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A TANGENT THEORY OF THIN-WALLED BEAMS
AFTER ANY LARGE DISPLACEMENTS

By Masahiro A* and Fumio NISHINO**

Upon an existing nonlinear theory of thin-walled beams for truly large displacements,
linearized governing relations are rigorously developed on a general equilibrium after any
large displacements, Apart from those in that nonlinear theory, another set of parameters
are employed for the infinitesimal variations under the same kinematic field to develop a
normalized formulation, Any bucklings of thin-walled beams arising after large displace-
ments can be put exactly on the present tangent equations : as an unprecedented example,
the flexural buckling of an open-cross-section beam subject to finite torsion and
compression is analyzed,
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1. INTRODUCTION

As for the thin-walled beams, there have been nonlinear formulations taking account of up to the
quadratic or cubic terms of finite displacements around the initial configurations?~9-9-9 Recently, we have
a next-stage formulation where within the frame of small strains, no truncations are made upon higher
nonlinear terms of displacements?,

The formulations of up to the quadratic terms are enough to be linearized around the initial
configurations and to analyze those stability problems whose preceding deformations are small enough, At
the same time, there are other direct derivations of the similar stability equations of thin-walled beams, by
applying the variational principle with taking account of the initial stresses?-?-.19.12  When governing
equations containing the nonlinear terms higher than the second are linearized after the displacements, the
resulting stability equations contain to some extent the effects of the preceding deformations, But, in
order to obtain an exact solution after large displacements, linearized relations have to be rigorously
developed upon that deformed configuration. For instance, by doing so on the large pure bending of a
thin-walled beam, Vacharajittiphan and Trahair'? presented an exact solution for its lateral buckling,

In this paper, a set of linearized governing equations of thin-walled beams are rigorosly established upon
a general equilibrium after any large displacements, not upon a peculiar one such as the finite pure
bending. The formulation is to be developed in parallel with that for large displacements themselves to
describe the various preceding equilibria . the present linearization is developed on the basis of an existing
nonlinear theory of thin-walled beams, which can deal with any large displacements. By reducing the
general preceding state of deformations to each particular one, the present formulation is capable to solve
exactly any stability problems after large displacements. As an unprecedented example, the flexural
buckling of a straight thin-walled beam subject to large torsion and compression is analyzed,
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2. GEOMETRICALLY NONLINEAR THEORY OF THIN-WALLED BEAMS

Our present analysis is made upon an existing finite-displacement theory of thin-walled beams”, which is
valid to any large displacements so far as the resulting strains are small compared with the unity., We here
summarize that governing equations before we proceed to our study.

Considering Cartesian coordinates {x, y, z} in the 3-D space, with {i,.} = {i,, i,, i.} being their
orthonormal base vectors, we represent a thin-walled beam’s axial line, namely G-line, by one-parameter
curve {x:(¢), ye(&), zs(O) (0=¢<1), where ¢ is a Lagrangian coordinate defined along natural length
of the line, with ] being that length between the two ends. Then, unit elongation ¢, curvature x; and

torsion 7y, of the G-line with respect to ¢ are represented in terms of the {x; y; z, as follows :

r Yy =z

’2 ,2 2y _ 1 3 7”2 7T N2 ———1— ” " o

R e R T T L
Kj AT

................................................................................ (1. a-c)

where prime means the differentiation with respect to {. And, when the unit vectors into the bi-normal
principal-normal and tangent directions on the G-line, respectively denoted by i;,, i, and i, are to be
represented in the form of {i;rue) =[Ts(&)] {ixsz) , elements of the orthonormal [T;] are obtained as
follows :

1 ‘ y// z/’ ‘ z/l x// ‘ x// y/’
(1 + 5)2” < y/ z/ ’ z/ x/ b x/ y/ >
1 e
TN=| ——— o S & S| e
[T«¢)] Gt or <*» ¥ 27> (1+E)zl<x,y,z> (2)
1 7 e ’
1+e <x, Yy, 2> .
Hereafter, letters enclosedin { }, < > and [ ] indicate a column and a row vector, and a matrix,

respectively.

Two other coordinate sets in cross-section, asshownin Fig.1: {¢, n} are orthonormal coordinates with
origin at the G-point (movable as a rigid) ; and |s, n} are convected such that s is defined by natural
length along the thin-wall’s middle line with n being perpendicular to the s-direction. Then, the original
uniform cross-section is described by shape of the middle line {¢*(s), »*(s)} and thickness of the wall ¢
(s), where asterisk means a quantity on the middle line.

Suppose that a set of unit vectors {ig, i¢, are determined by
rotating the {i;,, i;J around i.. by angle ¢ (¢). By regarding themas <

the base vectors of the former {£, 7}, we have ¢(¢) as the fourth
freedom of torsional rotation of cross-section, Denoting this rotation
by {igenol =[T ()] licerot , we have the orthonormal [7’; 1=
[T,] [Te] relating the {igene} to the spatial {i,,,} . When the rates of
change of {ie,s} into ¢ are to be represented in the form of d {igene)
Jde=[®(¢)] tigenst , the derivative matrix is represented as

0’ 5\/9 T Ke
[BEN=] =7, 0, — sy |cererrermmmmmeeemmmeniirieees (3)

ey Knsy 0

Fig.1 Cross-Section.

where, by the use of the former x; and ¥,

Ke= Ko SIN @, Kp=1 COS B, Fo= Yo @ wr-rrrrrermrssrmssrmaimtiiiii it (4. a—c)
and these are now called curvatures into {&, 7} —directions and torsion of cross-section, respectively.

In addition to the former translations and rotations as a rigid of each cross-section, we consider the
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A Tangent Theory of Thin- Walled Beams After Any Large Displacements 153

distortion of cross-section under the following well-known hypotheses : i) no strain components in the
plane of cross-section; ii) no shear strain in (n, ¢)-direction; and iii) while no shear strain in (s, ¢)
—direction on the middle surface of an opened thin-wall, as for thin-wall of a closed cross-section’s cell, the
shear strain in that surface is to be taken into account by the shear flow theory. Considering inplane
components as well as the warping, we resolve the relative displacements on cross-section into {s, n, ¢}
—directions and denote them by {u (s, n, &), u.(s, n, &), w(s, n, &)}, respectively. By solving the
partial-differential equations related to the above restraints on the strain components with assuming that
any strains are small enough compared with the unity, we arrive at the following results : By introducing
the warping obtained from 1i) and iii) in the usual form of w=7(¢) W (s, n) into the restraints of i),
we can see that in a thin-walled beam of open cross-section, which admits larger torsions even within the
frame of small strains, the inplane components have to be taken into account in the form of {u,, u,} =7
(&)2{Us(s, m), Un(s, n)}. On the other hand, as for a beam of closed cross-section where the warping
itself is small enough, the inplane components become negligible. The modes of the displacements,
dependent only upon the shape of cross-section, are eventually obtained as

Wie, w=["[0~ (G5 s ds+om

ds, m= [ ot [2 o¥(c )+(0(8)—0(r))pn(r)] ST (5. 0-0)
s, n) f ¥t dr+ pin
where 4(s)=angle of s- from §—direction ; on(=p%) and p,(=p*—n) are, as shown in Fig. 1, lengths
defined by
On

_[ cos 4, sinei lfl )
—pos| L —sind, cosé ’
and subscript ( )cosea means to be accounted of only in thin-wall of a closed cross-section’s cell,

The present kinematic field is, instead of usually for the displacements, for the beam’s spatial
configurations themselves which might be either before or after deformations . when a set of four actual
functions {x;, y; z¢ ¢} aregiven, there is determined an associated spatial configuration of the beam, In
this kinematic field, under the condition of small strains, only the following two of the Green's strain
components are allowed to take place :

ess= e = £ [k —nlxn] =W +(%($2+ 27 os., esg=% O[] (7.a,b)
where
8(s. n)= (fflp/st(fiss lt )mosed DL 3 ettt ettt ettt eb e (8)

and notation [ ) means difference between before and after deformation, i.e. [Fl=F—F®° with ( )°®
denoting an initial quantity ; and subscript ( ) o5 means to be accounted of only for an open cross-section.
We define the following stress resultants :

N=/;”« d(area), Me):ﬁdc:f d(area), M(m=£0;577 d(area)

Mw=[0§§W d(area), K=l0§§(§2+nz) d (area), Ts='/;¢78g9 d(area)

where ¢, and o, are the stress components conjugate to e, and e, respectively. The body forces, and
the surface tractions acting on the end cross-sections (¢{=( and ) are here assumed to be prescribed in
terms of the components into spatial {x, y, z} —directions on the material {s, n, ¢} -field : {p%, 3, P¥

and {g2, g2 g2} , respectively. Then, we define the following body-force resultants :
Dz, Tueym Moym Moym M m(W) Dz
eV <1 &€ n U V W> d(area)-------
2, i’ 3 2, g) _/ pz <1, & 7. U, V, W> d(area) (10)
D=
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where {U/, V| =components of the inplane-relative-displacement mode into {¢, p}-directions, trans-
formed from the {U,, U,} of (5.b, c). And, by introducing surface-traction components {g¢, g2 g¥, in
place of {pg,,}, into the above (10), we define their resultants, {F o), =, {Mwyel , similarly to
Poval . ) AMwzsat -

When applying the principle of virtual work in a kinematic field, variationals of its independent
functions, {x¢ ¥ Z¢ ¢} in the present case, are usually employed also as the independents of virtual
displacements, However, it is possible to employ other independent variationals as long as they are
mathematically in the one-to-one to the former direct ones. In our reference paper”, the rate of change of
the G-line’s variational position vector into ¢ is resolved into the foregoing {igr. (&)} -directions :

dié' &G(§)=<3a<rx§)(§)>{ic(tx§)} .................................................................................... (11)

And, noting that these {Sau.(¢)} together with translations at £=0, {8x:(0), 0¥:(0), 62:(0)}, arein

one-to-one to the direct {6x:($), 6ys(L), 62:(O), aset of {(8a:(8), dar(E), dac(l), 66(8)) ;5 (8x6(0),
8ye(0), 8z5(0))} are there employed as the independents to avoid complicated variational calcules. For

the sake of physical understanding, we rewrite the resulting equilibrium equations as follows :
N=ig" <F‘(xyz)(§)>{i(x?lz)}
iy Iy iz
d A (s e x % % .
d—§(<Mm, —Me, T> [T]){l(xszH‘ Xe Yo Ro|T<mMmg My, Mz> {l(xyz)]_o """"""" (12. a—c)
F, F, F,
T=Mu+ Ts+(7K)os+ 1w
where N=axial force; My=Dbi-moment; T,=St. Venant’s torsional moment; {M,,, —M, T} are
understood as components of cross-sectional moment around {ige,e}—directions; K represents an
additional torsional moment per unit of torsion ¥, produced by those ¢, in other fibers than in the G-line
whose directions are deviated due to the large torsion from the G’s tangent direction; {Fi,. (¢)} are
components of cross-section force into {i.,.} —directions, represented by

- ¢
{Exyz)(g)}ziF(wz)}o._[ {Z-)wyz)(f)} 5 rrerrrreree 13)

and {71zy2) and 77 are components of distributed external moment around {i vz} —directions and external
bi-moment, respectively. Here, superimposed asterisk means the dependence upon a reference frame
movable with displacements. Indeed, the {ﬁ(mz)} and 1, are related to the prescribed body-force
resultants of (10), as follows :
iz iy i
<’;7k7f(xyz)> Hiwyal= {ﬂx ”A‘}y {T}zs ;;LW={T}§°{77L(W)($5/2)}+[2 ')A’(ﬁ‘}e‘{mwxyz;}"'{i"n'{mwxxyz)f)]o.s.
il il il

............................................. (14. a, b)
where
Mo Mey Mo g — (V< Muyzyz>os.
Mone May Maz | = X T _(,)?2< m(v)@yz)>)on S (15)
Mo Mgy Mg — V< Mmzya>
and {T}, {T}. - and {@},, - indicate the relevant row and/or column vectors in[T]and [#]. In

(14.b) and (15), it is to be mentioned that the linear and quadratic terms of torsion ¥ are additional ones

related to the distortion of cross-section, and small enough compared with < M gzyz>> 0T < Mnyryz -
The mechanical boundary conditions are obtained as

ui‘(xyz)}l §=t={F(xyz)}L . " .
[T1 M, —Me, T ecoor =Mz, My, Mooy} rooemmseremmmmmemmmmnseeeee e, (16. a—c)

*
Mwl g=0,0r =M wo,0r 1
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A Tangent Theory of Thin- Walled Beams After Any Large Displacements 155

where | M xyz) and M w are external moment components around {j,.} —directions and bi-moment acting on
the end cross-sections, which are related to the surface-traction resultants, {M vz, ***, (M waye) ,in
the same manner as |{Muy,} and 7, to the body-force resultants by Eqs. (14.a, b) and (15).

We can write down the geometrical boundary conditions as follows :

{%e, Yoo 2o} s-oor z’\={ Ze, Yo Zeloor:

’ ic(eng)}' c=0,0r1 (_—_[T(C)] I £=0,0r l{ i(xyz) }):{ EG(&):) ! QOF L] tTUTeeTeeeeeeesss s (17 a_c)

7)\' | ¢=o0or1= 77'0,01' 1

Let the {£&, 7} be chosen into the principal axes of cross-section with the G-point taken at the gravity
center, and, as well the origin of the s-coordinate be chosen to satisfy [ ,W (s, n) d(area)=0. Then,
we define the following cross-section constants

Azld(area), I§§=l§? d(area), I,,,,=/;7]2 d(area)
Tyw= [ W? d(area), Lve= l W¢ d(area), Twn= [W” d(area)
IG:.[(SZ_'- 7% d(area), Iac=[(52+ n*) d(area), Ice=fn(§'2+772)5 d(area)

IG"=.[(EZ+ 7°)7 d(area), Icw=£(§2+ 7)) W d(area), Js=/ 46" d(area)

Assuming that the strain components, e, and e, of Egs. (7.a, b), make their each relevant stress
components arise proportionally | o,,=Fe., and ¢,,—=2 Ge,,, and executing the integrations of (9. a-f)
with the use of the above cross-section constants, we obtain the constitutive relations, as follows :

N A, I; [sa]

M, L, Iver | Le (=]

Mw | =E Ly Ioms | Lin [(=x] e QA [5) e (19.a, b
My Tow, | Iow (=77

(K)os. sym. Lc | o= (%[92])0_3_

3. LINEARIZATION AFTER ARBITRARY FINITE DISPLACEMENTS

Around an arbitrary state of equilibrium governed by the nonlinear equations of Sec. 2, we consider its
infinitesimal variations under the same kinematic field. While a set of linearized equations can be derived
by literally linearizing those nonlinear equations regarding the independent {x;, ys zc @}, we here
employ another set of independent variationals upon the foregoing equilibrium ;

Let the displacement of the G-line, or;, be decomposed into the foregoing {igzye) —directions :
b\rc(§)=<8ur(§), 3uz(§), 5U{(§)>ii6(rx§)(§); ..................................................................... (20)
Hereafter, we denote a variational quantity by prefixing . When the rate of change of §r; into ¢ is to be

represented by the form of (11), by differentiating (20) with the use of (3), we have

da; Sul —% Our
8(1” = b‘u;‘ + Ye Xe 8uk .................................................................... (21)
b‘a; aulg ~—X¢ 3u;
And, we can develop the relevant variations of ¢; and i; as follows :
ST = (Yo N_ O . Oax L,
Oec=0Vrg r(;—-&ag, 6\[6;—3< lr'gl >_1+EG th+1+£G Lox (22 a, b)

After the variations of (20), we consider such an angular position of each cross-section that its {&, 7}
—axes are not rotated around the (foregoing) i;.. When denoting the unit vectors into those {& 7}
—directions as (it dile, icntits}, we have the |§il;, 8ii,] determined as:
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. -1 . . . —1 . ,
8:{;§=m (cos ¢da.+sin ¢da,) ice, 6‘12,,=m (—sin @dar+COS @bay) fgg -+ " (23.a, b)

As the fourth freedom of variation, we now introduce infinitesimal rotation §¢ (¢) of cross-section around
icc from the former {¢, 7} —directions. To be mentioned, this §¢ (¢) is related to the direct variation of ¢
(&) as 8¢=0¢— {8 ar— Ysdax} /xs. The change of {£, 3} -directions due to §¢ are given by {§i%,, &il,} =
8¢ lign, —ice} . Thus, the total variations of {ige,ef after {Suirs, 0¢} (fundamental unknowns in the

variations) are represented as

1 (cos ¢da.+sin ¢da,)

0, o, Tre
{b\iaen:)}z[é‘w({):Hic(eng)}’ [5W(§)]= O, 1:‘—_]-8G (_Sin ¢aat+cos ¢3f1;¢) tee (24 a, b)
anti-sym. 0

By the use of this [8@‘], the change of [f‘] is given by [a‘f"]:[aﬁ'] [f‘]

Further, we consider to represent, similarly to (3), the rates of change of those {igens+0igens) into
¢ as ligensyt0laenal "= ([8 ()1 +[00(8)]) {icenst diaenst . By differentiating (24. a) with the use of
(3), we have

S licunsr+ dlcenst = (B1+ (68 T+TOTLBlicens

In the relation, {igeney+diaens) = ([I1+ [6¥]) {icens) with [I] being the unit matrix, [6¥] is a matrix of
variationals, infinitesimals compared with the unity, and therefore we can invert that relation as {igeno} =
([11—[oT]) {i ceney - 0icens) . By the use of this inversion in the former relation, we have the[s®]
represented as

[34‘5(;)]=[5q7-f]_r[3q7][@]_[@][3ﬁ] SR P P (25)
Introducing the [ @] of (3) and the [§¥] of (24.b) into this expression, we obtain our present [§¢ (¢)]
as

[60(¢)]=
0, 5¢'—%G£G Sy, — [ﬁ (cos #bar+sin ¢8a,¢)} +1 JZ - (—sin ¢8a:+CoS $oar)—x,00
0, —{ - j — (—sin goar+cos ¢80,¢)] —1£ (cos goar+sin goa)+ x:dy
anti-sym. 0
................................................... (26)

In this [8@(;‘)] , under the condition of small strains, we neglect ¢; in comparison with the unity, and,
according to the definition of x, x, and )A' by (3), we have the variations of those strain parameters as
xe=c0S ¢(8 ar— Ysda,)+sin §(8ay+ veda)+ 1,09,
Oxn=—5In ¢(Far— Y00+ COS P(S oyt Velar)— xelh, | +orororereemrmraraieeens (27' a-c)
87 = — xedar+ 8¢
By the use of the former variations, we linearize the equilibrium equations of (12.a-c¢) and (13), as

follows :
ON = < Fpyy>[ Tol" 100z, day, O+ <x6, Yo 26>10Fgyz)
d

47 (<M, — Mo, ST>[T1+ <Mwm, —Mg, T[0T Tliceyt

ix iy iz iz iy Bz (28. a-c)
H <Oaee>[T|+H xp  we 26 [ <Mwyn iy} =0

F, F, F.| |oF. oF, oF,
ST =0M'y+Ts+H(F 8K + K67 )on.+ 8mw

where
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{5Exyz)(é—);:{gﬁ(xw}o_lg{51—)@%)} QL reereerrer e (29)
quantities in the foregoing equilibrium are assumed known; and variations of the distributed external
moment components and external bi-moment, {371y.) and &7 ,, are to be expanded in terms of variations
of the body-force resultants, |07 ewyz), ***, [0Mwayz), by linearizing Eqs. (14. a, b) and (15) with the
use of [6T]=[6¥][T] and &7.

By similarly linearizing (16.a-c), we obtain the associated mechanical boundary conditions as

faﬁxyz)}|f=z=1aﬁ(xyz)}z . . .

[T}’([Mf]’lM(m, — M), TH'{é\Mm, —O0M,,), 8T})|§=0,ort={8M:cy oM, aMz}o,orl """"" (30. a—c)

8MW| g=0,0r 1= 51{2 wo,ort
in which the expansions for {8]{2 wyz and oM ware similar to the {87y} and 87 ,. If, in the [M] and M w
defined similarly to (14.a, b) and (15), we can neglect the before-mentioned additional terms related to
the cross-section’s distortion, the linearizations are then developed as follows :

ix iy iz is Iy iz
<My lioyak=| 0Tl 6Tl 10Thl+] 1Tk (Tl 1T
Ml M), (M| oML oM, 1ML,
M w=1The 10M weval + M anesed 10T} ) e (31. a-c)
M“ Mﬂ' Mfz <5M(a(xyz>>
o M”I M’“’ M”z = <5\M(m(xyz)>
My My Me <0,0,0>
We can represent the linearized geometrical boundary conditions as follows :
10Uyt | =0,00 1=[ Tl 10Uxer}| s=0,0r :=10Tizyarho,or ¢

—(—sin ¢da,+cCos $da,) 86
(cos ¢da.+sin $day) ={ 80,1 ) e (32.a—¢)
0y ¢=0,0rt 5&; oor

57" | ¢=0,0r lzﬁo,orl

where {86,,:} are components of a prescribed infinitesimal rotation around the foregoing {iciene)
—directions under the right-hand screw rule, ,

By a simple linearization of (19.a, b), we have the constitutive relations between variations of the
stress resultants and those of the strain parameters,

4. FLEXURAL BUCKLING OF STRAIGHT BEAM SUBJECT TO FINITE TORSION AND
COMPRESSION

Consider a simply-supported thin-walled beam of biaxially symmetric open cross-section . as shown in
Fig.2, at £=0, the rotation of cross-section is restricted such that the 7-direction is kept in the spatial
(y, z)-plane, with any translations at the
G-point being constrained ; and, at {=], the
translations into the x- and y-directions are

constrained.  When the beam is subject to
uniform compression P and torsion M, we
examine its flexural buckling.

Foregoing Equilibrium, -The beam subject
to P and M, is in such a uniform deformation
that e;(¢)=¢: const. and 7J(&)=7: Fig.2 Pre-Buckling Deformation.
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const. with other strain parameters being zero. While the bi-normal and principal-normal directions on
the G-line are indefinite in the cross-section due to no curvature, we can give an additional definition for
them, We proceed by setting them to coincide with the principal directions of cross-section, {£&, p} :

26(8), ¥s(2), zs(E), B(ON=10, 0, 1+2) ¢, 0}
cos (7?), sin(78) 1 (33.a
[TdO)=| —sin(7¢), cos(7)
1
We have Iy.=Iy,=I;e=I;,=I;»w=0 by the biaxial symmetry of cross-section. Introducing those and x,.=
x,=0 into (19.a, b), we have the following non-zero stress resultants :

N=EA§+EIG.% 7*=7"), K=EIG§+EIGG'%(7_'2_ YE) Ts=Gs(F—y")errereeeenees (34.ac)

in which y°=natural uniform torsion. Then, by relating those to the P and M ,as N=—P and (T =) Ts+
Ky=M_ we have the equation to relate ¥ to the P and M :
2
EZI (I(;G—%> -3+[GJS_% 13__% (Ias“%) 70’l F—(GIsy®t M )=0-oeeeermmmmnniiimiinin (35)
In the below, while taking the geometrical effects due to the large torsion into the equilibrium equations,
however, we neglect those by elongation £ under the condition of small strains.
Buckling Equations, -By the use of the former {r  x} -directions and the ¥, the variational quantities

defined geometrically in Sec.3 are, in the present case, written as follows :

{5a(n$_)}={5u't_ ¥ Uy, Suy+ ¥our, 3u’§} ......................................................................... (36)
10cc, Ons, Oxn, OVI=10Us, OUT —2 FOULN— 70U, SULH2 FOUr— F0UR, OQ}rreerrrereearernanns (37)
Since |Fgay.} = {0, 0, —P}, and the stress resultants other than N , K and T; are zero, with no
distributed external forces, we can reduce the linearized equilibrium equations, (28.a-c) and (29), as
follows :
ON=9F,
cos(}"é‘), —sin (7%), M) O uz— 7 0ux
dié- (7-'5) COS()’{L ] -31‘4(@ +Mz 6u1+ 7311'2' )
) ) 1 o T L L SR SRROP (38. ac)
cos (7§), —sin(7{), Ousxt ¥our 3Fy 0
—P | sin(7¢), cos(7¢), } —Surtydu,) +4 0F, } =10
1 0 0 0
ST=6My+ 6T +(70K+ KoW')
in which {§F 4y, (£)} = {6F zyz) o . const. Here, we assume that the P and M, are conservative such that

their acting directions are spatially unchanged during the variations . chord compression on z-axis and
moment around z-direction, respectively. In this case, we can write down the boundary conditions as

ou.=0, ou,=90, ou=0 ou.=0, ou,=0, oF.=0
M, _ [Our—70ux| {0 oM Suz— 70Uy 0
— oM ] Sust 75url B '0 l — Mg} +M, { dustFous} =10
6¢=0, at &=0 oT 0 0
........................ (39. a-e) ate=1

.................... (40. a-d)
By introducing (40.c) into (38.a), we have §N=(. After integrating (38.b) where {§F,, oF,} =
const., by the use of boundary conditions (39.d) and (40.d), we have {8F,, 6F,} =10, 0} and the
integration constants determined. Into the resulting differential equations and the remaining boundary
conditions, we introduce the associated constitutive relations, and we can see that displacements
{6ur, du,} are independent of |du., 8¢}. Focusing only on the former displacements, we have the
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following eigen-value problem to determine the buckling :

[ EL:D*+(P+7M,— 7?ElL.), (M.—27ELJ)D ] Su,} ‘ 0 } )
(M ,—2 7ELy) D, —EL,D*~(P+ 7M.~ 7°EL»)] 0ux] 10

subject to

{dus, ou.l={0, 0} At E=0 A [oereerreeri (42)

where D=differential operator d/d¢.
Here we consider the lateral buckling caused only by pure torsion M,. When P=0(), the characteristic
equation of (41) is expanded as

(D2+72){D2+<7 g;)(y g:n>]=0 ...................................................................... (43)

i) Incase of M,/El,n<M ./ EL:<?%, the roots of (43) are written as +D,={¥ and +D,=ia, where
{ denotes the imaginary unit; and

. M.
a_\/ ‘ 7 EI& 7 EIm,> ............................................................................ (44)
Then, the general solution in the real number space is given by
Sur 7 in (9 cos (af) sin (af)
'= co§(7§') sin (7¢) +oa, | e ¢ ¥ O ... (45)
Uty —sin(7¢) cos (7%) — v sin (al) ve COS (al)
in which §4,-6A, are arbitrary constants; and
V= EI;; / < EI;;) Vo= ’ EIm, / <2 7— EI,,,,) ................... (46.a, b)
By boundary conditions {§u., du.l =1{0, 0} at £=0, we have §A4,=— 1,04; and §4,=—1,0A,. And, to
exist a non-trivial solution satisfying the other {su. éu,} =10, 0} at {={, we have the following

buckling equation :

2 vern 11 —c0S (71) c0s (@} =(2i+ ¥2) SIN (F 1) SIO (@) ++-w---errmeerreermresis e 7
By solving this equation and (35) together with (44) and (46. a, b}, numerically, we obtain the critical M,
and 7.

ii) In case of M,/EL,<7<M_,/El. by the use of the former a, the roots of the characteristic
equation are written as +D,={¥ and & D,=«. Then, by borrowing constants y, and v, of (46.a, b), we
have the following general solution :
dur| cos (7¢) lsin(f’f)
Sux) —sin(7¢) cos (7¢)
By boundary conditions {du., du,} =10, 0} at £=0, then §4,=—yu,(5A;+6A,) and 8A,=— ve(5A;—
8A,), and by the same constraints at {=], we have the following buckling equation :

—4 vevn+{2 ver, cos (7 1)—(vi—v3) sin (7 D} exp (al)

'HZ VeV, COS ()7 l)+(y§_ uﬁ,) sin (7‘/ l)} exp (—'al)=0 ....................................................... (49)

5. CONCLUDING REMARKS

1

+ 04, l”"
Ve

exp (af)+ 64, {_V'; l exp (—af) -+ (48)

When formulating, for instance, the small displacements of a curved two-dimensional beam, it is
conventional and helpful for our understanding to have its displacements decomposed into tangent and
normal directions on the axial line, depending upon the initial configuration. If we call the resulting
governing equations as formulated in a normalized form, we can suppose that for any linear elasticity
problem there exists its normalized formulation. Even for finite displacements, when only their lower
nonlinear terms are considered such as up to the quadratic or cubic terms upon the initial configurations,
we can find many existing governing equations developed on the same basis, While, in the study” which
presented us the nonlinear theory of thin-walled beams in Sec. 2, it is asserted that when dealing with truly
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large displacemtnts, we can not expect that normalization ; for, the displacements change the geometry,
entirely. Thus, the unkowns {x:(&), y.(&), 2:(¢), #(&)} are there employed as a set of parametric
functions to describe directly the spatial configurations, instead of the displacements, with reference to
the basic Cartesian coordinates,

As one method, we can derive tangent relations by literally, or mathematically, linearizing the governing
equations of Sec. 2 regarding the fundamental unkowns {x;, y; z ¢} . But, with the following intention,
another set of independent variationals, {8, 0¢}, are here employed upon the preceding equilibrium :
It is, even after large displacements, still infinitesimal increments that we are here dealing with, As a
converse acceptance of the former assertion for large displacements, we can expect a normalized
formulation for our variations on the preceding state of equilibrium, under the same kinematic field. The
expansions made on those {0uqzs, O¢} in Sec. 3 are far favorable for understanding in comparison with the
direct linearization regarding the |x; v. z. 4}.

While, in Sec. 4, the flexural buckling of a straight beam subject to finite torsion and compression is
analyzed as an unprecedented example, the present tangent equations can deal with any bucklings of
thin-walled beams arising after large displacements ; e. g., by reducing the general preceding deformation
to the finite pure bending of a circular beam of uniaxially symmetric cross-section, we derive the
differential equations for its lateral buckling, and by solving them for the case of biaxially symmetric
cross-section, we can obtain the same result by Vacharajittiphan and Trahair',
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