X

alighting passengers.) Y i;7;7
.......................................... ( 4 )

where, a and 3 are parameters related to boarding
and alighting time per passenger.

3. MODEL STRUCTURE

(1) Route decomposition

The principal difficulty in solving the optimal bus
departures for bus routes dealing with common
routes is that there are variable arrivals, VF;(#)’s,
which may take any first incoming bus to traverse
within common routes (see Fig.2). The model
developed here will treat them as separate routes,
and the coincidence will be accommodated by
appropriately modifying the variable arrivals in the
system. This modification can be done by following
‘Base Frequency’ and ‘Surplus Frequency’ proce-
dures explained as follows.

a) Base frequency procedure

This procedure is defined as a tool to find the
lower bound frequency, ¢,(0) V7, of buses oper-
ated on route 7 that does not violate the capacity
constraint. The explanation is as followings.

First let us denote, CF;;,(T), as the total number
of captive passengers traveling from stop ¢ to stop [
of route ¥ within a given time period T, where ¢ and
I are consecutive stops. Also, let VF;;,(T) be the
variable ones which have been decomposed for
route 7, so the total number of passengers traveling
from stop ¢ to stop ! of route # is given by,

DFy,,(T)=CFy,( D+, VE (D VilEL,

set of stop pairs of route 7
1 if il of route » deals with
= common routes
0 otherwise

In this base frequency procedure passengers are
served nearly to the total bus capacity. So VFj;, can
be considered proportional to the frequency of
buses on route # on common routes, so VFj
(7) (total variable passengers on common link ¢/
within time period 7)) can be decomposed into each
route in proportion to their ‘Frequency Shares’ as
VF;,(T). Therefore equation (5) can be rewritten
as,

DF,(T)=CFu,(T)

7 qr
+o% 22k

P ( 6 )
where, X;; : a set of routes between stop ¢ and !/
that coincide.

gx : bus frequency operated on route k

The following algorithm is used to generate

lower bound, ¢,(0) for each ¢,, which satisfies the

feasibility requirement and gives minimum number

of buses required in a specific time period, in the

sense that no excess of bus capacity (C) is allowed
on any link of any route™".
Base Frequency Algorithm

where, L, :

VF(T) Vil;kEXy

]
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(1) For given routes, determine CFy,,(T), VFy
(T) and X;; for every stop pair ¢/ and bus route 7.

(2) Using only the captive passenger flow,
determine the frequency from,

Cx g,(0) =maxu[CFu,(DI1V r;il€L, - (7)
where, C :bus capacity

L, :set of stop pairs of route 7
set n=0.

(3) Compute DF;,(T), using equation (6),
where ¢,=q,(n). ,

(4) Find the peak load link passenger flow on
each route. If the peak load link of each route is the
same as that identified in the previous iteration,
STOP and set ¢,(0) =g, (n). Otherwise set n=n+1

(5)  And redefine ¢,(n) as the solution of the
following system equations,

Cxg,(n) =maxy[DF;,(D1V r;il€L, - (8)
Then go to (3).

It is clear that there is a finite number of different
combinations of peak links, one for each route,
that can be found in step 3 of the algorithm.
Accordingly the algorithm converges within a finite
number of iterations.

b) Surplus frequency procedure

In general, supply of public transit is designed to
minimize the total cost comprising of user and
operating costs, which are functions of total
wait/travel time and number of buses, respective-
ly. In the base frequency procedure we can obtain
the lower bound of feasible bus frequency which
implies that the supply is given at, or close to,
capacity. So in order to improve service quality,
surplus frequency procedure is designed to provide
the feasible value of ¢, as,

(Ir;%(o) W eeeennerittiiiiiiiiieiaiaiiaas ( 9 )

Therefore by this procedure we can increase the
number of buses from the number given in base
frequency procedure and obtain their minimized
total wait/travel time as well as their scheduling
policy.

(2) Model formulation

The problem is to find the optimal scheduling
policy which minimizes the Total Wait/ Travel Time
of all passengers subject to Bus Capacity Con-
straints. Following is the formulation for problem
based on the concept of route decomposition.

a) Constraints

To derive the constraints of this problem, let us
find first the number of passengers boarding the
jth bus of route r at stop ¢, from

[CF;,(ti5) — CFi(ti7-19)]
+5ir[VFir(tijr) —VF, (-1 V NS (10)
where, #;, :jth bus arrival at stop ¢ of route 7

i=1 i-1
tijr=tir+"kz=:04tkr+l§1DWkir .................. (11)

t;, : departure time of the jth bus of
route 7
: bus running time between stop k and
k+1, see equation (3)
: the jth bus dwell time at stop k of
route 7, see equation (4)

1 if stop ¢ of route 7 deals with

commoni‘routes

0 otherwise
Next is to find the number of passengers getting off
the jth bus of route 7 at stop k, from

E(t)= ’Z:'llRik{[CFf,(t,«”) — CFi(tijoi)]

+0i [VFi(tijy) — VF (b)Y V K3f 7
.............................................. (12)
R;; is defined in equation (1) and (2).Knowing the
number of boarding and alighting passengers at
each stop, we can determine the number of
passengers in the j th bus of route » on link (¢, i+
1), D;(t;,), from the following equation,

Dy (t;y) =Dia () +[CFi (tiyr) — CFup (1510
+0:, [VFi (i) — VFir(tij-1,)]
;Ei(tjy)vi;j;r ...................... (13)

So the constraints of this problem, that is the
number of passengers in the bus on each link
should be less or equal to bus capacity (C), are
D;(tjr)éc\fi;j;r ............................... (14)
where Di(t;,)’s are determined in equation (13).

b) Total wait/travel time

The objective of this scheduling problem is to
minimize the total wait/travel time. This implies to
minimize total wait time for all passengers at bus
stops as possible and their travel time consisting of
In-Moving Vehicle Time and In-Stopping Vehicle
Time, for the varying running time and dwell time.
This situation should hold since we would like to
model an improved supply for bus services. In the
following discussions we will determine the for-
mulations of this objective function.

i) Wait time ,

In order to minimize total wait time for all

passengers in this problem we adopt the necessary
condition for optimum, that is, every passenger
should be able to take the first incoming bus after
his/her arrival. This condition is to hold for both
captive and variable arrivals. Furthermore the total
wait time for all passengers on route 7, W,, is given
as follows.

Atkr

D Wkir

5ir=

NrMy tiw

Wr:jgltézl fo {[CFir(tijr) —CFir(tij—lr)]

+ 5ir[VFir(tijr) - VFir(tij—ly)]}dtV ¥

L
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CFuft)

Table1 O-D Transition Probability For Captive

Aurrivals.

Origin/Destination 2 3 D1 | D2
1 0.1/0.2 ({0.2/0.3 0.7 [ 0.5
2 - 0.3/0.210.7]0.8
3 - - 1.0| 1.0

Note */* : route 1 / route 2

................................... (15)
where My and Ny are total number of stops and
buses on route 7 respectively.

i1} In-moving vehicle time

This term can be defined as the time spent by all
passengers to move from their origin to their
destination not including the delay at bus stops.
Since we know the number of passengers in the j th
bus on link (4, ¢1+1) of route 7, we can obtain the
in-moving vehicle time of those passengers, VM,;,,
as follows

VM,,, D (t,,) XAI,‘,,VZ,] Poreererreneiiiiaes (16)

Hence for the total in-moving vehicle time of all
passengers along route 7, VM,, is obtained as

VM,= ZZVM,”V? ........................... (17)

j=1i=1
ii1) In-stopping vehicle time
At stop ¢ of route 7, for example, there is a
certain number of passengers in the jth bus who
have to be delayed for loading and unloading of
other passengers for DW,;, (see equation 4). This
certain number of passengers is given by,

Di_l(t”)_Ei(tjr) Vi;j;r ...................... (18)
and the in-stopping vehicle time of those passen-
gers at that stop is

Vsur [Dz l(t;r) E (tjr)] X DVVU}'V lv] r

.......................................... (19)
so that, the total in-stopping vehicle time of all
passengers along route », VS,, is given by

NrMr

ZZVSUrVT ............................ (20)

j=1i=2
Accordingly this scheduling problem can be
represented in the following Mathematical Prog-
ramming,
Minimize Total Wait/Travel Time’

CFlt)
Figd4 Two Bus Routes With Three Bus Stops.

Table2 O-D Transition Probability For Variable

Arrivals.
Origin/Destination [ 2 | 3
1 04 (0.6
2 - |10
=W,+VM,+VS,

subject to,

Di(tjr) é C v Z;];?’

This kind of optimization problem can be solved
recursively by using Dynamic Programming. The
structure of dynamic programming algorithm for
this optimization is chosen by deciding the headway
between the (7—1) th and the j th buses’ departure
time denoted by s; as decision variables, and
cumulative headways or the time interval between
the beginning of time period of interest and the 7 th
departure on route 7, €j,, as the stage correspond-
ing to each dispatched bus and state variables.
Furthermore we have recursive relationship of this
problem as,

rj(er) =Mins;[7’j—1 (Qi—lr) +f;(31)] """"" (21)
where 7;(Q;,) is the minimum travel time for ‘the
first j buses, and f;(s;) is the travel time for the j th
bus. The state of dynamics is given by

In order to show how this model works, we will
try to solve the scheduling problem on a simple bus
network dealing with common routes, so as to
minimize total wait/travel time for all passengers in
the following section.

4. APPLICATION OF THE MODEL

Suppose we have a simple bus network consisting
of two bus routes and three bus stops on their
common section. The network structure and O-D
transition probability are given in Fig.4, Table 1
and Table 2, respectively.

The running time of buses on each link are
assumed to be time dependent, and we have

At11=4t12=10+t/12 5 At21=At22=8+t/15

1
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Table 3 Optimal Bus Departure Times.

Table4 Constant Headway Bus Departure Times.

Bus No/Route No [ 1 2 Bus No/Route No | 1 2 Remarks
1 22 28’ 1 15’ 20° !
2 35’ 43 2 30° | 40’* | * Overcrowding on link (2,3)
3 45’ 57 3 45’ 60’
4 58’ - 4 607 - * Overcrowding on link (2,3)
Total Wait Time | 432’ | 495 Total Wait Time | 1486’ | 1791’
Total Travel Time | 5172’ | 5028’ Total Travel Time | 5300’ | 5149’

The passenger arrivals at every bus stop is given by,

_£)2 <1<
CFu(t)={ g(()t 5)2/360 5=t=65

t=65
2 <t
CFu(p= {7(t 6)2/360 6Zt=66
tZ66
2 <<
CFo() = { (t—15)2/360 15<t<75
40 1275
2 <t
CFoy ()= { 3(t—16)2/360 16<t<76
30 t=76
2 <<
CFy (b= {( —23)2/360 23<¢<83
10 $=83
2 <<
CF3z(t)—{2(t 24)?/360 24=<i<84
t=84
— 2 << .
VFI(t)={4(t 5)?/360 5=t=65
40 tZ65
_ 2 <<
VFz(t)={2(t 15)?/360 15=t<75
20 =75

bus capacity (C)=40 passengers/bus, «=0.1 and
B=0.08 minute/passenger and 7=60 minutes.

The solution of this problem can be simplified by
separating the bus networks into single bus routes
through the base and surplus frequency proce-
dures, which results in the required number of
buses to operate on each route and modified
variable arrivals. Knowing the number of buses and
modified variable -arrivals, we can minimize total
wait/travel time for all passengers by using
dynamic programming. Solving the problem, the
time line is divided into discrete parts that would
ignore the discrete nature of passengers who use a
bus. However, this discrete nature is masked by the
use of continuous approximation of the arrival
patterns. The solution of this problem is summa-
rized in Table 3.

In addition, as a comparison, suppose we have
other scheduling policy to dispatch the buses by
constant headways within the time period (60
minutes). Using the same number of buses as in the
optimal policy for each route, this scheduling policy
gives results shown in Table 4. These results show

/ INPUT DATA /

BASE FREQUENCY PROCEDURE
7:(0)

|

SURPLUS FREQUENCY PROCEDURE
% 24(0)

MODIFY  VF,(t)

IDYNAMIC PROGRAMMING ITERATIONS

Fig.5 Computationél Flowchart.

that the policy requires more time for both wait and
travel times. Comparison with the ones we
obtained from the optimal departures, this total
wait time is significantly reduced by nearly 72%,
from 3277 to 927°, which of course gives
convenience to passengers, and total travel time is
reduced by nearly 2.5%, from 10 449’ to 10 200°.
Moreover this constant headway policy results in
some overcrowding effect on link (2, 3) on the
second bus of route 2 and the fourth bus of route 1
that gives inconvenience to passengers.
However, this optimum solution cannot guaran-
tee that all passengers can take a bus within the
wait time which they can tolerate. So in practice,
we can improve the service quality by putting an
upper limit to the waiting time, by adding the
headway constraints to this model. It should be
noted, however, that these additional constraints
may result in no solution for some number of
buses. If so we should increase the number of buses
as explained in the surplus frequency procedure
and modify all variable arrivals and capacity

L
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constraints accordingly. The computation time for
this example, using small personal computer is less
than 5 minutes. This computation time is mainly
influenced by the number of buses and bus
capacity, so in the real problem with larger number
and capacity of buses the computation time can still
be expected to be reasonable. Furthermore the
general computational flowchart of this model is
illustrated in Fig.5. In this figure The ‘Satisfactory’
term may include some judgement factor of bus
operator regarding level of service and operating
cost, however in this example we do not consider
that situation and just run the model for 1 iteration.

5. BUS AVAILABILITY

In the model developed above we just dispatch
bus without thinking whether it can be re-dispatch-
ed or not. Accordingly, the operator may be
required to have less number of buses by re-
dispatching buses that have been used. This section
discusses about the bus availability that bridges this
model to the practical application which is always
limited by fleetsize. Our objective here is to fulfill
the fleetsize by providing the fewest number of
buses required to operate on the given bus
networks.

In general the operation of bus service or any
other public transit can be viewed as a two-way
service, as shown in Fig.6, wherein buses only
traverse along the given route, and each bus that
has served one way may, of course, be used to
serve the opposite way. However, we state here
that a bus arriving first at a terminal will be the first
to leave. The previous discussions enable us to
determine the optimal schedule policy which
results in optimal bus departure times. Also, by
tracing the computation for the optimal departure
times we can obtain the travel time of those buses
to reach the opposite terminal. So based on the
prescribed departure and travel time we want to
determine heuristically the minimal fleetsize re-
quired to keep up a two-way bus route.

Suppose there is a given route of two-lane
service. Let ., denote departure time of the jth
bus Vj (=1, 2,...Nzr, where Nzr is the total
number of buses required to serve all demand
along the z th direction of route 7, z=1, 2) and y;.,
be the travel time of this departure until it reaches
the opposite terminal.

The heuristic solution proposed here is based
upon the observation that a new bus is required in
the (j, z, r) th departure, namely the j th departure
in z th direction of route 7, whenever no bus, that
has already been used on the route, is available.
We obtain the required number of buses on a route
by summing over all departures (j, z, ) where a

& Bus Stop

Terminal

Fig.6 Two Way Lane Bus Service.

new bus must be assigned.

Consider the (4, z, #) th departure, in order to
determine whether a new bus is needed to carry it
out, it suffices to review all arrivals from the
opposite terminal, namely 3—z, and to check if one
of them can provide a bus for this departure. This
can be done by counting the arrivals in each j time
interval between departures that precede the jth
one, and-discarding the buses that are needed for
previous departures. If at least one bus remains,
then it may serve the j th departure ; if not, a new
bus is required. In order to make the computation
of this observation possible, let us first form vector
h., of route 7, of Nzr components whose the jth
component, #;,,, means the number of buses
arriving at the z th terminal between the (—1) th
and jth departure times from the (3 — 2)th
terminal. This component can be defined as

N3—zr
hj”= Z Cff’zz A FRREIR PRSP (23)
=1 J'=ti"3-zrStizr
where
— 1 it tf"s—zr+yj’3—zr€ (tj—lzry tizr)
Cij’l_ .
0 otherwise

Now we define the number of buses remaining at
the z th terminal of route 7 after the j th departure,
P,V j;z;7, these Pi;,’s can be defined in the light
of the fact that,

szr= maX(Pj—lzr+hizr_ 1,0)

Vi=1,2,...(Nzr—1);z;7 -0 (24)
where P,,,=0. Like h;,, values, we can arrange
P;./’sin Nzr component vector P,,. If we define the
following marker variables

_{ 1 if Pj_1y+hi=0
Eizr_ .
0 = otherwise
it is obvious that the minimal number of buses
needed to run the route 7 is
2 Nzr

n,=ZZE,~”VV ................................ (25)

z=1§=1
Since these &;.,’s keep track on all the departures

1
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that require a new bus. Actually #, is the number of
zeros in the two vectors -h;,+ P,,,z=1, 2. Furth-
ermore we can obtain the total number of buses
required to operate on some routes of the given bus
networks such as,

Having known in advance the departure time
and travel time of all buses, it is easy to determine
the fleetsize of bus operation by using the above-
mentioned heuristic solution. ’

6. CONCLUSIONS

In this research an optimum supply model for
public transit dealing with common routes is
developed. It is proposed that the coincidence is
separated by appropriately modifying the variable
arrival patterns in proportional to their frequency
shares. It may be difficult to obtain reliable data
needed to fit this model. However it will be better
to have optimized scheduling policy based on this
information rather than dispatching buses without
any optimization. Furthermore it is concluded that.

(1) In the case where arrival rate is high,
continuous approximation of the arrival pattern
gives fairly accurate results. Departure times can
be chosen as control variables, otherwise the

dynamic programming can be formulated in terms -

of loads rather than departure times.

(2) The improvement of service quality can be
anticipated easily by introducing headway con-
straints to the model developed here. This
improvement may, in general, give other solution
that minimizes wait time but not necessarily total
wait and travel time.

(3) This proposed model can be applied
repeatedly to the given routes so that a planner
may trace the so-called trade-off curve between
number of buses and total wait/travel time in
which over a reasonable range of frequencies the
demand can be assumed to be inelastic to
wait/travel time. This trade-off curve can thus be
used for policy analysis and setting of service
standards.

(4) It is possible to determine the fleetsize that
is Tequired to maintain two-way service by using
heuristic solution proposed in this model. Furth-
ermore this solution can be utilized as part of

dynamic programming procedure to establish the
optimal departure times of buses without violating
the constraints of having a given number of them.

(5) The supply model developed in this re-
search is assumed under deterministic conditions.
So the reliability issues might be an interesting
topic in the future research.
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