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DYNAMIC STABILITY OF AN ANNULAR SECTOR PLATE
SUBJECTED TO IN-PLANE DYNAMIC MOMENTS

By Kazuo TAKAHASHI*, Yoshihiro NATSUAKI** Yasunori KONISHI***
and Michiaki HIRAKAWA****

Dynamic stability problem of an annular sector plate subjected to in-plane dynamic
moments at the radial edges is examined. The basic equation is reduced to a set of ordinary
differential equations by applying a Galerkin method, and transformed into an eigen-value
problem by using the harmonic balance method. The stability of the system can be directly
determined from the sign of the real parts of the eigen-values,

The dynamic unstable regions composed of both simple parametric and combination
resonances, which contain the secondary as well as the primary unstable regions, are
obtained for the annular sector plates with various boundary conditions and geometrical
parameters, The effect of a static moment on the unstable regions is also examined.
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1. INTRODUCTION

Out-of-plane vibrations of a thin plate may by observed under in-plane periodic forces by reason of
parametric excitation. Since the parametric resonance may induce fatigue cracks or acoustic radiations, it
is important to clarify the conditions under which the unstable motions occur,

The dynamic stability problem of plates has been studied by a number of researchers. Bolotin”, Hutt et
al.? and Yamaki et al. ® investigated the dynamic stability of a rectangular plate subjected to in-plane
uniformly distributed periodic forces, Duffield et al. ¥ treated stiffened rectangular plates. Takahashi et
al.® analyzed the rectangular plate under linearly distributed dynamic loads such as the in-plane moments
and the triangularly distributed load.

From these results, the dynamic instability of a rectangular plate subjected to various in-plane periodic
forces is essentially understood. In practical structures, however, various shaped plates have been
incorporated as structural members. For instance, such curved plates as web plates of the arch rib or
corner members of the rigid-frame may be regarded as annular sector plates subjected primarily to in-plane
moments, It seems that no investigation of the dynamic stability of those plates has ever been initiated.

In this paper, the dynamic stability problem of an annular sector plate simply supported along radial
edges is analyzed. The equation of motion with respect to out-of-plane vibrations of a plate subjected to
in-plane dynamic moments is reduced to a set of ordinary differential equations by applying a Galerkin
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procedure, and transformed into an eigen-value problem by using the harmonic balance method described
first by Bolotin" and lately extended by the first author®. Then the stability of the system can be directly
determined from the sign of the real parts of the eigen-values,

As numerical examples, unstable regions of an annular sector plate subjected to in-plane dynamic
moments at the radial edges are obtained under various boundary conditions along the circumferential
edges, geometrical parameters and the static moment. Their influences on the unstable regions are also

examined,
2. BASIC EQUATIONS AND BOUNDARY CONDITIONS

Fig. 1 shows an annular sector plate with the opening T
(subtended) angle o, outer radius g and inner radius p. '\
The polar co-ordinates (, §) are taken in the neutral

surface of the plate.

Equal and opposite moments M, which consist of the . M
static moment M, and periodic dynamic moment M, cos
Qt, act at the radial edges. In-plane forces N, N,
and N,, are given by

__AM (a0 a L T b
N=— (L m gt et n L4 bty ) (1)
AM(_ @b, @, T . b, o,
Ne=—"71{— In-+a’ln—+b¥In—+a*—b
e N < r? b a r ) Fig.1 Geometry and co-ordinates,
........... (2)
F R D T e (3)

where N=(g°’— b’ —4 a’b*{In(a/b)}* and M =M,+ M, cos @t. In-plane forces N, and N, are functions
of the independent variable 7. The basic equation for linear free vibrations of a plate subjected to these
in-plane forces then, can be written by adding an inertia force term to the governing equation of the
corresponding buckling problem® as follows :

2 2
aatzf_%a;a’r<ﬂv'%>_% aa;fzo .......................................................... (4)
where w denotes the plate deflection, p is the mass density, # is the time, D=FEd*/12(1—? is the
fleé(;lral lrigédity,1 Eaizs Young’s modulus, y is Poisson’s ratio, d is the plate thickness and V’=
< ——+—2—2> is a Laplacian operator in the polar co-ordinates.

ort T Or r* 2%
Considering the web plate divided by adjacent radial stiffeners of a vertically curved I-girder to be an

annular sector plate, the boundary condition for radial edges of the plate can be assumed to be simply
supported. The following three boundary conditions along the circumferential edges are considered in the

DV*w+ped

present analysis, case ] : simply supported, case [| : clamped and case [[] : free.

3. METHOD OF SOLUTION

Taking the boundary conditions for radial edges into account, the defelection along the angular direction
is given by the sine wave, The solution of Eq. (4) then can be assumed to be of the form

wzg Tsn(t)Wsn(’l‘,g) ................................................................................................ (5)

in which T, is an unknown function of the time variable, 7 is an arbitrary integer which denotes the
half-wave number in the § direction, and W,, is an eigen-function associated with the free vibration of the
corresponding annular sector plate loading with ne in-plane forces and satisfying geometrical boundary
conditions of the plate, defined as®

Wsn(T, e)sz(T)sin (ang) ......................................................................................... (6 )
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where R = Asndan{ksn€)+ BonYanlksn€)+ Csnlan(ksné)+ DsuKanlksné), in which Ag,, Bsn, Cgn and Dy,
are constants of integration dependent on each boundary condition, J,, and Y,, are Bessel functions of
order a,, I,,and K,, are modified Bessel functions of order a,, ks, is the eigen-value of free vibrations,
a,=nr/a, and £=r/a.

Substituting Eq. (5) into Eq. (4) and applying a Galerkin method, one has

T A+ [ANT A+ Mo+ M. cos D) [BTaA={0)+ereerermrrrrreeeiis (7)
in which [I] is the unit matrix, [A] and [B] are coefficient matrices (see Appendix), and {T,}is a column
vector consisting of the dependent variable T, The following non-dimensional qualities have been
introduced in the above equation :

— M, — M

=7 Mt ﬁl and T.:Q}t

M., YT O
Here Q1=k}%, W is the lowest natural circular frequency®, M.,=A..D is the buckling moment due
to static in-plane moment® and )., is the eigen-value of buckling,

The solution of Eq. (7) is now sought in the form®

anfz eM[% bo_’_%"(am sin mat+ bx cos mal.)] .......................................................... (8)

where b,, a, and b, are vectors that are independent of time.

Substituting Eq. (8 ) into Eq. (7 ) and applying the harmonic balance method yield a set of homogeneous
algebraic equations as

([Mo]—/\[Ml]—)kz[Mz]){X}z{O} ....................................................................................... (9)
in which [M,], [M,] and [M,] are the coefficient matrices of the zeroth {constant), first and second powers
of )\, respectively, and {X} is the column vector consisting of b,, bs, and a,.

The eigen-value A can be obtained by solving a double sized matrix as an eigen-value problem in the form®

[0] [1] ] Xl NG
(M) (M)~ ] Y] LY

where {Y}=A{X|. Then, the stability of the system can be directly determined from the sign of the real

parts of the eigen-values.

The convergency and accuracy of the space and time functions assumed in the Galerkin and harmonic
balance methods, respectively, have been confirmed in the previous papers!®~1?,

The geometrical parameters in the present analysis are the opening angle ¢ and the radius ratio g
(=b/a). For the comparison with the corresponding rectangular plate, the aspect ratio of an annular
sector plate may be defined by the rectangular plate analogy as =1/ ¢, in which [=(a+ b)a/2 is the mean
arc length and ¢ is the radial edge length.

4. NUMERICAL RESULTS

Based upon the vibration analysis® and the preceding theoretical analysis, numerical solutions have been
obtained for an annular sector plate under various boundary conditions along the surcumferential edges,
geometrical parameters and the static moment. First, the natural frequencies are presented. Then, the
dynamic unstable regions are determined and compared with those of a rectangular plate.

(1) The property of natural frequencies

The natural frequencies of an annular sector plate are examined under various geometrical parameters in
order to estimate the effects of the opening angle o and the radius ratio 8 on natural frequencies. Figs, 2
and 3 show the variation of natural frequencies with the opening angle ¢ and the radius ratio g,
respectively. The frequency curves are obtained by calculating with parameters at suitable intervals, In
these figures, the ordinate x? (=k%,/7*=8%*+od/D /=) denotes the non-dimensional natural
frequency and the notation (n, s) represents the half-wave number of the vibration mode in the 4 and r
directions, respectively. The natural frequencies rapidly increase with a decrease of the opening angle «
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and with an increase of the radius ratio 4. Since the natural frequencies are strongly influenced by the
opening angle ¢ and the radius ratio 2, it follows that the dynamic unstable regions are also influenced by
these parameters.

(2) Effect of static moment M, on natural frequencies

The natural frequencies of an annular sector plate subjected to a static moment M, can be obtained by
solving Eq. (7) at M,=0. 0 as an eigen-value problem, in which the eigen-function W,, is taken up to s=
10. The moment M, vs. the natural frequency 7 for case I, ¢=60°and x=1.0 is shown in Fig, 4. In this
figure, the ordinate M,=M,/M., shows the static moment }, normalized to the buckling moment M.,
while the abscissa 7=0%/Q} denotes the natural circular frequency Q7% normalized to the lowest relevant
natural circular frequency Q!

The frequencies change with an increase of the static moment M,. Natural frequencies decrease with an
increase of the static moment except for the modes (2, 1), (3, 1) and (4, 1), in which the frequencies
remarkably increase. The effect of the static moment M, on natural frequencies of an annular sector plate
is different from that of the uniformly distributed in-plane force on natural frequencies of a rectangular
plate, which never increase with an increase of the in-plane force®. Moreover, in the case of a square plate
subjected to an in-plane moment, natural frequencies corresponding to the mode (m, 1) decrease and the
other modes’ frequencies are almost constant or slightly increase with an increase of the static moment
M.

Next, the effect of the static moment M, on the modes of vibration can be examined, The changes in the
first modal shape (1, 1) with moments are illustrated in Fig. 5. The maximum amplitude moves towards the
compressive force side. When the normalized static moment }f, is equal to unity, the mode of vibration
corresponds to that of buckling. Since the buckling mode (M,=1. 0) is different from the free vibration
mode (M0=0, 0), the out-of-plane responses of an annular sector plate subjected to in-plane moments
should be composed of several free vibration modes without an in-plane moment. Therefore, it is
predictable that the combination resonances will appear in the dynamic instability of the present problem.

(3) Dynamic unstable regions for various boundary conditions

The kinds and widths of the unstable regions depend on the contents of the coefficient matrix [ B] in Eq.
(7). Since the matrix [B] is symmetric (b;,=b,;) and the diagonal element b,, is non-zero as shown in
APPENDIX, the sum type combination resonances in the neighborhood of m=(c+ «?)/k and simple
resonances in the neighborhood of %=2 «}/k will be simultaneously obtained in the present analysis®.
Here, k£=1, 2, --- is an integer and the unstable region corresponding to k=1 is called the primary
unstable region, while that of £=2 is called the secondary unstable region, This is quite different from the
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Fig.2 The variation of natural frequency with the opening Fig.3 The variation of natural frequency with the radius
angle ¢ : case [ and #=0.5. ratio 8 : case | and ¢=60°.
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Fig.4 Moment M, vs. the natural frequency 7 : case I, o=60° and Fig.5 Effect of static moment M, on the
' mode (1, 1).

©=1.0.

case of a rectangular plate subjected to in-plane moments, in which parametric resonances occur only
through the coupling terms because the diagonal elements of the parametric coefficient matrix are zero®.
The dynamic unstable regions of the annular sector plate for different boundary conditions with no static
moment (M,=0. () are shown in Fig. 6 through Fig. 8. The unstable regions for case [[ are so numerous
that they are shown in two figures as Figs. 7(a) (for n=1 and 2) and 7(b) (for n==3, 4 and 5). In these
figures, the ordinate M,=M,/M,, denotes the amplitude M, of the periodic moment normalized to the
corresponding buckling moment M.,, while the abscissa @=0/0Q} is the exciting frequency Q normalized
to the lowest natural circular frequency Q!. Further, the cross-hatched portions represent the regions of
various types of instability such as both simple parametric resonances (2 «?/k) and combination
resonances of the sum type ((w?+ w})/k), which contain the secondary unstable region (k=2) as well as
the primary unstable region (k=1). The narrower unstable regions of @ less than (.1 at M,=0.5 are

omitted in the figures,

Non-dimensional natural frequencies 7 (=Q%/Q}), the lowest eigen-value of vibration %,, and the
eigen-value of buckling A, of annular sector plates with ¢=60° and z=1. 0 are shown in Table 1 for three
boundary conditions.

The widths of primary unstable regions of the simple resonance are broader than those of the combination
resonance. This property of unstable regions of an annular sector plate is quite different from that of a
rectangular plate, for which the combination resonances are predominant®, As for the combination
resonances in the present problem, the unstable regions which have adjacent half-wave numbers in the

radial direction and the same half-wave number in the angular direction, such as o7+ o7, are
predominant. For an annular sector plate subjected to in-plane dynamic moments, the number of unstable
regions is much affected by the boundary conditions, from comparisons of Figs, 6, 7 and 8. Since natural
frequencies corresponding to unstable motions are close to each other in case [[ and apart from each other

in case ] as shown in Table 1, case [| has more unstable regions than case [J.

(4) Effects of opening angle ¢ and radius ratio 8 on unstable regions

The opening angle o and the radius ratio g influence the vibration property (see Figs.2 and 3) and the
buckling property?. Their effects on unstable regions were also examined. The variations in unstable
regions with the opening angle ¢ and the radius ratio 8 are shown in Figs. 9 and 10, respectively, In these

figures, unstable regions were obtained for n=1 of case [ at M,=0.5.

When the opening angle a or the radius ratio # is relatively small, the natural frequencies for n=1 are
267s
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Fig.6 Unstable regions for an annular sector plate subjected to moment M, : case I,

a=60" and x=1.0.
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Fig.7(a) Unstable regions for an annular sector plate subjected to moment M, : case I,
a=60" and x=1.0 (for n=1 and 2).
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Fig.7(b) Unstable regions for an annular sector plate subjected to moment }, : case I,

a=60" and x=1.0 (for n=3, 4 and 5).

so close to each other (see Figs, 2 and 3) that the unstable regions corresponding to them are crowded as
shown in Figs. 9 and 10. The widths of primary unstable regions of the simple resonances widen slightly
with an increase of the opening angle ¢, while the others remain almost unchanged as shown in Fig. 9. On
the other hand, the radius ratio 8 influences the widths of unstable regions, which are generally narrower
with an increase of radius ratio 8 as shown in Fig, 10.
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Fig.8 Unstable regions for an annular sector plate subjected to moment M, : case m,
a=60" and ©=1.0.

Table1 &, k,, and A, for different boundary conditions : 4=1.0 and a=60".

case 1 it m
Y 1 2 3 4 1 2 3 4 5 6 1 2 3
111,000 2,320 4.201 6.5791.000 1,877 3.242 4.959 7.008 9,387{ 1.000 3.871 8.344
o, 2 12,610 4.397 7.017 10.207 2.429 3.494 5.296 7.571 10.210 13.197] 4,147 9.993 17.577
3 {5.122 7,099 10.255 14,178 4.510 5.648 7.682 10.412 13.586 17.127{ 8.557 17.065 24.431
4 18.598 10.630 14.058 18.583| 7.258 8.435 10,553 13.579 17.230 21.298| 15.170 25.224 38.625
ki 6.5019 7.8300 3.4982
Acr -28.1428 -44,7665 2,4200

0.0 - L . L 1 1 1 ]
o 20°  40°  60°  80° 0.0 0.2 0.4 0.6 5 0.8
a
Fig.9 The variations of unstable regions with Fig.10 The variations of unstable regions with
the opening angle « : case I, 8=0.5, the radius ratio £ : case I, o=60°,
n=1 and M,=0.5. n=1 and M,=0.5.

(5) Effect of static moment M, on unstable regions
Fig. 11 shows the variations of unstable regions with the static moment M,. In this figure, the unstable
regions were obtained for case | with ¢=60" and x=1.0 at M,=0. 5. The narrower unstable regions of &
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Fig. 11 The variations of unstable regions
Fig.12 Comparison of case | with a square plate :

with the static moment M, : case I, _
#=1.0, n=1 and M,=(.5.

a=60°, £=1.0, n=1 and M,=0.5.

less than (. 1 at M,=0. 0 are omitted in the figure. The widths of unstable regions become slightly broader
with an increase of the static moment, but the static moment has little affect on the unstable regions as
shown in Fig. 11. The effects of the static moment on unstable regions for an annular sector plate are quite
different from the case of a rectangular plate, in which the widths of simple resonances remarkably widen
under the influence of static moments®.

(6) Comparison of case | with a square plate

The kind of unstable regions which appear on the annular sector plate with a=60° and =1.0 is quite
different from that of a rectangular plate as mentioned above. That is, the simple resonances predominate
over the combination resonances, in contrast to a rectangular plate. In order to compare the dynamic
stability of an annular sector plate to that of a square plate, the unstable regions of an annular sector plate
can be examined by keeping the aspect ratio p at unity.

Fig. 12 shows the variation of the unstable regions with the radius ratio 8 for case I, 4=1.0, n=1 and
‘M.=0.5. When g approaches 1. 0, the annular sector plate with 4z=1. ( resembles a square plate in shape.
In this figure, the unstable regions of a square plate are also shown on the right side ordinate, For an
annular sector plate with ;=1. 0, the widths of unstable regions of the simple resonances become narrower
and those of the combination resonances become wider, resembling a square plate in distribution of
in-plane forces, as g approaches 1. (. The combination resonances predominate over the simple resonances
when the radius ratio £ is larger than (. 8, in which the in-plane forces can be presumed to form a linear
distribution® .

It is announced that the property of free vibrations of an annular sector plate for cases I and [| can be
estimated by the rectangular plate analogy®. On the other hand, the dynamic unstable regions of an annular
sector plate are influenced by the distribution of in-plane forces like the buckling property®. Therefore,
the dynamic stability of an annular sector plate with 4=1. () can not be estimated by that of a square plate
when the in-plane forces of the annular sector plate are not so close to the linear distribution, thatis, when
the radius ratio 8 is less than (. 8.
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5. CONCLUSIONS

The dynamic stability of an annular sector plate subjected to in-plane time-varying moments has been
investigated by using the linear theory. The conclusions are as follows :

(1) The natural frequencies of an annular sector plate subjected to in-plane moments change with an
increase of the static in-plane moment, Some of them increase and others decrease.

(2) The dynamic unstable regions of the present problem consist of the simple parametric and sum
type combination resonances.

(3) Simple resonances predominate over combination resonances for an annular sector plate with the
large opening angle or the small radius ratio subjected to in-plane dynamic moments. This behavior is quite
different from the case of a rectangular plate, in which the combination resonances predominate.

(4) The widths and numbers of unstable regions depend primarily on the boundary conditions. The
unstable regions become more numerous with an increase in the degree of restraint along the
circumferential edges.

(5) The unstable regions are more influenced by the radius ratio than the opening angle, while the
effect of static moments on unstable regions is not so remarkable.

(6) The dynamic stability of an annular sector plate under the influence of the nonlinearity of in-plane
forces can not be estimated by that of a rectangular plate.

ADDITIONAL REMARK

It has.been shown that the in-plane force distributions of an annular sector web plate are transfigured by
the size of flange plates’® '». Therefore, it is necessary to take the effect of flange plates into account for
the determination of unstable regions of the web plate of a vertically curved T -girder.

The motions on unstable regions grow indefinitely with time under the assumption of the small
deflection. Although the linear theory is useful in determining the initial growth or decay, the amplitudes
of motions are bounded by the stretching of a middle plane of the plate. It is necessary to take the
nonlinearity into account for the determination of the amplitudes of unstable motions’®, The effects of
damping and initial deflection on the unstable motions also remain to be considered.

The dynamic stability analysis considering these effects will be reported in the subsequent papers,

In the present study, numerical examples are calculated by means of FACOM M-180 Il AD of Information
Processing Center, Nagasaki University.

APPENDIX : Coefficient matrices [4] and [B]

[A]=diag (al,)
where a,,=k%/ kb,
bun ban  bun
bizn ban "D

[Bl=
ban bznn bNNn

ACT 1 in in
Where bwn_ L.ﬂl/ILny Ln_f R gdg Iiin': ‘% k:l ‘/ﬁ‘ [&fl(&) d;; d(;{f 52 fz(f)Rijn}df,
B

N=-pr-1(in ). AO=5In ftin 45 G

and fz(f)=—%: lnﬁ—i-ln £4-p2 lnig-+l —p
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