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AN INTERPOLATION FUNCTION METHOD FOR STOCHASTIC
FEM ANALYSIS UNDER DYNAMIC LOADS USING
FREQUENCY RESPONSE ANALYSIS

By Hachiro UKON*, Takashi YOSHIKIYO** Yoshihide OKIMP*
and Takashi MATSUMOTO**

This paper proposes a new method of frequency response analysis of probabilistic
structures using FEM to evaluate the stochastic dynamic behavior of structures with
uncertain parameters, It presents some numerical examples including verification by
Monte-Carlo Simulation (MCS). The frequency transfer function H () of displacement
of a system is expanded into the first-order Taylor series at the mean values of input
parameters. Then a function similar to the frequency transfer function of a SDOF system
is specified to interpolate each input parameter axis, Using these specific interpolated
frequency transfer functions, the mean and standard deviation time history of response can
be obtained.
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1. INTRODUCTION

With the remarkable progress of computers and advances in such techniques of numerical analysis as the
Finite Element Method (FEM) the Stochastic Finite Element Method (SFEM) has become the focus of
attention. As a result, the estimation of stochastic deformation or stress has become possible,

As for stochastic dynamic response analysis of structures with uncertain parameters, there have been
several basic investigations?-?. Hisada and Nakagiri® ¥ proposed stochastic dynamic response analysis by
SFEM using the perturbation method. The method, however, may not be viable when the degree of
uncertainty of input parameters is large because the perturbation method is valid only when the degree of
uncertainty is small and/or simple enough to be approximated, in general, in the first-order (linear).
Yamazaki and Shinozuka® evaluated the response variability of a viscoelastic finite element system using a
modified Monte-Carlo simulation method which employs the Neumann expansion. This method has a
possibility of practicability supported by the advancement of super-computers, although it requires a great
amount of computing efforts,

The authors proposed a method of frequency respose analysis of probabilistic structures by SFEM using
the perturbation method to evaluate the stochastic dynamic behavior of structures with uncertain
parameters?, Results similar to those in the reference 3) and 4) were obtained. That is, the method is
valid so far as the degree of uncertainty is small and/or simple enough just as when the viscous damping
factor is an only random variable.

This paper proposes a new method of frequency response analysis of probabilistic structures using FEM

* Member of JSCE, Ms, Eng., Research Engineer, Information Processing Center, KAJIMA Corporation (2-7, Motoakasaka
1-chome, Minato-ku, Tokyo 107)
** Ms. Eng., Senior Research Engineer, Information Processing Center, KAJIMA Corporation
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to evaluate the stochastic response of structures with uncertain Young’s modulus, unit weight and
Poisson’s ratio including uncertain viscous damping factor, . and presents some numerical examples together
with verification by Monte-Carlo Simulation (MCS) . The main concept of the proposed method is to obtain
the overall mean and variance using the contribution (mean and variance) of each random variable to an
imaginary SDOF system (interpolation function), which is computed by frequency response analysis using
the frequency transfer functions of a given MDOF system and their derivatives with each random variable.
The method is concretely outlined in the following. The frequency transfer function H () of displacement
of a system is expanded into the first-order Taylor series at the mean values of the input parameters, Then
a function similar to the frequency transfer function of a SDOF system is specified to interpolate each
input parameter axis (g,) from the values of H (w;0) and 3H (w;0)/0a, Using these specific
interpolated frequency transfer functions, the mean and standard deviation time history of response can be
obtained.

In the following, the summary of analysis is presented in the second chapter(2.). and some numerical
examples, including verification by MCS, are introduced in the third chapter (3.), Finally, some
concluding remarks obtained in this study are summarized in the last chapter (4.).

2. SUMMARY OF ANALYSIS

(1) Frequency transfer function?
The equation of motion of a system subjected to support point motions is given as follows;

[MAA MAB} i}A [K:‘A K:B] YA' Ol (1)
Mga Mzs f’B K% K% Y: Py

where  [M] : the mass matrix,

[K*] : the complex stiffness matrix,
Y4 : the absolute displacement vector of moving points,
{Ysl : the absolute displacement vector of fixed points,
{Pg : the reaction force vector at fixed points,
From the upper part of eq. (1), the frequency transfer function {H (w)} is obtained in a linear form as

follows ;
HH (ol =[— & [Mas] HKEJ 7 [ (— 0 [Mup] KX V] oo (2)
where {V}: the indicating vector of the direction of input.

(2) First-order expansion of the frequency transfer function with normalized random variables
Assume that Young’s modulus E is an only random variable (the mean and the variance are M and o,
respectively) in a system. Then through the transformation of variable in the following,

=u. .............................................................................................................. (3)

o
the random variable g becomes a normalized random variable of which the mean and the variance are () and

a

1, respectively. The frequency transfer function H (o) is expanded into the first-order approximation at
the mean point M as follows ;

H(w’ E):H(w, M).'.%(E_M) ............................................................................... (4)
Rewriting eq. (4) by @, we obtain the first-order approximation of H () at the mean point =0 as
follows ;

- Ol e

H(w, a)=H(w, 0)+3 -a (5)

where
oH _ 9H

H(w, 0)=H (0, M), 5 =54+

140s



An Interpolation Function Method for Stochastic FEM Analysis under 163
Dynamic Loads Using Frequency Response Analysis

In a simple expansion, a general expression of eq. (5) can be obtained in the following. Let the total
number of elements be N. Then the total number of random variables is 4 N (Young’s modulus E,
Poisson’s ratio y, the unit mass p and the viscous damping factor } are all random variables), and H (w) is

expanded into the first-order approximation at the mean point {a} = {0} as follows ;
H{w, a)=H (o, )+2 oH ((‘1“’0) RPN (6)
i ag=0

(3) Interpolation function of the frequency transfer function

A general Lfunctional form of the frequency transfer function implies that we can not expect a highly
accurate approximation by eq. (6). In the general frequency response analysis, the frequency transfer
function of a total system is interpolated along a frequency axis by using the frequency transfer function of
a SDOF system or a 2-DOF system. Then this method is naturally introduced into and applied to the
present method in which the frequency transfer functions are interpolated along random variable axes such
as Young’s modulus or the unit mass. Hence, consider a (4 N-+1) dimensional hyper-plane in @ and g, axis
(i=1---4 N). Then a function similar to the frequency transfer function of a SDOF system which is given
by the following eq. (7) is introduced for interpolation of the function on the g,-axis,

e T e
H )= ki (7

Refering to eq. (7), the following functional forms (complex fractional functions) are employed for
Young’s modulus and the unit mass as interpolation functions for the frequency transfer function with each
random variable, For the damping factor, a linear function is employed because it has not a serious effect
on natural frequencies of a system. For Poisson’s ratio, a linear function is inevitably employed because no
functional form is available for a spring-mass model, where ¢,, ¢, and c, are complex constants. Namely,

For Young’s modulus ;
1

H(w, ai)zm .................................................................................................. (8)
For the unit mass ;

+a;
H(w, @)= 0 (9)

¢+ cqa;

For the viscous damping factor ;

H (w, ai)z Gy Callly ~owwvevverrrrem e e e s (10)
For Poisson’s ratio ;

3+
3 Gi e e ai)

Hlw, a)= =c¥c.a

¢, ¢;and c; can all be computed from the values of H (w, 0) and 8H(w, 0) /da,. For example, in the case
of the unit mass, c¢,, ¢,and c; can be determined with the condition that ¢, and ¢, are both real constants as

follows ;
cl=l @, (@ — i), C =l(a b,—a,by), ¢ =_1.a (@24 @) +vererreeeremmmmee e (12)
A 2V/y 2 A 2V l 2/s 3 A 2 1 2
where { . an imaginary unit

A=0a,(a;b,— a.b;)+ a, (a, b+ a.b.)
a:=Re[H(w, 0)], a.=Im[H(w, 0], by=Re[dH(w, 0)/2a], b.=Im[2H(w, 0)/2ai]
(4) Statistical value of response
The main objective of this study is not to obtain approximation of response, but to obtain statistical value
of response, Hence the following direct method to obtain the moments of each order of random variables is
introduced® .
The first-order moment (the expectation) is obtained as follows ;
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In the same manner, the second-order moment (the variance) is obtained as follows ;

Var [l= [ 1 (G E LI pa@) i vt (14)

Other moments of further order are also obtained in the same manner.

(5) Statistical value of time history response

Denoting the Fourier spectrum of input by F (@) and the frequency transfer function by H(w), then the
response g(t) is obtained by the Fourier inverse transformation as follows ;

g(t)=[mF () H (@) @U08E ++-vvvervsemmesemmsee e ettt ettt as)
Considering that g (%) is a function of @, that is,
g(ai; t):[m F <(4J)H (ai ; Q)) eiwtdt ............................................................................. (16)

the overall mean m (%) and the overall variance ¢% (%) are theoretically obtained by the following eq. (17)
and eq. (18), respectively.

mr(t)=E[g(t)]=[:---[:g(a,, o) Qi B) Fann (@, v @) Qe Qg weoeeeeeeeeeeeeeeeeeee e a7
o3 ()=Var[g()]
=[:...[:{g(al’ e QAp, Z‘)—.E‘[8'(t):”z.fAr~-An(aly see an) dal.-.dan ........................... (18)

It is, however, quite difficult to compute eq. (17) and eq. (18) because the statistical behavior of each
random variable is discussed only along with each axis in this study.

On the other hand, the mean 1, (%) and the variance ¢? (t) with each random variable g, can be obtained
by the afore-mentioned method as follows ;

m,-(t)———E[gi(t)]=I:...[:g(o, v, 0, @y 0, v, 05 8) faem (@ -, @) dar--dan
:[:g(ai; B) Fa (@)@ - oreeeeemmmmemme (19)

where Su(a) © the probability density function of standard normal distribution, that is,

_ 1 _a
Ful@=g=exp(~F)
In the same manner,

ai(t)= Var[gi(t)]=[: 18(ass D)= E [8 ()P Say (@) @@ ++ervermemeemmemmmmeeieeee oo (20)

And it is supposed that the overall mean and the overall variance are obtained in a simple way, which
needs to be verified by MCS, as follows ;

mr(t)=E[g(t)]=j4"lj‘V*;ZNE P g () oot e e (21)
O'?r(t)': Var [g(t)]zzlwééai(t) aj(t)E[aiaj] .......................................................... (22)

As for the evaluation of correlation, the overall variance can not be obtained as a sum of variance of each
random variable using their correlation coefficients because the frequency transfer function which
determines dynamic behaviors of a system has a strong non-linearity with the change of Young’s modulus
and the unit mass. So it is inferred that the overall variance with a correlational effect can be obtained by
using a specific interpolation function corresponding to a correlation coefficient. Then based on this
inference the following method is intuitively employed. The first-order derivative 8H (w;0) /da, in eq.
(6) is changed into the modified derivative 9H™ (w; 0)/Sa, to consider the response behavior due to
correlation as follows ;

aH”(w;O)zaH(a);O)+ ﬁ",‘ OH (w3 0)
oa; aa; J=10%d) oa,
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Instead of using eq. (22) with the real value of E [a,a,], the response behavior due to correlation is
evaluated by using eq. (23) to specify the interpolation function and eq. (22) with E [a;a,;] =8,,, which
means that g, and q; are independent if {=j;,

3. NUMERICAL EXAMPLES

(1) Verification by Monte-Carlo simulation method

a) A SDOF system

First of all, to verify the basic validity of the proposed method, the response of a SDOF system
subjected to the El-Centro accelerogram is computed and compared with the result of Monte-Carlo
Simulation (MCS). Input data is summarized in Table1. Fig.1 shows the deterministic response
corresponding to the mean value of the input data. Fig. 2 shows the acceleration response by MCS, Fig, 3
shows another result of the MCS method in which random variables, % and m, vary separately (this MCS
method is named the second MCS in this study). Fig. 4 shows the acceleration response by the proposed
method. The rigid line and the broken line mean the mean response and + g-response (s is the standard
deviation), respectively. Fig.5 shows their g-responses,

Fig. 4 shows a satisfactory agreement with Fig. 2 and Fig. 3 and these results show the possibility of the
proposed method to analyze stochastic response of structures with uncertain parameters.

b) A 2-DOF system

Next, to examine the applicability of the method to a MDOF system, the response of a 2-DOF system

Table 1 Input data for a SDOF system, 200 488D
i 2.5X10° 2,45 10° N/m)
the spring constant k kgflem ( m; R 100 N {\
the mass n 6.25 X 10° kgf-sect/em? (6.125% 10° kg) E A /\ M
the damping factor 3 0.05 Pl {\V,\ A\/
the input earthquake El-Centro accelerogram(N-S) E V \ \ / \
the time increment dt 0.02(sec) E_100 \--- Y
the duration of input 10.00(sec)
—200

the duration of analysis T 15.00(sec) 0 1 2 3 4 5 65 7 8 9101112 13 14 15
the coef. of variation & 02 TIME (sec)

coef. of variati s, 02 . L
fhecoet fverter _Cx Fig. 1 . Deterministic response of the SDOF system.
trials of M-C simulation N 400

200 ;%820
200 ;820 Y
R 100 . ,.", 7
ANA E I\ IATEN
% 10 \ / ;“ A IS’ Mﬁ lI'A\l‘“'lf\ \//\“\ //\\'/Q\ NN
i WL ——
3 AT AT o ° VIR AN A
P PN LN AN AVINGAT S S N N LY RV R/ ANV
! AN /A
ot v
E _100 Y
’ _200 T T T
—200 61 2 3 4 5 6 7 8 91011 12 13 14 15
01 2 3 4 5 6 7 8 9101112 13 14 15 TIME (sec)
TIME (sec)

Fig.3 Mean and +g-response by the second MCS,
Fig.2 Mean and =+ g-response by MCS.

100 (82D
200 (gal) . :
T - MCS
R A 25 . 4MCS
]é; 100 AT ,r\‘ R 75 N secon: —
g NA + M presentme
o o) A LVATAVAVAVE-Y P 5 5 A,
g o ANV ANV A o ATy N
S Sy v E h A
E _100 ¥ . ‘l,zs \
- vy
,IT\ / %\,“\7\7\\
=200 e — T %0 i )
01 2 3 4 5 6 7 8 9101112 13 14 15 001 2 3 45 6 7 8 91011 12 13 14 15
TIME (sec) TIME (sec)
Fig.4 Mean and = g-response by the present method. Fig.5 o-response by each method.

143s



166 H, Ukon, T, YosHikKIYO, Y, OKIMI and T, MATSUMOTO

subjected to the El-Centro accelerogram is computed and compared with the result of MCS just as in the
case of a SDOF system. Input data is summarized in Table 2. ‘Fig. 6 shows the deterministic response
corresponding to the mean value of the input data, Fig, 7 shows'the acceleration response by MCS, Fig. 8
shows the acceleration response by the second MCS. Fig.9 shows the acceleration response by the
proposed method. The rigid and broken line correspond to the mean and s-response, respectively. Fig. 10
shows each ¢-response,

Fig. 9 shows a quite good agreement with Fig, 8 because in present analytical method, it is assumed that
random variables change along with each axis just as they do in the second MCS. These results imply that
the present method is satisfactory to approximate the behavior of each random variable even if the system
is a MDOF system, On the other hand, Fig. 7 shows some difference from Fig, 8 and Fig. 9. This is because
the second MCS and the present method can only evaluate the behavior of each random variable along with
their axis, and the effect of intersectional area of any pair of random variables is not considered.
However, it is shown that if each random variable has a linear effect on the stochastic response, the value
of the standard deviation by the second MCS and the present method becomes 1/4/7 of the real value,
where 7 is the total number of a random variable’s axis. In this case, 7 is 4 and the value of the standard
deviation of the two should be multiplied by 2.0 (=+/4) if the spring constant % and unit mass m had a
linear effect on the response, The ratio of the maximum value between the two is about 1. 3~1. 8. Refering
to the result of a SDOF system and the present result, 7 should be reduced by 1 if k£ and m are

Table 2 Input data for a 2-DOF system.

al
200 +820
the spring constant ky 5.0X 105 kgflem (4.9% 108 Nim)
the mass m, 6.25 X 10° kgf-sect/em® (6.125 X 106 kg) léc 100 f f
the spring constant k, 5.0 10° kgfiem (4.9 X 108 N/m) !S) /\/\{\ /\ A l\ /\ A /\
the mass m, 6.25 X10° kgf-sect/em? (6.125 X 10 kg) g 0 U U \/ i/
the damping factor h, 0.05 153 \ /
-100
the damping factor hy 0.05 v v
the input earthquaice El-Centro accelerogram(N-5) 200
the tirne increment dt 0.02(sec) 01 2 3 4 5 6 7 8 910 11 12 13 14 15
N B TIME (sec)
the duration of input 10.00(sec)
the duration of analysis T 15.00(sec) Fig.6 Deterministic response of the 2-DOF system.
the coef. of variation & 0.2
the coef. of variation s, 0.2
trials of M-C simulation ~ . 400
(gal)
200 €
(gal)
200 R 100
; §
g 100 ’ R, P P
S i AN 19; 0 =
P AN IR AR N A s S
9 o TN AN AR ==s E -100
N Ry VRV VGV I
}Si; o ! \\/I
-100 7 v — 200 ey ——— ——
01 2 3 4 5 6 7 8 910 11 12 13 14 15
~200 ——— —— . TIME (sec)
¢ 1 2 3 4 5 6 7 8 910 1112 13 14 15 A
TIME (sec) Fig.8 Mean and +g-response by the second MCS.

Fig.7 Mean and +s-respoose by MCS.

(gal)
1} 60
200 (gal) 5
A
b h
B 100 A I
g R \ I‘ ———— present method
B ® A
9 o 4 A N
: : 1%,
E 1
—100 A1s t
1
o
- 200, . . — ; Moo
61 2 38 4 5 6 7 8 9101112 13 1415 01 2 3 4 5 6 7 8 9101112 13 14 15
: TIME (sec) TIME (sec)
Fig.9 Mean and *+g-response by the present method, Fig.10 o-response by each method.
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167
both random variables simultaneously. Then n becomes 2 in this case. Fig. 10 shows their s-responses,
two of which are multiplied by +/2. These results show that it is possible to apply the proposed method to a
MDOF system,

(2) Basic examination by finite element method

a) Examination of correlation and mesh division

In this section, four different finite element models of a 2-dimensional area (10 m<10 m) are computed
by the proposed method and compared with each other to examine and approve the validity of the method
including the examination of correlation and mesh division, The first model is a 1-element model ; the
second model is a 4-element model ; the third model is a 16-element model ; and the fourth model is a
100-element model. Input data are summarized in Table 3. Each analytical model is shown in Fig. 11.

The deterministic response of a left-edge-surface point (shown by an arrow-mark in each figure) in the
100-element model is shown in Fig.12. Fig. 13 shows the g-response of the x-directional acceleration
response of the point. The correlation coefficients between any pair of elements are set at 1.0 in every
model, so it is expected theoretically that the results of each model will show good agreement. The
maximum values and their occurrence times are summarized in Table 4 including their computing time (by
HITAC M-280H).

These results show good agreement with each other and there seem to be no serious problems in the
present method concerning correlation and mesh division. So it is possible to apply the proposed method to
a practical model.

b) Verification by Monte-Carlo simulation

Several cases of MCS are performed to verify the validity of the proposed method. They are summarized

)
Table3 Input data for FEM models, so0 122
200
the Young’s modulus  E 2.1X10°% kgflem? (2.058 X 10°N/m?) % 100 Leenrins U m
the Poisson’s ratio v 0.3 g o r\Ah . W""“W“*“—"‘
the unit weight w | 25X10-3kgflem®(2.45 X 104N/m?) [ 100 [ ‘
s - ¥
the damping factor h 0.05 E 200 ! !
- Hi
the input earthquake El-Centro accelerogram(N-S) 300 '
the time increment dt 0.02(sec) 01 2 3 4 5 6 7 8 91011 12 13 14 15
the duration of input 10.00(sec) TIME (sec)
the duration of analysis T 15.00(sec) Fig. 12 Deterministic response.
the coef. of variation LA 0.2
the coef. of variation & 0.2 200 (gal)
s
the coef. of variation 8, 0.2 I
the coef. of variation &, 0.2 g 150
A
the correlation coef. P 1.0 'l;
100
D
E
H
T
1 ¥
o
N 0
1<—10m—> l 0.1 2 3 4 5 6 7 8 91011 12 13 14 15
TIME (sec)
T T T Fig.13 o-response of the 100-element model.
10m
l Table 4 Maximum mean and s-response.
Model-1 Model-2 model ro. & mean/o max. CPU | CPU/elL
l 1 1-element E v —235.18(2.54)
FEM ok 0.2 86.49(2.60) | 4.0(sec) | 4.0(sec)
4-element E.v —267.46(2.52)
FEM anh 0.2 92.19(2.58) 79 1.98
16-element Ev —262.15(2.52)
Model-3 Model-a FEM ok 02 89.742.58) | 242| 151
100element E,v ~273.59(2.52)
Flg. ]] Each analytical model- FEM ras 0.2 96.42(2.58) 163.3 1.63
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in Table 5. The g-response by MCS in each case are summarized in Table 6 and the corresponding results
by the present method are also summarized in Table 6.

These results show a tendency similar to the results of a 2-DOF system. The value in the blanket in
Table 6 is /n times the value of the original one. These modified values agree well with the MCS values,
To examine the effect of each random variable, those g-responses in the 1-element model are shown in

Table 5 A list of analytical cases. Table ¢ Maximum g-response,

case model r.v. mat. trials case MCS n present method
1 | 1-clement Ev,oh 1 100 1 130.05 gal(2.60 sec) | 8 86.49(2.60)[149.81)
2 4-element E,v,pk 1 100 2 145.56(2.58) | 8 92.19(2.58)[159.63)
3 | .l6-element E,vo.h 1 60 3. 164.06(2.70) | 3 89.74(2.58)[155.43]
4 | 4clement E,v,p,h 2 100 4 165.52(258) | 6 72.93(2.58)(178.64]
5 4-element E 2 100 5 144.94(2.60) | 8 50.19(2.82)(141.96]
[ 4-element » 2 100 6 156.84(2.84) | 8 §1.48(2.58)[145.61]
7 | d4-element E,» 2 100 7 170.16(258) | 6 71.54(2.58)(175.24)
(gal) (gab)
125 125
i i
A
B 100 N 100
: {
3 75 i D 7
n ) , ;
A M. NN s
A A
T " T ) - My
T 25 1 T T 25 I WS y
S M N i il
0 ; ,
01 2 3 4 5 6 7 8 910 1112 13 14 15 01 2 3 4 8 6 7 8 910 1112 13 14 15
TIME (sec) TIME (sec)
Fig. 14 o-response by MCS(r. v. ! E). Fig.15 o-response by the present method (7. v. : E).
125820 125 (gal)
8 T
H A
N100 B1o00
D A
A R
D75 ‘ b 75
e |4 :
L 5N i
1
S ‘”‘} \M% ? 25 M M M .,
o
é J L iy, L g J w k
o o v
01 2 3 4 5 6 7 8 910 11 12 13 14 15 01 2 3 4 5 6 7 8 910 11 12 13 14 15
TIME (sec) TIME (sec)
Fig.16 o-response by MCS(r.v. : ). Fig,17 o-response by the present method (7.v. : p).
125 83D 1254820
] T
: A
N 100 100
D A
A R
g 75 D 75
D
D
H ¥ s0
v o 1
1 A
P ' M i M%MWMWM
o iy o
L \\"M P, A [T
01 2 3 45 6 7 & 910 f112 131415 01 2 3 45 6 7 8 910 1112 13 14 15
TIME (sec) TIME (sec)
Fig.18 o-response by MCS(r.v. : v). Fig.19 o-response by the present method(r. v. @ 1).
125 182D 125 (&aD)
S S
T T
A A
I}
N1 N1
R [
D 75 D 75
D D
§ s0 E 50
1 1
A A
T T "
[} Q
SR | TN S— R T -
01 2 3 4 5 6 7 8 910 11 12 13 14 1§ 01 2 3 4 5 6 7 8 910 11 12 13 14 15
TIME (sec) TIME (scc)
Fig.20 o-response by MCS(r.v. : h). Fig.21 o-response by the present method(r.v. : A).
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Fig. 14 through Fig. 21, and the maximum value of their mean and g-response are summarized in Table 7
(1-element model) and in Table 8 (4-element model).

These results show that the present method agrees well with MCS as long as Young’s modulus and unit
weight are not random variable simultaneously even if the system has many degrees of freedom and/or
several different materials, Even in case of Young's modulus and unit weight being both random variables,
the statistical value of response could be obtained with good accuracy by using the afore-mentioned
modification factor y/n . This fact implies that the effect of their simultaneous randomness may not be so
serious because they behave together as a dominant frequency w=+%/m except for inertia forces.

(3) Numerical example of a practical model

Table7 1-axis behavior in the 1-element model Table 8 1-axis behavior in the 4-element model
(Maximum mean and s-response). (Maximum mean and o-response).
ru. 5 MCS second MCS present method ru. 5 MCs second MCS present method
E,v —173.43(2.28) —236.50(2.54) —235.18(2.54}) E,v —219.95(2.52) —-272.77(2.52) —267.46(2.52)
mh 0.2 130.05(2.60) 85.51(2.60) 86.49(2.60) oh 0.2 145.36(2.58) 93.26(2.68) 92.19(2.58)
~253.67(2.54) —252.98(2.54) ~279.71(2.52) ~278.18(2.52)
E 0.2 60.61(2.92) 57.05(2.60) E 0.2 69.08(3.10) 61.97(2.70)
—268.82(2.54) —271.66(2.54) —290.33(2.52) —290.85(2.52)
v 0.2 30.90(2.72) 30.26(2.86) v 0.2 30.07(3.04) 31.47(3.04)
—256.58(2.54) —253.44(2.54) —284.11(2.52) —280.14(2.52)
r3 0.2 59.33(2.92) 58.86(2.60) r 0.2 60.50(2.68) 65.79(2.58)
—272.41(2.54) —272.09(2.54) —291.16(2.52) ~290.83(2.52)
k 0.2 12.11(2.92) 13.49(2.92) h 0.2 15.98(3.20) 14.51(3.08)
800 (gal)
) 200m | 600
mid-surface point 400
mat.5 R
mat 4 i E 200 Y
mat.3 1§ 0 mvn) Hlvl"AVA fl UAVAVI\VAUA_\UMAV.‘ N
o]
T e L !
mat.2 § 400
~600
mat. 1 —800"
- 01 2 3 4 5 6 7 8 91011 12 13 14 15
. . TIME (sec)
Fig.22 An analytical model. . -
Fig.23 Deterministic response,
Table9 Input data for a practical model.
the Young’s modulus E, 2.0X 10% kgflem?(1.96 X 10° N/m?) ]the Poisson's ratio vy 0.30 |the input earthquake El-Centro accelerogram(N-S)
E, 1.0X104 (9.8X10% vy 0.35 |the time increment dt 0.02(sec)
E, 2.0X10% (1.96X10°%) vy 0.40 | the duration of input 10.00(sec)
E, 1.0X10° (9.8x107) vy 0.40 |the duration of analysis T 15.00(sec)
Eg 2.0%10? (1.96X 107) v 0.45 {the coef. of variation 8 0.2
the unit weight w, 2.5X10-? kgflem*(2.45X 104 N/m?®) |the damping factor 4, 0.03 {the coef. of variation IS 0.2
w, 25X107%  (2.45%X 109 hy 0.04 | the coef. of variation 8, 0.2
w, 2.5%10-%  (2.45%X10%) hy 0.05 |the coef. of variation & 0.2
w, 2.5%10-%  (2.45X10%) ky 0.07 {the correlation model pldx,dy) 3
=expl —{(a-dx)? + (p-dy)?}?]
w, 25X10- (245X 109 b 0.10 pl—{ b))
100 &30 400,€2)
s s
: : l
A
l3300 g 300
4 H
3
° 200 | l © 200 i 1. .
D D
v ‘EJ d\
1 100 | N 1 1 100 | ¥ ; )
S — i —
1 H
§oodemr S ool « ——
01 2 3 4 5 6 7 8 9 1011 12 13 14 1§ ¢ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
TIME (sec) TIME (sec)
Fig.24 o-response by MCS. Fig.25 o¢-response by the present method,
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Table10 Results of the practical model.

model r.o. s mean/c max. remarks (gal)
MCS(N=100) s 400
10-element | E,v —560.81(2.40) H
FEM ik 0.2 311.91(2.78) £ 300
D
perfectly A
200clement |  E,v ~655.76(2.38) | correlated I
FEM Fas 0.2| 101.32(3.20)392.41] |(n=16) P 200 I
D
rectl
200clement |  E,v —656.92(2.38) | torrelated v
FEM h 02| 74.02(3.20)(331.03) |(n=20) 1 100 A
T
ectly 1 MW\M«N\____
200element v —658.52(2.38) | correlated R i
FEM b 0.2| 73.15(3.20)(327.14] (n=20) T T -
£ ! ! YT 01 2 3 4 5 6 7 8 910 11 12 13 14 15
200lement |  E,v —658.49(2.38) | comrelateden = 15) TIME (sec)
FEM Fxs 02| 69.93(3.20)(270.84} | (6=5=10m)
exponentially Fig.26 o-response with the exponential correlation
200clement |  E,v —658.51(2.38) | correlated(n= 15)
FEM ah 02| 69.333.20)(268.51] |(a=10m, g=1m) (e=10m, g=10m).

The analytical model shown in Fig. 22 is composed of 200 elements and 231 nodes. The mesh layout is set
so simple that the result can be checked by MCS of a small FEM model, Input data are summarized in
Table 9. The deterministic response is shown in Fig, 23.

The g-response at the mid-surface point (shown in Fig.22) by MCS is shown in Fig.24 and the
corresponding g-response by the present method is shown in Fig.25. Other examinations are also
performed and those results are summarized in Table 10. These results show a tendendency similar to the
above numerical examples, Finally, a practical FEM model with an exponential correlation which is
specified by the reduction constants of correlation, a and 2, is analyzed by the present method and also
summarized in Table 10. The g-response of the point is shown in Fig. 26.

4. CONCLUSIONS

A new method of frequency response analysis of probabilistic structures using FEM to evaluate the
stochastic dynamic behavior of the structures with uncertain parameters is presented. Through several
numerical examples, the following conclusions were obtained.

(1) The stochastic response of structures with uncertain parameters can be analyzed quantitatively
with a high accuracy by the proposed method when Young's modulus and the unit mass are not random
variables simultaneously.

(2) Ingeneral, Young’s modulus and the unit mass affect the stochastic response to a similar extent,
Poisson’s ratio and the viscous damping factor affect less, This can be quantitatively examined using the
present method.

(3) The present method is available when Young’s modulus and the unit mass are both random
variables using the modification factor proposed in this paper.

By using the present method, other numerical examinations are possible. Other informative remarks
from the practical point of view, such as design and construction, are also possible and research on this
will be reported in the near future.
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