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GENERATION OF RAYLEIGH WAVES DUE TO IMPULSIVE
RESPONSE OF A FINITE ELASTIC LAYER
ON A RIGID BASEMENT

By Taisuo OHMACHI* and Aritoshi HASUMI**

It is an old saying that vibration and wave propagation are the same in principle. The
saying is applied to vibration of an elastic layer as well as to dispersive Rayleigh wave
in the layer. Based on vibration mode analysis for the layer of finite length, the
Rayleigh wave characteristics such as dispersion and rotation of particle motion are dis-
cussed. Formulation of the impulsive response of the layer leads to familiar rela-
tionships between applied force and resulting deflection. The amplitude of the disper-
sive Rayleigh wave generated by a horizontal and/or vertical impulse is also discussed in
reference to Poisson’s ratio. '
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1. INTRODUCTION

Rayleigh wave generated in layered media shows dispersive characteristics which demand more
complicated treatment than Love wave. The complicated treatment of Rayleigh wave is inherent, partly
because its dispersive characteristics depend on Poisson’s ratio and partly because particle motion at a
point in the media takes place in both horizontal and vertical directions,

A theory of surface waves which include Rayleigh wave and Love wave, has traditionally been formulated
for elastic layered media of horizontally infinite length’. Because of the infinite length, the theory
requires sophysticated technique in mathematical formulation like integration over (—oo, 4-o0). What is
worse still is in experimental studies in which physical models of finite length are inevitably used in
laboratories, To cope with such difficulties, it is worth recalling that the surface waves are defined as
solutions of an eigenvalue problem. On this basis, if the solution is first determined for a layered system of
finite length, and then modified to be adapted to a system of infinite length, the resulting solution could be
identical to a solution traditionally formulated for surface waves. The extension from the finite system to
the infinite one is quite similar to the extension process from Fourier series to Fourier transform. As
properties of Fourier series serve us to deepen our understanding of those of Fourier transform, an

~approach from the layered media of finite length will facilitate our understanding of surface waves in the
media of infinite length,

From this viewpoint, free vibration of an elastic layer of finite length was studied on the basis of
experimental and theoretical results in our previous papers?~*_ In this paper, forced vibration of the layer
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is to be discussed in connection with generation of dispersive Rayleigh wave,

2. RAYLEIGH WAVE CONFINED IN A FINITE LAYER

(1) Fundamental equation

— Xee

Consider a homogeneous elastic layer

T
resting on a rigid basement, as shown in H{ W PGV v Z PGV H
Fig.1(a). Depth, length, mass density, {[_)( i t_J(
shear modulus and Poisson’s ratio of the (a) Finite Layer (b) Infinite Layer
layer are denoted by H, L. o, G and y, Fig.1 Definition Sketch.

respectively. Boundary conditions for each

side end (x=0 or L) are free for horizontal displacement, but fixed for vertical displacement. At the
bottom, any displacements are not allowed to take place. Regarding two-dimensional motion in the x-z
plane, solutions of the free-vibration equations of motion, which is derived from Eqs. (7) and (8) by
assigning the applied-force term to zero, are expressed by

u=k{CI(cosh rz—cosh sz)+ Cz<sinh rz— ‘Z sinh sz)} CcoS kx exp (iwl), «---ereeeereees (1)
kZ
w= r‘C,(sinh rZ= s sinh sz>+C2(cosh rz—cosh sz)} sin kx exp ({wk), -oooeeeeeereee (2)

where constants C, and C, are related by

c,=—\Ktscosh rH—2k coshsH . .. (3)
7 (k®+sY)sinh rH—2 srsinhsH "
InEqs. (1) and (2)

{ is the imaginary unit, and ¢ is natural circular frequency. The constant k is defined by

, u and 1 denote displacement components in the x- and z-directions, respectively,

kzﬂLE' (n=1, 2, 3, ++-- ) e (4)
The remaining constants s and r are related with & and o by the following relations,
2 2
2_p2y W B Lz e
r' =Kt =0, s'—k'+3=0, (5)

where V, and V, are P- and S-wave velocities, respectively. A characteristic equation which determines
natural frequencies of the layer is expressed, as follows;
(k2+ 82)2

S sinh sH sinh rH=0.

—4 K*k*+s9)+4 k*+(k*+ s cosh rH cosh sH—[4 srki+

In the above formulation, % and /% may well be called a wave number and phase velocity, respectively,
and expression in Eqs. (1), (2), (5), and (6) are identical to those for dispersive Rayleigh wave in
the surface layer of infinite length shown in Fig. 1 (b ). By definition, however, the wave number and the
modal frequency for the finite layer are discrete as in Eq. (4), while those for the infinite layer are
continuous. To account for the formal identity as well as the difference in definition, it is useful to
consider a relationship between steady state vibration of the finite layer and wave propagation in the
infinite layer. The relationship has been called the equivalence between vibration and wave propagation. In
the present case, it states that the vibration modes given by Eqs. (1)~ (6 ) are equivalent with Rayleigh
wave which is confined in the finite layer,

When the Rayleigh wave is confined, a wave component will travel back and forth in the layer and change
its amplitude due to the interaction with other components, After superposition of reciprocating motions,
the components satisfying the boundary conditions only remain in the layer, yielding the discrete modes of
vibration in the layer. In the limiting case where the layer length is extended to infinity, the wave number
in Eq. (4) results in continuous variable without the violation of the definition.

160s



Generation of Rayleigh Waves Due to Impulsive Response of a Finite Elastic Layer on a Rigid Basement 173

DIRECTION OF PROPAGATION

x=0 2 x=L + x=0 L/2 xgL
v———_>4’/ I \N RS
PROGRADE RETROGRADE )
ROTATION ROTATION
(a) Direction of Rotation (b} Vertical Motion (¢) Horizontal Motion

Fig.2 Particle Motion of Stationary Vibration and Traveling Rayleigh Wave,

(2) Particle orbit

Due to the boundary conditions of the finite layer, the vibration shape of the fundamental mode (n=1 in
Eq. (4)) become like those shown by bold lines in Figs.2(b) and (c). Apparently, the wave length
pertaining to this mode is 2 L along the surface. A particle on the free surface draws a linear orbit during
the vibration motion, as can be seen from Egs. (1) and (2).

The vibration mode shape shown by the bold lines can be divided into two Rayleigh wave components of
the same wave length and amplitude, as shown in Fig.2 (b ) and (¢ ). One indicated by fine solid lines is
traveling in the +x direction, and the other indicated by fine broken lines is traveling in the —x direction.
Note in Fig, 2 that vertical motion of a wave component traveling in either direction lags behind its
horizontal motion by 7 /2 in phase. Thus, particle motion associated with each wave component is found to
be elliptical and retrograde (see Fig.2(a)).

It is obvious from the above discussion that natural modes of vibration of a finite layer can be obtained by
simply adding the two Rayleigh wave components,

(3) Phase and group velocities

In the previous paper?, phase velocities ¢ (=w/k) were determined from laboratory experiments; in
which steady state vibration and associated frequencies were observed. A good agreement in the phase
velocities was obtained between the experiments and numerical calculations based on Eq. (6). Although
the following discussion is limited to the lowest few modes and wave length A/H >1.0, it is sufficient for
the present purpose,

Dispersive Rayleigh waves consist of two major branches, One is M,, and the other is M,. Both M, and
M, have subordinate branches called modes M,,, M-+ . Mo, Mygeeeeer , and so on. According to the
calculation of phase velocity, Poisson’s ratio has the significant effect on dispersive characteristics of the
mode M,, but has little effect on those of the mode M,,.

From the phase velocity of each mode, the associated group velocity can be calculated by dw/dk. Fig. 3
shows an example calculated for the layer shown in Fig. 1 (b). The group velocity of the modes M,, and M,,
is positive everywhere, while the modes M,, and M,, possess negative group velocities in the range above a
certain wave length,

The negative group velocity has been a matter of controversy”, and leaves some questions still unsolved.
In the authors’ opinion, reformulation of the group velocity by means of a vibrational approach could make a
contribution toward the settlement of the controversy.

(4) Amplitude ratio at free surface

FromEqs. (1) and (2), aratio of amplitudes of ¢ and w at the free surface was calculated and denoted
by the ratio w,/w, in Fig. 4 along with the direction of particle motion at the free surface. Fig.4 (b)
indicates that the modes JM,, and M,, interchange their nature with one another at wave length 4. 62 g9
and the modes M,, and M,, behave similarly at wave length 1. 54 H. Although the ratio 1,/ w, of their modes
look discontinuous at each wave length, the interchange takes place continuously as the wave length
changes. Such apparent discontinuity is also found in the group velocity dispersion curve shown in Fig, 3.

Regardless of Poisson’s ratio, the amplitude ratio v,/ w, of the mode M,, becomes infinite as wave length
increases to infinity. At the limiting state, motion in the mode M,, is equivalent to shear vibration of the
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layer, because the ratio 1,/w, becomes
infinite at the period T=4 H/V,. The
ratio u,/w, of higher modes at infinite
wave length is either zero or infinity,
depending upon Poisson’s ratio. In a case
where the ratio u,/w, at the infinite
wave length is zero, motion related to
the Rayleigh wave can be regarded as
vertical vibration of the layer.

To classify types of motion of the
Rayleigh wave at infinite wave length,
asymptotic periods of the lowest few
modes are summarized in Table 1. When
the asymptotic period is associated with
the so-called quarter-wave length law of
S- (or P-) wave,

corresponds to horizontal (or vertical)

the limiting state

vibration,
3. IMPULSIVE RESPONSE

(1) Formulation
When point force F is applied at (o,
z), the equations of motion of the layer
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Fig.4 Modal Amplitude Ratio at the Free Surface Calculated for Three
Values of Poisson's Ratio.

become
z oA
p%t%=1—_c2—y§+(;72u+fx(x, 2y B), e (7)
2
0 aa;'f:,l_Gzyg_ﬁ__*_szw_'_fz(x, z, t), ...................................................................... (8)

where f, and f, denote the x- and z-components of F', respectively, A (=8u/dx+ow/5z) means the
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Table1 Asymptotic Periods at Infinite Wave Length. volumetric strain, and V? is Laplacian,
Poisson's Ratio] 0.20 | 0.25 | 0.30 | 0.40 | o0.49 According to the mode-superposition method,
) horizontal and vertical components of the response
Vp to Vs Ratio 1.63 1.73 1.87 2.45 7.14
- are expressed, as follow;
Mode M1l 4H/Vs 41/Vs 4H/Vs 4H/Vs 4H/Vs
wlx, z, =22 Un(2) COS knx Quall),
M21 4H/Vp 4H/Vp 4H/Vp 4H/Vp 4H/3Vs m n
M12 4H/3Vs | 4W/3vs | 4H/3Vs | 4H/3Vs | an/svs} TTrTrmemmermremmrmenanene (9)
M22 4H/3Vp | 4B/5Vs ) 4H/5Vs | 4H/5Vs | 4H/7Vs w(x, ) t):%:; Wm(Z)SIIl k"x Q"‘"( )’
.......................... (10)
where
nr
ko=TE  (p=1, 2, 3, e ) e s 11
L
. Sr .
Um(z): k"[ (cosh rz—cosh SZ)+ C<Slnh rz——% Slnh SZ> ], ....................................... (12)
n
_ . ki .
Wm(z)_ r Slnh rz— Sr Slnh Sz +C(Cosh rz—cosh 82) B L R RTTPPRPPED (13)
and

c=_\hats)coshrH—2khcoshsH (14)
(ki+s*sinh rH—2 sr sinh sH ~

Substituting Eqs. (12) and (13) into Eqs. (9) and (10), Eqs. (7) and (8) lead to
Zn“ ; Un COS knX QWF; yﬁ} {— wlhn Un COS knX Qunbt o/ 0, rrerrermmmmmmseneessemmiiiii e, (15)

Z": ; W sin knx QMZZ"" ;‘ {— hn Wi ST Kl Qualt Fof £, neremvenenmmmmmimnee, (16)

where a dot denotes differenciation with respect to time, and g, is the natural circular frequency of the

mode m-n. Besides a well-known orthogonality of trigonometric functions, an orthogonal relationship
exists between the functions U, (z) and W,(z), which is expressed in the present case as,

lﬂlUi(z) Uj(Z)+VV,-(Z) W,~(z)}dz=0. (i:.zj) .............................................................. (17)v

Because of these orthogonal relationships, a series of mathematical arrangement, which includes
multiplying each term of Eq. (15) by U, (z) cos k,x and Eq. (16) by W, (z) sin k,x. adding both sides of
resulting equations, and integrating with respect to x and z, leads to

an(t)+ o Qunl EY= Funl B)/ My =+c+c-+ e eeeemeeeeeeeeeeeae s e ettt e 18)
where
an(t)=%["[L (feUn COS knZ+ foWin SIN n) dadz, --vvveeeeereeemmeeeeemmmenenniie e (19)

H L
— 2 2 2 il
Mun= [ [ (Uz cos® knx+ Wi sin® k,x) dxdz

_—_% LH [1{[_];@)_{_ an(é')} dg’ .............................................................................. (20)

inwhich{=2z/H. Fn,(1) and M,, are called the generalized load and the generalized mass, respectively,
When the force is an impulse f, applied at (x,, 2,) in the x-direction, Egs. (9), (10) and (19) give,

an(t) =% Un (Zo)fx oS knXo BUE), wvrrerr e (21)
Similarly, for an impulse f, applied in the z-direction, Eq. (19) gives
an(t)zi— Wm(zo)fzsin knxo b‘(t). ............................................ E (22)

Thus, for a unit impulse due to both f, and f, the generalized load is expressed by,
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an(t)——_%{l]m(zo)fx coS knXo+ Wm(zo)fzsin knxo} FUE), wvovrrrernremeemereeiies (23)

In Eq. (23), it should be noticed that the terms in the brackets represent a scaler product between a
displacement vector and an applied force vector. Hence, a maximum modal response can be expected when
the impulse is applied in the direction parallel to the modal displacement vector at the point, and a modal
response is not excited if the impulse is applied in the direction normal to the modal displacement vector.

When a vertical unit impulse is applied at a surface point (x,, H), the normal coordinate Q,, (%) in Eq.
(18) becomes,

Wa(H) sin knx,
0 Mun wnn
_ 2 Wo(H) sin knxo
PLH wmn [ 1UR(0)+Wa(O} g
Denoting the relative amplitudes in the x- and z-directions at the surface by A, and A, respectively,
Eqgs. (9), (10) and (24) leads to,

pe VBUDW ) -

wan [ UM+ Wa(OhdE’
A= _ 2 Wa(H) et ettt et 26)
wmn [ UM+ W) dE

Likewise, when a horizontal unit impulse is applied at the surface point, Qu,(%) in Eq. (18) results in,
2 Un(H) cOS knXy

N wenl

an(t)z

Qunlt)= : SIN @mp B, roorrerrrrre e 2n
PLH wmn [ {UA(E)+ WOl dt
and
2 Un(H)
A= : g T e e e a e (28)
wmn [ UM+ Wi dt
|2UnlH)WalD | e, (29)

" om [ WUMO+WA@H A

Note that A, in Eq. (25) is identical to 4,in Eq. (29), which simply states the Maxwell’s law of reciprocal
deflections,

(2) Modal amplitudes

A pair of vertical and horizontal amplitudes A, and A, calculated from Egs. (25) and (26), or from (28)
and (29) are plotted against the dimensionless wave length in Fig, 5. At rightmost position of each figure in
Fig.5, asymptotic values of the modal amplitude at infinite wave length are shown in the case where they
are different from zero. In Fig.5, when Poisson’s ratio is (. 25, the mode M,, appears to interchange its
amplitude characteristics with the mode M,, at the wave length A=4. 62 H , and the mode M,, does similarly
with the mode M;, at A=1.54 H. These are similar to those mentioned previously with respect to the
amplitude ratio,

Regarding the dispersive Rayleigh wave in the layer, several findings can be drawn from Fig. 5, which
include :

1) The mode M,, or M,, makes larger contribution to displacement amplitude than higher modes,

2) When a horizontal impulse is applied, the component of the larger wave length of the mode M,
makes the larger contribution to the amplitude regardless of Poisson’s ratio.

3) When avertical impulse is applied, the largest contribution to the amplitude is attained by either the
mode M,, or the mode M,,, which depends on Poisson’s ratio.
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Fig.5 Amplitudes of Response to Horizontal or Vertical Excitation (Continued)

4) It is evident from the comparison of figures in Fig, 5 that the largest contribution to the amplitude is
not necessarily given by the frequency component which shows the minimum group velocity in a dispersion
curve,

4. 'CONCLUSION

Vibration of a finite elastic layer underlain by a rigid basement has been formulated by the
mode-superposition procedure, The formulated results and their associated illustrations have revealed
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Fig.5 Amplitudes of Response due to Horizontal or Vertical Excitation,

many characteristics of the dispersive Rayleigh wave. The characteristics revealed by the vibration
analysis include ;

(1) From a natural mode of vibration of the layer, it is possible to specify the direction of particle
orbit of the associated Rayleigh wave; that is, either prograde or retrograde.

(2) The modal amplitude ratio at a free surface shows remarkable change with the change in Poisson’s
ratio y as well as in wave length A. For instance, the ratio of the mode M,, becomes infinite at A — co when
v>0.40, while it vanishes at A— o0 when y<0.30.

{(3) In a special case where Poisson’s ratio is (. 25, a pair of modes, say the modes M,, and M,,,
exchange their nature smoothly at a certain wave length.

(4) Regardless of Poisson’s ratio, group velocity of the modes M,, and M,, is always positive, while
there is a range of period or wave length where the modes M,, and M,, possess negative group velocity.

(5) Relative contribution of an impulse to the generation of Rayleigh wave is predictable by means of a
scaler product between the impulse and a modal displacement.

(6) Evenif Rayleigh wave is generated by an impulse which has a white-noise frequency spectrum, the
largest contribution to its amplitude is not necessarily given by the frequency component which gives the
minimum group velocity.
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