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GALLOPING OF STRUCTURE WITH TWO CLOSELY-SPACED
NATURAL FREQUENCIES

By Phoonsak PHEINSUSOM* and Yozo FUJINO**

Certain structures have the vibration modes of closely-spaced natural frequencies. The
galloping behaviour of such a structure is studied. A cable-stayed bridge tower whose the
natural frequency of the in-plane second mode is close to that of the in-plane first mode is
employed as the case study. The structure is modeled as a linear two-degree-of-freedom
system with proportional damping, and nonlinear quasi-steady wind force is assumed. An
asymptotic modal analysis on galloping is conducted. The results indicate that the galloping
of this tower is the steady-state motion either in one of the two modes, depending upon the
initial disturbances, and that the coexistence of two modes in galloping, i.e. multi-mode
galloping, is unstable. However, for structures with certain properties, e.g. unsymmetri-
cally distributed mass, only the multi-mode galloping is stable. These results agree well
with 'the observations in wind tunnel experiments.

Keywords : bridge tower, galloping, multi-modal response, nonlinear asymplotic analysis,

vibration mode, wind tunnel experiment

1. INTRODUCTION

Galloping is one of the most important wind-induced oscillation problems of the flexible structure. The
usual assumption to analyze this phenomenon is that galloping is a vibration of single uncoupled mode in the
direction normal to wind. Analysis using this assumption was carried out in great detail by Novak” and
others,

Galloping of two-degree-of-freedom system allowing vertical and torsional motions was explored by
Blevins and Iwan?, They concluded that there is strong interaction between vertical and torsional motions
when two natural frequencies are close to an integer multiple of each other. This interaction is greatest
when two natural frequencies are nearly equal, i.e. the torsional motion noticeably coexists with the
vertical galloping.

The tower of the Higashi-Kobe cable-stayed bridge has an interesting property that the circular natural
frequency of the in-plane second mode, «, is close to that of the in-plane first mode, ¢, as shown in Fig. 1.
The galloping behaviour of this tower with the proposed rectangular cross-section in uniform wind flowing
in the direction of the bridge axis has been experimentally studied in the wind tunnel using its three
dimensional 1 : 100 scaled model®, The tower’s galloping was the steady-state motion either in the first
mode or in the second mode depending upon the initial disturbances given to the tower model. The relation
between wind velocity and modal amplitudes at the top of tower obtained from this experiment is presented
in Fig, 2. The studies by Phoonsak et al. ¥~ which are our primary works on this topic, showed that the
nonlinear asymptotic analysis can well explains these observations. However, it is interesting to note that
the coexistence of both the first mode and the second mode motions in galloping, i. e. multi-mode galloping,

* Member of JSCE, M. Eng., Graduate student, Dept. of Civil Eng., Univ. of Tokyo (Bunkyo-ku, Tokyo 113}
** Member of JSCE, Ph. D., Assoc. Prof., Eng. Res, Inst., Fac. of Eng., Univ. Of Tokyo (Bunkyo-ku, Tokyo 113)

193s



216 P, PHEINSUsOM and Y, FusiNno

is not a steady-state motion as shown in Fig, 3. These observations curiously differ from the results
obtained in Ref.2).

Shiraishi et al. ? also performed experiments using a scaled three dimensional model of this tower and
similar results were obtained. Note that their study concerns the galloping suppression of the tower and it
indicates that galloping of this tower is effectively suppressed by adding corner-cut to the original
rectangular cross-section. The cross-section with corner-cut is employed as the final design proposal.

The present paper, which is a continuous work from Ref. 4) | 5) and 6), attempts to explain the galloping
behaviour of the structure with two closely-spaced natural frequencies. Focus is placed on the modal
selection during galloping. The modal equations of motion are firstly formulated under the assumptions of
linear elastic structure and nonlinear quasi-steady wind forces. Solving these nonlinear coupled equations
of motion by perturbation method, the modal selection in galloping of this kind of structure is studied.
Next, the conditions of the existence of steady-state multi-mode galloping is examined. Finally, the
analytical results are compared with observations from the wind tunnel experiments.

2. EQUATIONS OF MOTION

Consider the continuous structure, for example the bridge tower shown in Fig.1, subjected to the
smooth wind flow. The structure is assumed to be a linear elastic proportionally-damped system. Using the
conventional modal analysis, response of the structure in the direction normal to wind, Y(x, &) can be

expressed as

Yix, t)———Z’:'. VYA B) -+ mmeeremssss e s sttt ISUURURRRR

Modal circular natural frequencies
@ =43.2 rad/s, w,=47. 4rad/s.
Modal critical damping ratios
£=0.0016, &=0.0014.
Modal -mass ratios
= n.=0. 00027.
Wind force coefficients of 2 ; 3 rectangular cross-section
A1=6.6, A.=0.0, A,=—118.9.
Modal Integrals (7, : i-th mode shape)
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Fig.2 Amplitude-Wind velocity relation of tower

(wind tunnel experiment),
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Higashi-Kobe bridge tower’s model with mode shapes and modal properties.

Fig.3 Example of steady-state response of tower

(the second mode galloping).
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where ¥ (x)=i-th mode shape and y,%)=i-th modal response,
The j-th modal equation of motion can be written as

Ui+ 2 E sttt wgyizf Fylx, t))’,(x)dx/(f m(x)yi(x)dx) ............................................... (2)

where £=critical damping ratio of ;-th mode, w,=circular natural frequency of {-th mode, m(x)=mass
of the structure per unit length, F(x, t)=external force and dot denotes the differentiation with respect
to time i.

In this study, the wind force is assumed to be gquasi-steady. Using this assumption, the galloping force
Fy{x, 1) may be written in a polynomial form as

Fy(x, t)=0.5 pUzD [A1<%>+Az(%)2+"'+A,<%>1+“-+An<%})n} ................................ (3 )
where p=air density, U/=uniform wind velocity, D=characteristic dimension of structure and 4,=wind
force coefficients.

Using the quasi-steady wind force assumes that the wind force on the cross-section in a flow at any time
is identical with the force on that cross-section in a steady flow at the same relative angle of attack and wind
velocity. This assumption has been found to be a useful approximation as long as the onset wind velocity of
galloping is much higher than the onset wind velocity of vortex shedding. The applicability of quasi-steady
wind force assumption on this problem will be discussed later.

Substitution of Egs. (1) and ( 3) into Eq. (2) leads to the set of modal equations of motion. The right
hand side of these equations, which represents aeroelastic force, is nonlinear and coupled while the left
hand side, which represents structural properties, is linear and uncoupled. Difficulty in solving this set of
equations depends upon the number of modes included and the order of polynomial in aeroelastic forces.
From the wind tunnel experiment, tower’s response was found to practically consist of the in-plane first
and the in-plane second modes as shown in Fig. 2. Therefore, only the first two modes are employed in the
following analysis. Furthermore, to simplify the analysis, up to the third order nonlinear terms of the
self-excited force in Eq. ( 3) are considered. Neglecting the higher order nonlinear terms will, of course,
lessen the accuracy of the solutions; however, the solutions will not be dramatically changed. Then,
considering only up to the third order nonlinear terms in Eq. ( 3) is believed to be adequate for the analysis
focusing the modal selection during galloping. That is

V(2 £)= R)Ya(B)F Hl@)alF) <+ eeeererereememme st (4)
- : ¥ N (VY

Fylx, 1)=0.5 pU D{A,<U>+A2<U> +A3<U> ] (5)
Then the modal equations of motion are

1]1+wfyl=alz’/1+az@'/f+asijlz'/z+a4i/§+asz'/i‘+as:i/?i/z+a7z'/1:i/§+asi/§ ................................... (6'3)
gﬁ_wgyz=ﬂ1g2+ﬂzy§+ﬂ3ylyz_hg‘y;+ﬂ5y§+ﬂeyfgz+ﬂ7ylg§+ﬂayg ................................... (6-b)

where

a=—2 8w +2 n,UA,f yidx/D, [i=—2&w,+2 anA1f7§dx/D ....................... (7-a, 7+b)
az=2 nlAzf '}lfl*dx/D, 192—;2 nzAzf 7f72dx/D ..................................... (7'0’ 7.d)
a;=4 nlAzf Yirndx/D, B:=4 n2A2f RYEIAXSD -weerrree (7-e, 7-1)
a,=2 n‘Azf 717§dI/D, '34__—.2 nzAzf 7gdx/D ....................................... (7.g, 7.h)
as=2 n.Aafﬂdx/(DU), B:=2 ’nzAsf yiyzdx/(DU) ................................. (7.i’ 7])
as=6 nIA3f Yiv.dx/(DU), Bs=6 nzAsf FEPEAL/(DU) coovremrreemmrremmrneenens (7-k, 7°1)
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a;=6 nlAsfﬁ?’gdx/(DU), Br=6 n,A; fyl SAL /(DU )+ vvrrrmeenemamannnnnnnns (7-m, 7+n)
ag=2 ThAsf n7idx/(DU), Bs=2 nzAs[ YAdX /(DU ) -vverrrereeemsrmienneaiaeiinns (7-p, 7°9)
=pDz/(4/ m(x)'yf(x)dx), nzzppz/(4f m(x)yg(x)dx> ............................. (7.1‘, 7-3)

3. ASYMPTOTIC SOLUTION FOR STRUCTURE WITH TWO CLOSELY-SPACED
NATURAL FREQUENCIES

In order to solve the coupled nonlinear differential Egs. (6-a) and (6-b), the nonlinear terms are
assumed to be very small which can be characterized by a parameter ¢. The solution is assumed as
y(t)=a.(t)cos Ql+€yn(al, Qay K2y, £2y) oereeremrene s (8-a)
Yl 1)= 0o ) COS Dot Ul @n, oy @y, Qg)-+++ereererermmseseemmmeimam e (8+b)

where Q,=w, t—&(1), Q,=w.t—&(t)—&(1).
The variables q,, a,, 2, and Q, are assumed to be slowly varying functions of time i such that

Z'/1=—wual sin .Qn+8:1;lu ............................................................................................ (g.a)
Qz=—wzaz sin .Qz"'&f/zz ............................................................................................ (g.b)
This implies that

&, COS Ql+a1(§1 SEM Qo0 e errem e (10)
a, COS Qz"'az(é]'l'b.\z)sin 0 T U 1)

Substituting Eqs. (8) and (9) into Eqs. (6) and considering only the terms with the same order as ¢,
one obtains
I+ o yn=lwi@:— 0 a1a;—0.75 wiaies—0.5 w i, aia;] Sin & — wia.8, cos
~[0.5 wiw,aia,as+0.75 wiaias) sin £2.40.5 wiata,+0.5 wiaie,
—0.5 wiaie, cos 2 Q,—0.5 wiaie, cos 2 Q,
+0.5 wywsa,0:a5[COS (2,— Q,)—cos (&, + Q,)]
+0.25 wiaias sin 3 2,+0.25 wiales Sin 3 2,
+0.25 wiw.ala.as[sin (2,42 Q))+sin (2,—2 Q)]
+0.25 w10t ie: [SIn (42 Q)+ Sin (Q,—2 Q)] -+ -vverememmee (12-2)
Prot 3 Y=[w;0:— 0,06 —0.75 w}a3fs— 0.5 wiw,A}0:06) SIN 22— w,0:(81+ 82) cos 2,
—[0.5 wmwia,aif;+0.75 wiaifs] sin £,4+0.5 wialB,+0.5 wiaif,
—0.5 wiaiB: cos 2 2,—0.5 wiaif, cos 2 Q,
+0.5 w02 0410:8:[coS (2, — Q,)—cos (2, + )]
+0.25 wiaifs sin 3 ©,+0.25 wiasls sin 3 Q,
+0.25 wiw.ala.fs[sin (£2,+2 Q,)+sin (Q,—2 Q)]
+0.25 w1030, a38; [Sin (2,+2 Q,)+SIn (=2 Q)] -+ reerereremriee e (12-b)
The terms whose frequency is nearly w, in Eq. (12-a) and those whose frequency is nearly w, in Eq.
(12-b) will give unbounded solution for any values of ), and ¢, These terms which are called secular
terms must be eliminated in order to obtain bounded solution of g, and q,.
The case that the second mode frequency is close to that of the first mode is considered. To express
quantitatively the closeness between these two natural frequencies, the detuning parameter ¢ is introduced
as

Then the terms with Q,, Q, (2,—2 Q,) and (2,—2 Q,) in Eqgs. (12) are secular terms.
Performing certain algebraic operations and averaging Eqs. (10) and (11) along with the equations
which result from the elimination of secular terms in Egs. (12) lead to the following set of equations.
4,=0.5 a1, +0.375 wiales+0.25 wia,aja; [1+0.5 cos 2 A
+0.375[wlwzafazaeeriaZas/w,] COS A v rrrrrssmrtmes ettt e e (14)
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Table1 Possible Solution Sets of Eqs. (14) ~ (16).

219

SOLVTION] a2 0, apt 0 3= 0, ay# 0 arf 0, a,= 0 ag= 0, a,= 0
PARAMETERS
Bs= 0, ag= 0 EXISTS EXISTS EXISTS EXISTS
Bs# 0, ag= 0 EXISTS DOES NOT EXIST EXISTS EXISTS
Bs= 0, agf O EXISTS EXISTS DOES NOT EXIST EXISTS
Bs# 0, agf 0 EXISTS DOES NOT EXIST DOES NOT EXIST EXISTS
@,=0.5 a,0,+0.375 wia;B:+0.25 wiala,B:[1+0.5 cos 2 Al
+0.375 [wlwza,a3/97+ wia%ﬁs/wz] COS A vrrrrrre ettt e e s (15)
0,={—0.125 [wiala.fs+ wia aia;] sin 2 A—0.325 [ wiaiBs/ w.+ wiases/ ] Sin A
—0.125 w]wzafag [as+ﬂ7]sin /\}/(alaz) .................................................................... (16)

where A=cot—8,, A=eo—5,.

Steady-state amplitudes @, and g, and phase lag §, can be obtained by applying the conditions that ¢,=d,
=§,=0 in Eqgs. (14), (15) and (16). Stability of the steady-state solution must be examined by
considering the small perturbations at the solution point,

Examining Eq. (16), it is found that the possible solution sets of steady-state motion depend on two
parameters 8; and o, as shown in Table 1. For example, if both g; and a; are non-zero, both g, and g, must
be non-zero in order that §,=0. This means that the single mode solutions (a,=0, @,>0) and (a,>0, a.
=() do not exist : all the solutions are the coexisting two modes in galloping (a,>0, a,>0), i.e.
multi-mode galloping. On the other hand, if only g, is zero then the solution (a,=0, a,>0) exists, while if
only B is zero, the solution {a,>0, a,=0) will exist.

As seen here, the steady-state vibration mode in galloping is principally determined by the values of the
parameters S; and ;. These parameters are functions of mode shapes, wind velocity, cross-section and
aerodynamic force coefficient (¥, 7, U, D and 4,, respectively) as defined in Egs. (7-j) and (7-p).
These parameters are zero when one mode shape is symmetric and the other mode shape is asymmetric,
This property regarding the mode shape always observed in symmetric structures, On the other hand,
these parameters are not zero, if the structure has unsymmetrically distributed mass or if the wind velocity
and angle of attack are non-uniform along the structure axis or if the cross-section non-uniformly changes
along the structure axis, '

Then two types of bridge tower are employed as the case study. Firstly, the galloping behaviour of
Higashi-Kobe bridge tower is studied. Note that this tower has symmetrically distributed mass. Next, this
bridge tower is modified by adding a small mass at one leg of the tower to make the structure unsymmetric,
i.e. B; and a; are not zero. Galloping behaviour of this modified tower is also investigated to study the
multi-mode galloping. The modified tower can be considered as the model of tower with one climbing crane

on its leg during construction.
4. GALLOPING BEHAVIOUR OF HIGASHI-KOBE BRIDGE TOWER

The three dimensional 1 : 100 scaled model of the Higashi-Kobe cable-stayed bridge tower with
rectangular cross-section is employed as the case study. Modal selection in galloping of this bridge tower
model exposed to smooth wind flowing along the bridge axis is analytically investigated.

Note that the model properties and modal properties are shown in Fig. 1. The generalized masses of both
the first and the second modes are taken as unity. Since the exact wind force coefficients of this tower is
not measured and the cross-section of tower’s leg is similar to 2 . 3 rectangular cross-section, then the
quasi-steady wind force of 2 : 3 rectangular cross-section obtained by Novak and Tanaka® is used.
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Using its first two in-plane mode shapes, the following approximations hold :

03=as=Gs=,32=134=,5’5=ﬂ7=0 ..................................................................................... (17)
With use of Eq. (17), Eags. (14), (15) and (16) are reduced to :
=0.5 a,a,+0.375 wfalas+0.25 W20, @2 [140.5 COS 2 A] roorererrmrrerrsirs (18)
_0 5 .8, +0.375 wiaifs+0.25 wiala,Bs[1+0.5 cos 2 D R R RERRPITION (19)
5 =—0.125[w?a} .-,+w2aza7]sm2A ............................................................................. (20)

In order that &,=0 in Eq. (20), the bracket term or the sinusoidal term must be zero. Since g; and a,
always have the same sign (Eqs. (7-1) and (7-m)), the bracket term can not be zero. Then sin 2 A must be
zero . 2 A=0 or 7 and cos 2 A=1 or —1, respectively, Solving Egs. (18) and (19) with this condition,
one obtains the following steady-state solutions,

set1: a,=0, a,=0, Am=AUDIETATY -vvvrrerrrr e (21)
set 2 ; al=m/wn a,=0, A==ArDILLATY ««ovvererernsrretreert (22)
set 3 . a,=0, azz«/m/wz, A== ATDILIATY -« -voversermmerrinerrnnt (23)
set 4 1 a, =4 (a:81— aBs)/3 (a5 — azPs) [ an

a2:¢4 (01/95_ 05191)/3 (05/98_ 01,35) /wz, T TR R T SR E LT (24)
set 5 1 =4 (a:81—3 1)/ (9 asfs— a:fs) [ an

a2=\/4 (alﬂe—3 0!5,31)/(9 dsﬂa—‘avﬁs) /wz’ A= ”/2 .................................................. (25)

Stability of solution sets 1 to 5 is examined at various wind velocities, It was found that solution sets 1, 2
and 3 are stable at certain wind velocities while solution sets 4 and 5 are always unstable. Results of only
the stable solutions for two representative values of A, namely A=( and A=7x/2, are shown in Fig. 4,
where U,,, and U,,, are the onset wind velocity for galloping of the first and the second modes ( U.,,=
§iwiD/< n:4. f 7§dx> ) respectively., The overlap area in Fig. 4 (a) indicates that either the solution set 2
or 3 is stable.” This area is the largest when A is zero and it decreases as increase of A. It vanishes when A is
equal to /2.

The solid line in Fig. 4 indicates the stable solutions for the specific bridge tower model shown in
Fig.1. Note that the computed onset wind velocity of the first mode is less than that of the second mode

because &,/ [ yidx is greater than &,/ [ yidx. It was indeed observed in the wind tunnel experiment
that U,,, is greater than U, i.e U.,=2.5 m/sand U,,=2.2 m/s.

At the wind velocity less than the modal onset wind velocities, Uy, and U,.,, €. g. at point 1 in Figs. 4 (a)
and 4 (b) , both modes are stable at zero amplitudes, i. e, no galloping. At point 2 with U,,,< U < Uey,, only
the second mode is stable in galloping. At point 3 (U > Uer,. Uer,). the existence of the first mode or of the
second mode in galloping is determined by the initial conditions.

Fig. 5 shows how the initial amplitudes, q, and @, and the initial phase lag A affect the modal selection. If
only the first mode excitation is given to the tower (indicated by point A) the response will reach stable

U/Ucr2-1 U/Ucr2-1
0.8 T TTITTTIILAT 0.5F
1 :1st or 2nd : i
2nd MODE : MODE STABLE - {2nd MODEL. T}
STABLE \ 3 STABLE
| + MODE
: L BLE
0.0 fmmmrm—— = TS 0.0 $———— H
[ |
) ! I
I
ZERO AMPLITUDE | Tst HODE ZERO_AMPLITUDE | 1st MODE
STABLE | STABLE STABLE b STABLE
| i
| [
.5 ! Wlery-1 | u/tcr -1
-5 0.0 0.5 -.5 0.0 0.5
(a) a=0 (b) A=n/2

Fig.4 Stability map of the tower with two representative values of phase lag, A.
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finite amplitude of g, with zero amplitude of @,. Similarly, finite amplitude of g, with zero amplitude of g,
is the stable galloping mode if only second mode excitation is given (point B). If both first and second mode
excitations are simultaneously given to the tower, the stable galloping mode depends upon the initial
amplitudes (@, and @,) and the initial phase lag (1). For example, if the tower starts to oscillate from
point C in Fig.5, the first mode’s response dies out while the second mode’s amplitude grows to
steady-state, and vice versa for the case of point D. It is interesting to note that when initial phase lag given
to the tower is nearly /2 (point E), the first mode’s amplitude will increase until it reaches saddle point,
F then it decays to zero amplitude, while the second mode monotonically grows to the steady-state at point
G (a:=0, a,>0).

It should be noted that the state space shows only the processes of the response to the steady-state. It
does not give any information on the build-up time for the response to reach steady-state®,

The observations in wind tunnel experiment using the 3-dimensional model of the Higashi-Kobe bridge
tower can be interpreted by the analytical results as further presented below,

When the wind velocity was 2. 3:m/s, galloping of the second mode appeared and the first mode galloping
was not observed. This corresponds to point 2 in Figs.4(a) and 4(b).

02

= FINITE, a,= 0

Fig.5 State space of the tower at U>U.,,, U, (point 3 in Fig.4).

a
2
Initial Condition Point D. Initial Condition loint C.
1st MODE 0 20 sec
o 2nd HODE 2nd Mode
. ot ——)
=41 q,

(a) Path of modal transient amplitudes and time history responses at initial phase lag A+ /2

az Initial condition Poiat E.

2nd MODE
E (
A G]

(b) Path of modal transient amplitudes and time history responses at initial phase lag A=7/2

Fig.6 Galloping responses of the tower’s model observed in wind tunnel experiments (Jjj : unstable point, A : saddle point and ® :
stable node).
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At higher wind velocity (U >2.5 m/s), galloping of first mode was also observed. Selection of the first
mode or of the second mode in galloping depended upon the initial disturbances given to the tower as shown
in Fig. 6 (a). The left hand side figure presents the path of modal transient amplitudes which is similar to
the phase plane, but phase lag A is not constant in this figure, it changes along the path.

For the wind velocity greater than 2. 9m/s, the first mode initially appeared in galloping, but after
sometime its amplitude decayed while the second mode increased and reached the steady-state motion as
shown in Fig.6(b). This phenomenon corresponds to point 3 in Fig.4(b).

The observations in the wind tunnel experiment can be well explained by the present nonlinear analysis,

5. GALLOPING BEHAVIOUR OF MODIFIED HIGASHI-KOBE BRIDGE TOWER

The Higashi-Kobe cable-stayed bridge tower model in Fig. 1 was modified by adding a small concentrated
mass at one leg of the tower. By adding this small mass, mode shapes are changed so that g; and q, are not
zero. Mode shapes as well as structural properties of the modified tower are shown in Fig, 7.
Cross-section of this modified tower, unlike the tower shown in Fig, 1 which is tapered cross-section, is
uniform 2 . 3 rectangular cross-section,

Note that the generalized masses of both the first and the second mode equal to unit and that the values of
all the parameters in Eq. (17) including g; and a4 are non-zero.

Steady-state amplitude of the modified tower can be obtained by equating &,, @, and &, in Eqs. (14) to
(16) to zero and solving these equations simultaneously.

Steady-state solutions and their stability are examined at various wind velocities, It was found that the
solution of @,=( and g,=0 is stable, i. e. no galloping, when the wind velocity is less than the onset wind
velocities (U< Uy, Uery) .

At higher wind velocities (U > U,,,), only multi-mode galloping is stable as shown in Fig. 8 (a) (U,,,< U
< Uer,) and Fig. 8(b) (U>U.,, U.,). It should be noted that in this tower U,,, is less than U,,, because
&wy/ | 7idx is smaller than &,/ [ yidx. This was also confirmed in the wind tunnel experiment. Fig. 8
(a) is particularly interesting since galloping of the first mode is observed even the wind velocity is less
than the first mode onset wind velocity, U,,,.

Fig. 8 also indicates that in the multi-mode galloping, the stable steady-state amplitude of the first mode
is less than that of the second mode because the structural damping of the first mode is larger than that of
the second mode. It is also found that each modal amplitude slightly changes according to the value of phase
lag, A, i.e. the stable solution depends on A. The ratio of g, to a,, firstly, will increase with the increase

50 g. added
Y T~ o3 6 Modal circular natural frequencies
_ = D=3.6cm = =
7y g ¥ 15t MODE o 4017rad/s, sz 46:1rad/s,
b i [ Modal critical damping ratios
) P/ =0.0013,  4=0.0012.
; , Modal mass ratios
1o n=n,=0. 0004.
Wind force coefficients of 2 : 3 rectangular cross-section
A,=6.6, A,=0.0, A,=-—118.9.
Modal Integrals (7, : i-th mode shape)
5 \_/ [riaz=17.1, [ igx=10.1.
=3
= h 2nd MODE fyidx=—22.6. fy:dx=—26. 0.
! t
' irdx=4.6, W yidr=—15.2,
: ! f7 rdx fyy x 15.2
' [rax=35.0, [ ridx=s.8.
[ rindz=—12.1. [ nyidz=17.0,
] f?’f)’idx=l4A9,

Fig.7 Model dimensions and properties of the modified Higashi-Kobe bridge tower.
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of wind velocity and, finally, this ratio will reach an asymptote, i.e. unit in this tower.

Example of phase plane of this modified tower at U > U,,,, U, is also shown in Fig. 9. The steady-state
solutions are points A, B, C and D. Note that in this figure, @, at point B is not zero but it is very small
compared with g, and vice versa at point C. The wind velocity in this figure differs from that in Fig.8(b).

In this figure, point A (@,=0, a,=0), i.e. no galloping, is unstable while points B and C are saddle
points. Only point D (a,, @,>0), i.e. multi-mode galloping, is stable. This means that wherever the
modified tower starts to gallop, the tower’s response goes to a steady-state motion at point D.

Galloping behaviour of the modified tower model was also experimentally studied in the wind tunnel, It
was confirmed that only the multi-mode galloping was observed. Time history responses at U, < U< Ucr,
and at U > Usy,, Ue.r, are presented respectively in Figs, 10(a) and 10(b) which correspond to Figs. 8 (a)
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Fig.8 Steady-state multi-mode solutions of the modified tower,
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Fig.9 Phase plane of the modified tower at U > Ur,, U.r, and phase lag A=0.7 z. (Il : unstable point, & : saddle point and @ : stable
node)
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Fig.10 Time history responses of the modified tower obtained from wind tunnel experiment (smooth wind flow).
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and 8(b), respectively. In Fig. 10(b), galloping of the tower’s model started from the rest position,
Initially, the tower oscillated mainly in the second mode motion, As time passed the first mode motion
gradually increased along with the second mode and finally it reached the multi-mode steady-state motions,
The experimental results thus agree with the analytical results with respect to the coexistence of two
modes in galloping,

Numerical integration also verifies the modal selection in galloping of the both types of bridge tower.

It should be noted that the computed galloping onset wind velocities very much differ from those observed
in the experiments. For example, in the case of bridge tower’s model shown in Fig. 1, the computed onset
wind velodities are 0.071 m/s. and 0.068 m/s for that of the first mode and of the second mode,
respectively, while the onset wind velocities observed in the wind tunnel test are 2.5 m/s and 2. 2 m/s for
that of the first mode and of the second mode, respectively. This means that the quasi-steady wind force is
not applicable to this tower and that the unsteady wind force is suitable to employ. The quasi-steady
assumption determines the wind force coefficients as the functions of angle of wind attack, i.e. implicit
functions of structural. velocity, while the unsteady wind force assumption determines the force
coefficients as the functions of the reduced wind velocity and the structural amplitude, i.e. implicit
functions of the structural velocity!®'?. The natural frequency of the second mode is close to that of the
first mode, then the reduced wind velocity of the second mode is almost equal to that of the first mode. We
are interested in the galloping behaviour of tower near the onset wind velocity. Therefore, in this narrow
range of wind velocity, the unsteady wind force, which is also the function of reduced wind velodity, can be
expressed approximately as the polynomial form of structural velocity, as shownin Eq. (3), but the force
coefficients are, of course, different from those obtained from quasi-steady assumption, Then the results
regarding modal selection in the galloping mode from this analysis are valid even when the unsteady wind
force is assumed,

6. SUMMARY

Across-wind galloping of the proportionally-damped system having two closely-spaced natural
frequencies was analytically and experimentally studied. The results from the nonlinear asymptotic
analysis can be summarized as follows :

For structure having symmetric properties, galloping is the steady-state motion of a single mode, either
in the first mode or in the second mode. Selection of the galloping mode depends upon the initial
disturbances given to the structure,

For the structure having certain properties, such as unsymmetrically distributed mass or non-uniform
cross-section, galloping is a motion in the two modes, i.e. multi-mode galloping, Modal steady-state
amplitudes in multi-mode galloping slightly depends on the initial phase lag between the two modes,
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NOTATIONS
A; . aeroelastic force coefficients a; . i-th modal steady-state amplitude
D : characteristic dimension of structure F{x, t) . external wind force
m(x) : mass of structure per unit length n; . i-th modal mass ratio
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U : uniform wind velocity U.r; . i-th modal onset wind velocity

.

y{t) : i-th modal response Y(x, #) : response of structure
B. . parameters defined in Eqgs. (7) a; . parameter defined in Egs. (7)
& . i-th modal critical damping ratio %(x) : i-th modal shape
o . detuning parameter p . air density
w; . i-th modal circular natural frequency A . phase lag
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