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EFFECTS OF DATA CONDITIONING ON
MASS AND DRAG COEFFICIENTS

Robert THUDSPETH?, John W.LEONARD?, ..
Minoru KUBOTA** and Hisao KOTOGUCHI***

The effects of data conditioning on the mass and drag coefficients (C» & C,) are re-
viewed by two geometric and one numerical interpretations. Two geometric analyses of
data conditioning proposed by Dean demonstrate that when the Dean eccentricity pa-
rameter E equals unity, the data are equally well-conditioned for determining C». &
C,. For simple harmonic data, the Dean eccentricity parameter may be shown to be
proportional to the Keulegan-Carpenter parameter, K; ie., E= V3K2%?. When E =
1.0, then K=11.40 and the Dean error ellipse is a circle with zero eccentricity. The
matrix condition number of the 2 X 2 matrix used to determine C, & Cy in a best least-
squares sense becomes unity when K 13.16 and E % 1.15. Two sets of experimental
data are compared with the two geometric and one numerical analyses.

Keywords : mass coefficient, drag coefficient, Dean eccentricity parameter

1. INTRODUCTION

Much effort has been directed toward resolving
the. parametric dependency of the two empirical
force coefficients, C,, and C,, that are used to
estimate the wave-induced pressure loads on small
members by the Morison equation (cf. Sarpkaya
and Isaacson® or Chakrabarti’). The two most
commonly used parameters are the Reynolds
parameter, Re= U, D/v and the Keulegan-Carpen-
ter parameter, K= U,,T/D. However, only Dean”
appears to have recognized the importance of the
condition of the data when identifying these two
empirical force coefficients in any parameter
identification algorithm. Although the error ellipse
concept was originally proposed by Dean to
demonstrate geometrically the condition of data for
identifying C,, and C,; his original development
lacked the ability to demostrate that the alignment
of the axes of the error ellipse depends explicitly on
either Re or K. Because the data are relatively
better-conditioned to identify the empirical force
coefficient on the axis that is parallel to the semi-
minor axis of the error ellipse, it is essential to be
able to demonstrate that the alignment of the axes
of the error ellipse depends explicitly on either Re
or K or, preferably, both of these parameters.

It is possible to demonstrate that, for data with
kinematics that are simple harmonic, the Dean
eccentricity parameter, E, is proportional to the
Keulegan-Carpenter parameter, K. Thus, the
Dean eccentricity parameter, E, provides an
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explicit measure of the parametric dependency of
the alignment of the semi-minor axis of the error
ellipse on the parameter K. Specifically, when E
(=+/3K/27%)<1.0, then K<11.40 and the semi-
minor axis of the error ellipse is parallel to the Cy
axis. Conversely, when E>1.0, then K>11.40 and
the semi-minor axis is parallel to the C, axis. When
E=1.0, then K=11.40 and the error ellipse is a
circle with zero eccentricity. It is interesting to note
that a value of K=11.40 is approximately the value
of K at which the peak in C; and the trough in Cp
occur in the replotted Keulegan-Carpenter data
(cf. Sarpkaya and lsaacson” and Chakrabarti®).

The Dean error ellipse methodology may be
compared geometrically with an amplitude/phase
analysis. In addition to demonstrating geometrical-
ly the importance of the condition of the data, the
amplitude/phase error methodology also demons-
trates the importance of errors in the ampli-
tudes/phases of the kinematics. In contrast to the
Dean error ellipses illustrated in Fig. 1, the
amplitude/phase graphs demonstrate geometrically
the parametric dependency of C, and C; on the
parameter K (or E) by the magnitude of the slope
of the contours of the dimensionless O’Brien force
ratio, W= {,1/1£,!, passing through the origin for
zero error in phase. The advantage of the
amplitude/phase error methodology is that the
separate plots required by the Dean error ellipse
methodology for each fixed value of W=1{{;1/1f,|
may be replaced by a single plot with contours of
fixed values of W. Comparisons with synthetically
phase-shifted laboratory data for E 2 1.0 (or K 2
11.40) are excellent for phase shifts in the range of
lwzl <7/8.

A brief definition of the term data conditioning
may be appropriate here. By data conditioning, we
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Fig. 1 Error ellipse for data that are well conditioned for
determining C; (Dean and Dalrymple®.

mean the ability of a least-squares algorithm to
locate a global minimum on an error surface for
given wave kinematic/force data (cf. Marquardt”).
It is, of course, related to the numerical condition
number of a least-squares error matrix (cf.
Atkinson®). The error matrix number is computed
by four standard measures for the Morison
equation. The matrix condition number is identi-
cally equal to unity when K=13.16 and E=1.15.

Because the Morison equation represents the
inertia of the fluid, it does not contain an explicit
constitutive relationship for the viscous stress
tensor. Therefore, it is not possible to demonstrate
a similar explicit dependency of the alignment of
the axes on the Reynolds parameter, Re.

2. DEAN ERROR ELLIPSE

The mean squared error, &2, between the “true”
force per unit length (denoted by upper case
unprimed letters), F (wf), and the “computed”
force per unit length (denoted by lower case
primed letters), f'(wf), may be estimated from

E2=A[F (@B —f (@D )2 -oorverveeminnns (1)
where the temporal averaging operator, < - ), is
defined for simple harmonic data as <{( - )) =
Q2r)™t fom (- d(wd).

The “true” force is assumed to be represented
exactly by the two-term Morison equation and is
given by

Flwt) =Fu(wt) +F;(wd

=Kn Ul + K, U (o) |1 U (0B | -+ (2a)
and the “computed” force is given by

(0t =fu(w) +fi(w)

= Knu(wf) + Kiu(wt) lu(wh) | - (2b)
where the “true” and “computed” generalized
inertia and drag coefficients are, respectively

- K=c[7]

The “computed” inertia and drag coefficients are
denoted by superscript primes (') in order to

; Ki=C; [%]

distinguish them from the “true” coefficients which
are unprimed.
Substituting Eq. (2b) into Eq. (1) and expanding
yields
&=[(D/2)*uH1X*+ [(pnD?/4)*<u*>1Y*?
+2[(D/2) (oxD?*/4) <ulul| ©>1 XY
—2[(oD/2) {Fulul>1X—2[(oxD?*/4)
(Fad]YHLFE oo (3)
where X=Cj; and Y=Cj,.
Equation (3) is the conic section equation for an

ellipse (Dean and Dalrymple®” or Thomas”) whose
origin has been translated and rotated; i.e.

(aX)*+2HXY+ (BY)*+2GX+2]Y+C=0
.......................................... ( 4 )
The coordinates of the translated and rotated
origin [viz., Xo=min(C}) and Y,=min(C;,)] may
be computed from the data according to
e LD < Fululy — lulu| udD{Fu
.......................................... (53)
uy {Fu)>— u|u| ) {Fulul)
(onD%/4)DETIX,, Yo

Y0= min (C;n) =

and the angle of rotation from

lu> — (e 2)* a®
7 D<ulul >

cot20=

If the “true” and “computed” kinematics are
simple harmonic oscillations given by
Ulwd =Acos(w) ; Ulwd]=—Awsin(wi)
....................................... (Ga, b)
u(wh) =acos{wt) ; #(w)]l=—awsin(wd
.................................. (60, d)
then the inner products ( - )) required in Eq. (3)
become

<u4>=%a4 ; <u2>=(wTa)z ; Lululw>=0

and Egs. (3 & 5) reduce to
e?=[(oD/2)*(3a*/8)1X*+[(on*D/4)*
(2a*) /K21 Y?—2[(oD/2) <Fulul>1X
—2[(orD?/DFu>]Y+<FZD --reenee (7a)
Xo=min(C)) = (16/3) {Fulul> / (oDa*) -- (7b)
Yo=min(C;) = (2/m*) K*<F i) /(pa*) - (7c)
DETIX,, Yol =3w?al/16 -+ rveveeereencnene (7d)
COE D00 +eeveriesseiaasiereninniniiiinneenienn (7e)

where the Keulegan-Carpenter parameter, K, is
defined for simple harmonic kinematics by

.
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Fig. 2 Replotted Keulegan-Carpenter data (Sarpkaya
and Isaacson’ and Chakrabarti?).

K =aT/ D ......................................... ( 8 )

Equations (7) demonstrate the parametric de-
pendency of the translation of the coordinates of
the origin (Xo, Y;) on K for simple harmonic
kinematics. Equations (7) are similar to those given
by Dean and Dalrymple which are neither
dimensionally correct nor demonstrate an explicit
parametric dependency on K.

In order to demonstrate explicitly the parametric
dependency of the eccentricity of the error ellipse
on the parameter K for simple harmonic kinema-
tics, not that: a®=(pD/2)*{u*) >0; p*=(orD%4)*
{u®>0; R:=(8/3){Fu lul>¥a*+2{Fu>¥(wa)?
+e2—<F?*; and H=0; which implies (Thomas)
that the translated axes of the Dean error ellipse
are parallel to the Cartesian axes, X=Cj and Y=
Cy:, as illustrated in Fig. 2.

Dean and Dalrymple demonstrate that it is more
illustrative for the case of simple harmonic data to
write the conic section equation by completing the
square of Eq. (4) in the following manner:

X—Xo*, (Y- Y0)2=1 ..................... (9a)
R0 (RP?

The eccentricity of the error ellipse may be
defined by the Dean eccentricity parameter, E,
which is given by

+

E2=(a/B)2=3(K/2m2)2 - eeerrererererrnees . (9b)

The eccentricity determines geometrically the
condition of the data for identifying C; and C,, may
be evaluated from the ratio a/B. For K<27%/+/3
=11.40, this eccentricity ratio becomes E2<1.0;.
and R/a=semi-minor axes parallel to the Y (=
C,,) axis and R/B=semi-major axis parallel to the
X (=Cj) axis. For K>2n%/,/3=11.40, the ratio
becomes E?> 1.0 and R/a = semi-major axis
parallel to the Y (= C;,) axis and R/S=semi-minor
axis parallel to the X (=C}) axis. The data are
relatively better conditioned for identifying the
force coefficient that is parallel to the semi-minor
axis (¢f. Fig. 2 and Dean).

The eccentricity, ¢, of the error ellipse deter-
mines geometrically the condition of the data for
identifying C; and Cj,. It is easily shown to be
computed from (Thomas)

a1 A e T2 E<1.0;a/8<1.0
=10 E™ o E> 1.0 a/8>1.0
...................................... (10a, b)

The parametric dependency of the eccentricity of
the Dean error ellipse and the alignment of the
axes are now shown to depend explicitly on the
Keulegan-Carpenter parameter, K, by the Dean
eccentricity parameter, E, defined in Eq. (9b).

There appear to be at least a set of physical data
in which the significance of the Dean eccentricity
parameter is obvious. The physical data set are the
well-known replotted Keulegan-Carpenter force
data for a circular cylinder (cf. Sarpkaya and
Isaacson” and Chakrabarti®).

Fig. 2 (¢f. Sarpkaya and Isaacson” and
Chakrabarti®) demonstrates that the peak in the Cy4
graph and the trough in the C, graph of the
replotted Keulegan-Carpenter data occur approx-
imately at a Dean eccentricity parameter of unity
or K=11.40. A Dean eccentricity parameter of
unity identifies the value of K at which the
eccentricity of the error ellipse is zero and the semi-
major and semi-minor axes of the Dean error
ellipse are equal. Data with values of K<<11.40 are
relatively well-conditioned for identifying C,, (i.e.,
the semi-minor axis is parallel to the C,, axis for £
<1.0); while data with values of K>11.40 are
relatively well-conditioned for identifying C; (i.e.,
the semi-minor axis is parallel to the C, axis for
E>1).

It is obvious in Fig. 2a that the values of C,, all
collapse onto a single line for E<1.0 (or K<11.4).
However, this is not the case for £>1.0 (or K>
11.4). Conversely, in Fig. 2b, there is less
correlation in C, for E<1.0 (or K<11.4); but the
data are relatively better correlated for £>1.0 (or
K>11.4). The Dean eccentricity parameter, E,
identifies the peak in C, and the trough in C,, with

]
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data that are equally well-conditioned for identify-
ing these two coefficients. It also delineates the two
regions where the Reynolds parameter, Re, must
also be considered in addition to K.

3. AMPLITUDE/PHASE ERROR
ANALYSIS

The two-term Morison equation coefficients (Cy
and C,) for a cylinder in waves depend on the
correct measurements of amplitudes and phase
shifts between the ambient wave kinematics and
the measured force. Hudspeth, er al.¥ used a
regression analysis to develop an algorithm that
illustrated how these force coefficients will change
if incorrect amplitudes or phase shifts are intro-
duced into the analysis due to: errors in the data
acquisition; numerical data reduction techniques;
or natural variations due to vortex shedding. The
algorithm assumed that the two-term Morison
equation modeled the measured forces exactly and
that linear wave theory modeled the wave kinema-
tics exactly. A least-squares analysis of the time-
averaged, meansquared error between measured
and predicted forces was used. Dimensionless
variations in the force coefficients were shown to
depend on two dimensionless parameters: 1) a
dimensionless force amplitude ratio, W (prop-
ortional to the Dean eccentricity parameter, E, and
to the Keulegan-Carpenter number, K); and 2) a
dimensionless velocity amplitude ratio, V, which is
a function of the vertical elevation in the water
column, z. Their algorithm combined both the
effects of data conditioning and wave ampli-
tude/phase that complemented the earlier develop-
ment by Dean. Good agreement was obtained with
laboratory data of wave forces on a vertical, sand-
roughened cylinder wherein the force measure-
ments were purposefully phase shifted with respect
to the wave phase in small increments, up t0=33.8
degrees (=37/16 radians).

Variability observed in the values of C; and C,,
may be due to several causes: the accuracy of the
two-term Morison equation; incorrect estimates or
measurements of the wave kinematics; the influ-
ence from unknown roughnesses; measurement
errors; poor conditioning of the data; wake
encounter effects; or the inadvertent introduction
of erroneous amplitudes or phase shifts into the
data acquisition or the numerical analysis.

There are several possible causes for a phase
shift error. For example, there may be a spatial
separation between the wave profiler, the current
meter (if used), and the pile on which the force is
measured. The electronic or numerical filtering of
data signals may introduce both a phase shift and
an amplitude distortion. The sequential sampling

Instrumented pife

Wave staff R
hY ¥
l X

; Current meter

[~ _Force transducer

Fig. 3 Definition sketch of typical wave force measure-
ment program.

of multiple data channels by analog-to-digital
recorders introduces a small phase shift. If these
potential amplitude and phase shift errors and the
conditioning of the data for parameter estimation
are not appropriately considered, variations in the
values of the force coefficients will result.

Fig. 3 illustrates a typical experimental con-
figuration. The wave staff and current meter
(which may not be superimposed as shown) are
located at the origin, while the pile is located at
some distance from the origin. A phase shift in the
measurements will result from this spacing which
must be taken into account.

The “true” force is assumed to be represented
exactly by the two-term Morison equation given by
Eq. (2a). An erroneous phase shift, wt, between
the “computed” force and the “computed” kinema-
tics is denoted by w(f+7) in Egs. (6¢,d).

Minimizing the mean-square error given by Eq.
(1) with respect to the “computed” coefficients
(denoted by superscript primes) according to

9e® _ . 0 _
K, 0 5 K70 (11ab)

yields the following 2 equations:
—KU|U ) —Kpd U i >+ Kiullul >

F KL REY = Qeerrrennernenrrinninii, (12a)
— K, Uu| U lul> — K Undu> + K<
F R au]) =00 eeeererrrieei (12b)

Equations (12) may be rearranged to give a
dimensionless inertia coefficient ratio, ¢,, and a
dimensionless drag coefficient ratio, &4, defined by
the following:

_Cn _(C/ Cw) @/ aD)U|UL > +<U i)

= Ca?
......................................... (133)
€a= C,,d
_<Uu|U lul> + (C,” Co) (xD/2) {Ue |ul>
<u®
......................................... (13b)

It is not a trivial task to evaluate some of the

I
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Parametric dependency of dimensionless drag
coefficient ratio &, on O’Brien force ratio Wfor V

Fig. 4

2
CJ T (radians)

Parametric dependency of dimensionless inertia
coefficient ratio ¢,, on O’Brien force ratio W for V
=1.0.

Fig. 5

integrals in Egs. (13a,b) that require absolute
values of elementary transcendental functions.
Both negative and positive phase shifts must be
considered.

The dimensionless inertia coefficient ratio, &, is

given by _
em=V(2) [cos (wr) —(@W/3m)sin(w7)] ;
[@T| Sgreeeeervrrreremr e, (14a)

and the dimensionless drag coefficient ratio, ¢4, by
ea=(1/3m) V(2)*[2n+3sin(1201]) —2|2w7]
—(|20t]— 1) cos (12wt} +(32/3W)
sin{o)] ; lodSxoee (14b)
where the dimensionless velocity amplitude ratio,
V (2); the dimensionless O’Brien force amplitude
ratio”, W ; and Keulegan-Carpenter number, K,
are defined with using the “true” dimensional
amplitude of the horizontal component, A (z) and

the “computed” horizontal component, a (z) of
water particle velocity by

_A@ . o G K, _A@T
VO=30 5 WG 5 K= h
................................... (15’a’b’c)

The O’Brien force ratio, W, is the ratio between
the “true” drag force and the “true” inertia force.
The magnitude of W may be used to determine the
conditioning of the data to estimate the force
coefficients because it is directly proportional to
the Dean eccentricity parameter, E; ..,

—[Ca E]
w [C,,,] [ /3
in which the Dean eccentricity parameter, E, is
defined by Eq. (9b).

The dimensionless ratios defined by Egs. (14a,
b) incorporate not only the - effects of

amplitude/phase shift errors but also the con-
ditioning of the data for estimating the force

coefficients through the parametric dependency on
the Dean eccentricity parameter, E. The paramet-
ric dependency on the two dimensionless para-
meters, V and W (or E or K), will be evaluated
separately.

Fig. 4 illustrates the parametric dependency of
the dimensionless drag coefficient ratio, &;, on the
dimensionless force amplitude ratio, W (or E or
K), for a constant dimensionless velocity amplitude
ratio V (2)=1.0 (i.e., the “computed” velocity
amplitude =the “true” ambient velocity ampli-
tude). For relatively large values of W (=4.0), ¢, is
not sensitive to the magnitude of the phase shift
near the origin, |wt| ~ 0. Relatively large valués of
W (or E or K) imply that the data are drag-
dominated and are relatively well-conditioned for
determining the drag coefficient, C;. Note that if
Ci=.9 and C,=2.0, then K=22W. For relatively
small values of W (£0.1), &, is very sensitive to the
magnitude of the phase shift near the origin. This
implies that for small values of W (£0.1) (or K
£2.2), the data are relatively ill-conditioned for
determining the drag coefficient, Cj. The slope, Sy,
of the dimensionless drag coefficient ratio, &,, near
the origin provides additional insight into the
conditioning of the data for estimating C; and will
be examined in detail later.

Fig. 5 illustrates the parametric dependency of
the dimensionless inertia coefficient ratio, &,, on
the demensionless force amplitude ratio, W (or E
or K), for a constant velocity amplitude ratio, V (z)

- =1.0. For relatively small values of W (<0.1), en is

not very sensitive to the magnitude of the phase
shift near the origin, |wz] ~0. Relatively small
values of W (or E or K) imply that the data are
inertia-dominated and are relatively well-con-
ditioned for determining the inertia coefficient, &,.
For relatively large values of W (>4.0), ¢, is very

— 1
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Table 1 Summary of condition numbers for error matrix A

sensitive to the magnitude of the phase shift near
the origin. This implies that for large values of W
(>4.0) (or K>88), the data are relatively ill-
conditioned for determining the inertia coefficient,
Cn. The slope, S,, of the dimensionless inertia
coefficient ratio, &», near the origin provides
additional insight into the conditioning of the data
for estimating C, and will be examined in detail
later.

For small phase shifts (|wz|~0) limiting values
for Eqs. (14a and 14b) are given by the following:

em~VIl—@W/3m)(wD)] ;

ca~ V2[1+(32/97) (wr/W)] (16a,b)

Differentiating Eqs. (16) with respect to w7 gives
Sy =0em/0(wt) ~ — (B8WV/37) (17a)

Sy=0e4/8(wD) ~ (32/97) (VZ/W) - (17b)

The slope, S., is negative near the origin,
independent of wr, and proportional to the
product V(z)W. This confirms our earlier observa-
tion that for inertia-dominated data (W <0.1),
changes in &, are relatively small and nearly
independent of the phase shift near the origin. For
data that are ill-conditioned for determining the
inertia coefficient (W>4.0), changes in ¢, are
relatively large near the origin.

The slope, Ss, is positive near the origin,
independent of w7, and proportional to the ratio
V(2)?/W. This confirms our earlier observation
that for drag-dominated data (W>4.0), changes in
¢q are relatively small and nearly independent of
the phase shift near the origin. For data that are ill-
conditioned for ‘determining the drag coefficient
(W<0.1), changes in &, are relatively large near the
origin.

4. ERROR MATRIX CONDITION
NUMBER

The Dean error ellipse methodology and the
amplitude/phase error methodology provide
geometric interpretations of the condition of the
wave kinematic data to identify the drag and inertia
coefficients, C; & C,. Because both of these

Malrix Condition - 'JI v
Number K<13.16 | K>13.16 | K=11.40 | X = 13.16
(Atkinson) E<1.15 £>1.15 E=1.0 E=1.1%
n (2) (3) (4) (5)
- RUN 131' K=308 RUN 129+ K=28.76
Cond(A} N -
Cond(A)} Ly Bl 1.0
VERSEEroNCE
F ' SRSk YIS
Cond(A), .z * . LI 115 1.0 ] }
E/3 | 4nc
F3
4n 2 3K E
Cond(A}, e 5 = _z& .18 1.0 IN-LINE FORCE
E/3 | 4n RUN i133:K=17.18 RUN 145+ K=13.02

Fig. 6 In-line and transverse lift forces on a circular
cylinder. Nota the stable repeatability in the
transverse lift force in Run 145. K=13.02 (Maull
and Milliner'?). )

methods were derived from a least square error,
standard techniques from error analyses are
available to determine matrix condition numbers
(Atkinson). These matrix condition numbers
provide numerical measures of the sensitivity of the
“computed” empirical force coefficients to small
perturbation in the wave kinematic/force data. This
numerical measure of the condition of the data may
again be related to the two geometric methodolo-
gies by the Dean eccentricity parameter, E.

Minimizing the mean squared error defined in
Eq. (1) with respect to C, and C; gives the
following matirx equation:

AX=B (18)
where the scaled matrices in Eq. (18) are given by

A=[4n2/3K 0]=[2/EJ§ 0] ....... (19a)
0 1 0 1
Ci 16 | (Futis

[c,; ]’B 3 <F*u*lu*l>] (19b.c)

where, Fu=F/pa’D, usx=u/a and n.=1/aw.
Matrix A is Hermitian and unitary. It becomes a
unit matrix with matrix condition numbers identi-
cally equal to unity when K=47°/3=13.16 and E
=2/4/3%=1.15.

Note that the transverse lift force is stable and
repeats itself exactly in the Maull and Milliner'”
data shown in Fig. 6 only when K=13.02.

The four standard measures of the condition
number of the error matrix A defined in Eq. (19a)
are summarized in Table 1. The condition number
when K=11.40 or E=1.0 are also tabulated in
column 4 of Table 1. ‘

The four standard matrix condition numbers
listed in column 1 of Table 1 are defined as follows
(Atkinson): '

Cond(4);=Cond(A)=|A|- | A7*|

| I
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Mazx Ill /2
Aecg(A*A)

Min |2
Aea(A*A)

Mazx|a| 1"

Aea(A)

Min|A

Aea(A)
where | - |=a matrix norm; A~'=matrix inverse; 1
=eigenvalue of the matrix; o( - )=spectral radius
of the matrix (( - )); and A*=complex conjugate
transpose.

Con(4),=

Con(4) =

5. CONCLUSIONS

The condition of wave kinematic/force data to
identify the empirical force coefficients, Cs and Cy,
used in the Morison wave force equation for small
bodies has been evaluated by three methods; two
geometric and one numerical. The two geometric
methods were the Dean error ellipse methodology
and the amplitude/phase error methodology. The
Dean error ellipse demonstrates geometrically the
condition of the data by the alignment of the axes
of the error ellipse. A separate error ellipse is
required for each value of the O’Brien force ratio,
W. The amplitude/phase methodology demons-
trates geometrically the condition of the data by the
magnitude of the slopes of contours of the force
coefficient ratios passing through a zero phase
error. Each of the separate graphs required by the
Dean error ellipse methodology may be replaced
by a single graph with contours of W. Both of these
two error methodologies may be related to the
Keulegan-Carpenter parameter, K, by the Dean
eccentricity parameter, E.

The Decan eccentricity parameter E=.3 K/
(27%) provides a geometric measure of the
condition of wave force data on circular members
for estimating force coefficients, C;, and Cj. A set
of physical data appear to illustrate the physical
significance of the Dean eccentricity parameter.
The variability in Cy, for £>1.0 (or K>11.40) and
in C; for £E<1.0 (or. K<11.40) in the replotted
Keulegan-Carpenter data may be explained by
dividing the data into two parts determined by a
Dean eccentricity parameter of unity. The axes of
the Dean error ellipse are shown to be parallel to
the C,, and C, axes for simple harmonic kinematics
(i.e., <ulu|#|>=0). The Dean eccentricity para-
meter, E, has been incorporated into an error
analysis that also includes errors in the
amplitudes/phases of the kinematics.

Comparisons with synthetically phase-shifted
laboratory data were quite good for phase-shifts

lwr<n/8:

Four measures from standard matrix error
analyses were used to compute the matrix condi-
tion numbers for the least square error. Each of the
four error matrix condition numbers was identically
equal to unity when K=13.16 or £=1.15. The only
stable transverse lift force found in the Maull and
Milliner data occurred at K=13.02. The matrix
condition numbers were equal to 1.15 for K=11.40
and £=1.0.

The Dean eccentricity parameter, £, may be
used to compare each of the three methods used to
evaluate the condition of the wave kinematic/force
data to identify the force coefficients, C, and C. It
also connects each of the methods to the Keulegan-
Carpenter parameter, K.
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