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AN INELASTIC FINITE DISPLACEMENT FORMULATION
OF THIN-WALLED MEMBERS

By Akio HASEGAWA*, Kithsiri K. LIYANAGE** Masaru NODA***
and Fumio NISHINQO****

The stiffness equation of linearized finite displacements for straight thin-walled
members with inelastic material is derived. An arbitrary orthogonal coordinate system
with a single reference point across the section need be introduced in the formulation,
which is a clear distinction from the elasticity problem, Also distinct from the elastic
analysis is a need to evaluate the magnitude of strains from time to time because of the
dependence of the tangent modulus on strain levels. Illustrative examples are given to
demonstrate the proposed method for the inelastic finite displacement analysis of spatial
thin-walled members, with a simplified consideration on the effect of shear stresses.
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1. INTRODUCTION

Generally, the stress and strain of the materials for structures undergoing large displacements do not
follow a linear relation, even in the range of small strains, Hence, depending on the material, in many
cases, it is necessary to formulate the problem reflecting inelasticity, in order to obtain realistic
solutions, Going through the available literature, it can be seen that only a few studies have incorperated
the effect of material inelasticity into the nonlinear finite displacement analysis of thin-walled structures,

Among those who treated the problem with inelastic material are Rajasekaran and Murray?? who
presented the beam equations referred to two arbitrary points fixed to the cross-section. A recent paper by
Sakimoto et al.? gives an incremental formulation for the nonlinear behaviour of thin-walled inelastic
members and frames with open cross-section, referring all the quantities to a single point on the
cross-section. The aim of the present study is to develop a more general but rather simplified scheme for
the nonlinear finite displacement analysis of thin-walled beams and frames with inelastic material.

Once some part of the thin-walled cross-section starts to develop inelasticity, the centroid and the shear
center as well as the principal axes of the section change continuously with the increasing load. Hence there
seems neither advantage in adopting such two special reference points, nor in making use of the properties
of the principal axes. Rather than this, it is inevitable to introduce an arbitrary orthogonal coordinate
system with a single reference point across the section, which makes a clear distinction from the elsticity
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problem. Also distinct from the elastic analysis is a need to evaluate the magnitude of strains from time to
time because of the dependence of the tangent modulus on strain levels. This paper is intended to give a
straightforward and comprehensive formulation relating to those aspects. Noting that the axial stress is a
major concern compared with the shear stress and the strain reversal does not play an influential role on the
behaviour within the framework of the beam mechanics, however, the constitutive equation of material is
assumed in a rather simpler fashion in the present study to avoid complication while keeping the essential
aspects in mind.

2. CONSTITUTIVE RELATIONS

For the reason stated in INTRODUCTION, the axial stress is considered simply as a function of axial
strain only, as given by

O (@) ettt et e (1-a)
in which o7, and e}, are the axial stress and strain respectively, and also for simplicity, the tangent shear
modulus after yielding is assumed to be reduced by the same ratio as that for axial stress, and thus

O05w g G _O%x | ..\ .
aegx‘zE del, (1-b)

in which E and G are the modulus of elasticity and the shear modulus of the unstressed material with oY=
2 G e%,, respectively, and 902,/ e’, for the respective location of the cross-section at the stressed stage
can be determined by the relation given in Eq. (1-a) as a function of the axial strain. It is noted that Eq.
(1-b) is newly introduced in this paper, but may not be exact nor consisitent in the sense of the rigorous
treatise of the two-dimensional plasticity. Nevertheless, this assumption is worth to be introduced for a
simpler formulation, When the actual inelastic behaviour of real structures is of primary interest, some
modifications need to be considered within the frame work of the present formulation.

3. GENERAL STIFFNESS OF THIN-WALLED INELASTIC MEMBERS

A right hand cartesian coordinate system (x, y, z) is being used in this study, as shown in Fig. 1 with x
along the member axis, and y and z being the original principal axes, with the origin at the centroid of the
section at the unstressed state. In addition, for explanation purposes, another orthogonal set of
coordinates (x, n, s) is introduced, with s being the length coordinate measured along the middle surface
of the thin-wall, starting from an arbitrary origin. Variables y, v, and w are the incremental
displacements in the directions x, y, and z respectively, while ¢ is the incremental rotation of the
cross-section. Variable ¢ is the normalized unit warping with respect to the centroid at the unstressed
state,

Starting from the same assumptions and notations as introduced in Reference 4) except that for linear
elasticity of the material, the incremental strain-displacement relations measured from the reference state

'Dyl fDY.l
Fxx Cui 01 o [ ° C FXJ ij oJ
—— e . N, Mg, M, My / —_————————
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i(x=0) j(x=1)

Fig.1 Generalized Forces and Displacements,
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can be given in the form

Cxx=1U — v”(y— Z¢)—' w(z+ y¢)_ ¢”w+% [( v’)2+(w’)2+(y2+ 2% (¢’)2] ............................... (2. a)

esxz_;_ ) e e 2 b)
and

Css=Cnn= Cns= em=0 .............................................................................................. (z.c)

It should be noted that the right hand side of Eq. (2-a) is not identical to that of Eq. (6) in Reference
4), due to the reason that all the displacement quantities in Eq. (2-a) are referred to a single point on the
cross section, whereas, in Reference 4), some quantities are referred to the cross-sectional centroid and
the others to the shear center. As far as nonlinear elastic materials are concerned, there seems no
advantage in such a treatment, owing to the fact that the centroid as well as the shear center change
continuously with the load. Because of this reason, in the present formulations, all displacement
quantities are referred to a single point on the cross-section. As a matter of convenience, the
cross-sectional centroid at the unstressed state is selected as the reference point. It should be noted that
unit warping ¢ also is defined with respect to the centroid.

In the same way as in Reference 4), consider a uniform thin-walled beam element in equilibrium at an
arbitrary reference state under a set of applied loads. The current displacement derivatives of the element
at the reference state &° [=(u")], x) [=—(v°)], %2 [=—(w")] and x% [=—(¢°)"] are supposed to be
already known and assumed to be constant throughout the element.

The virtual work equation for the incremental step based on the linearized finite displacemnent
formulation can be derived by the same procedure as in Reference 4) in the form

f(ﬂgfb\efj"' a:fae}f)dv—fTib‘u,ds=0 ......................................................................... (3)
v v .

also using the same notations as in Reference 4).
Noting the relation as

aagw o 'Y aag:x 0
Orp= e..at e ie. Agl.= AR, e s e e e 4
xx aegr xx xx X aegx xx ( )

substitution of the strain-displacement relations (2) into Eq. (3) leads to
[[ote0 {207 ywr s+ [+ (wP+@ 1w+ 2]
+(90%/ ek (U — yv"— 2w — wp”)o(u' — yv" — 2w — we”)
+%(80';30/8e‘;x)9¢’8(9¢’)]dv—FT3d=0 .................................................................. (5)

Following the same procedure and notations as in Reference 4), the incremental stiffness equation for
the thin-walled straight beam element of inelastic material can be determined in the form

F, K, U

Fy| _| Ku Kn S Y e e, (6)

Fz K3! K32 K33 W

T K‘l K42 K43 K44 ¢

where _

== 4 L Y 1P N .
K= [(90%/3e%)da [ (4)(4)dx (7+a)
Kzz=];(aa§’w/ae2z)y”da [(B”) (B”)de+[agrda [(3) (BT -+ everereeeenmrnnenseenenenenenns (7+b)
K33=£(aa;’m/ae§,)z’da [(B”) (H’)de+[a§xda[(3) (BYTd e eereeeeeeenerenmemseeccaean. (7-c)

K‘4=[(aa§x/aeix)w2da[(3/) (B”)’dx+[a§x(y’+zz)da[(B') (B)'dx
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+[%(aal,c/ae‘;x)ezda[(B')(B’)’dx .................................................................. (7-d)
K= [(B0%/9€8)yda [(B) A vrvvsesvciicicniosvoc (7-¢)
Ku=— [ (80%/ek)zda [ (B)(4)dx (-9
K32=[(aair/ae§x)yzda[(B”)(B”)’dx ...................................................................... (7-8)
Ku=—[(aalx/aeix)wda[(B”)(A)’dx ...................................................................... (7-h)
Ku=[(80%/0e%)yada [(B) (B dx+ [otzda [(B)(BVidg oo (7-0)
Ku=[(80%/2e%)zada [(B) (B dx— [otyda [(B)(BVidg -wroovrrsooressorese 7-)

The block: stiffness matrices given in Eq. (7) can be re-written in reduced forms as
Kn=(1/L)[(aa§$/ae1x)daKo~--~-~~-~--~~~--~~-~~~-; ..................................................... (8-2)
Kzz=(1/L3)l(aa"m/ae&x)y’daKl+(1/L)la§’ndaKz ...................................................... (8+b)
K33=(1/L“)L(aaix/aeix)z’daKl+(1/L)la§xdaKz ...................................................... 8-¢)

Ku=(1/L) [(30%e/3e2)urdaki+(1/ L) [ otuly™+ 2 daks

+(1/L)[%(aa&r/aegx)92da1(z .......................................................................... (8'd)
Ku=—(1/L2)£(aa&,/ae;x)ydaKe ............................... R T L R P PP PRPPPPPPREPPRRES (8'9)
K3,=~(1/L’)[(aa§x/ae§x)zda1(s ............................................................................. (8-1)
K32=(1/L3)[(aagx/aefm)yzdalﬁ .............................................................................. (8-g)
K4.=—(l/Lz)l(aa?w/aeix)wdaKs ............................................................................. (8-h)
K42=(1/L3)fA(aaix/aeiz)ywdaK,+(1/L)[a§’uzdaK3 ................................................... (8-i)
K.3=(1/Lz)l(aaz’m/aeé’m)zwdaKl—(1/L)[a§,1ydaK3 ................................................... (8+)

in which K,~K, are the integration matrices defined in Reference 4), and K, is given by
0 0 ’
—L L
K,= 0 O | T e (9)
L —L

The current strain at an arbitrary point on the cross-section can be calculated in terms of the known
displacement derivatives using the relation

e§1= '+ yx‘;+ z,‘g+ wxow ........................................................................................... (10)

Hence, by making use of the relation between axial stress and strain, it is possible to calculate ¢%, and
O 044/ B ey across the section and thus all the block stiffness expressions appeared in the stiffness matrix
can be computed. As is clear, those quantities are to be calculated for each and every element, at each
incremental step,

As is explained in Eq. (1-b), when calculating the term [ (1/2)(30%./9¢%)6%da, it is assumed that
J0%s/ Oely is reduced from its original value at the unstressed state by the same ratio as that of the axial
stress, Hence it can be computed by making use of the relation
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f(aogx/aegx)gzda:_z%f(aagm/aegx)gzda ............................................................... 11)
A 4 '

4, EVALUATIONS OF STRAIN AND STRESS INCREMENTS

After solving the incremental equation, the increments in the element end forces can be found by
resubstitution of the displacement increments to the individual element stiffness matrices, and hence the
new internal stress resultants can be determined by adding the increments to the previous element end
forces and transforming the total end forces to the local coodinates, simply following a similar incremental
procedure introduced in Reference 5) . However, in calculation of the block stiffness expressions of Eqs.
(8) in the incremental stiffness matrix, a special procedure has to be followed to find the corresponding
increments in the displacement derivatives, For this purpose, the linear equations relating the increments
of stress resultants to those of the displacement derivatives are derived in the following way.

Increment in the axial strain is related to the incremental displacement derivatives by the equation as

A=A+ YA, ZAKEA WAKY -+ reeme e 12)
Therefore
Aoty=(26%:/0el)Aese=(00%:/ D e%:) (A + YAX,F ZAKLF WAKD) - ++wrreerrererreeeeecneceenn (13)
and hence
AN°=£Aaixda=£(30§x/8 %) (A€ + YAXS+ ZANSA @AIYA@ -+ ++-vevereerereeemereemmenencn. (14-a)
Similarly 1.3cm
AM3= [(30%/ ey Ae™+ yAxs+ zAxS
/) 1 2. X sk [s0.0em
A WAIS)A Q- - rererrrrrrrerrrrerr (14-b) A ’/1"‘” 2.5cm
WV
AM2= [ (20%:/2e%)2(Ae'+ yAx+ zAx " —
AR A @ e (14-¢) o L toom 19.0cm
w ‘z
AMazﬁ(ang/ae;r)dAeo+ yAx?l—’- ZA"(; Fig.2 A Cantilever Beam.
F WARLIA@ - (14-d)
The relations above can be expressed in matrix form //
as ® / o
w / o
AP =SAD -+ veoevereermrmiiiiiiins (15) ﬁ / E
where ® i
AP={AN", AMS, AM2, AM DT cnevereen (16'3) e
_— 0 0 0 0 T e iriienneaaas .
?D—<AE » Axy, Axz, Axey (16-b) €y  STRAIN €y  STRAIN
an Fig.3 Stress-Strain Relations.
S=l(8a&x/ae§x)HHTda ......................... (17)
in which
H=A41,y, 2, D T T T S A ET TP TR PREP VP PR PP PRTRRPRS (18)

Solving Eq. (15) leads to the increments in the displacement derivatives and thus the increments in the
axial stain can be computed. Hence, by using the tangent modulus for axial stress, the increments in axial
stress can be found. Also, if required, the increments in the shear stress can be computed by means of
taking the equilibrium of an infinitesimal element with the axial stress, as expressed by

AEOSI (open part) ....... (19 . a)
Acty= f (9ely/doe)ATeds . j[ hds
AT 4 & (closed part) ------- (19-b)

l L4 0 N l 0 ]
tf L (9e%/d0%)ds 2tf L (9e%/d0%)ds
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in which
£5%=—|1 [ @ct/detHtds |
cSTIAP e (20)

where the variation of shear in the p-direction
is neglected because of its minor contribution,
and the coordinate s=( corresponds to an open
end for cross-sections with open part,

After all, the shear as well as axial stresses
for next iteration step can be evaluated by
accumulating those increments obtained at pre-
sent state. If an appropriate yield criterion
will be introduced, the constitutive equation
(1) can be readily applicable for continuously
changing tangent moduli of the material concer-

ned,
5. ILLUSTRATIVE EXAMPLES AND
DISCUSSIONS
To demonstrate the procedure stated

above, the following constitutive equation is
considered as

0% _ | E (0eg<ay) rroreessseeessees @21-a)
0€%r | Ep(Geq= 0y)--wreeeerveeeees (21-b)

where E, is the constant tangent modulus after
yielding, and g,, is the equivalent stress
obtained from the Mises yield criterion, and is
expressed as

Oeq=A Tog T3 Gl +emrmmmnrennsennens (22-a)
which can be transformed using Eq. (1+b) to the
strain expression of

eee=V ezt 12(G/EVely - (22+b)
Considered for numerical demonstration is a

cantilever beam with I-section, as shown in
Fig.2, with the uniaxial stress-strain re-
lations, as indicated by Fig. 3. Since the real
behavior or experiments are difficult to trace
the very large displacements and also largely
depend on their own material properties, the
comparison with them are not the objectives of

the present computations, But the present

Load P/ Per

Load P/ Per

Load P/ Per
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b
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-

O A DO Initlat Yield
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[ ] End of Equilibrium
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Fig.4 In-Plane Behaviour of a Cantilever Beam,
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Fig.5 Spatial Behaviour of a Cantilever Beam with E,=0.
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Fig.6 Spatial Behaviour of a Cantilever Beam with E,=(.1E.

examples are just to demonstrate the proposed analysis scheme, showing some general interesting features

of the inelastic finite displacement behaviour of thin-walled structures.

The following two cases for how to introduce the Mises yield criterion are examined, All the
computations made below assume E=2. 06X 10° MPa and G=7.95X10* MPa, and the number of elements

are eight.

(1) Only with axial stress contribution : g.;= gy,
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Since the axial stress g, plays the most
important role on the beam mechanics, the
shear stress obtained from Egs. (19) is
ignored for the first case, for the simplicity
Fig. 4 gives the
example of the in-plane behaviour with E,=0,
showing the relation for three different values
of yield strains between axial force and lateral

and comparison purposes.

diplacement, In the figure, P,, is the in-plane
buckling load, and the in-plane disturbing tip
force P,=0.01 P., was given at the initial
stage. It is noted that, firstly, the initial yield
load does not differ much from the true
ultimate load, and secondly, the end of equilib-
rium, after which the equilibrium path could
not be found anyway, exists for this particular
case of E,=(0. With the same condition as the
previous example, the out-of-plane spatial
behaviour is examined, and obtained in Fig. 5,
showing the relation between lateral force and
out-pf-plane desplacement. In the figure, P,
is the out-of-plane buckling load, and the
disturbing torsional moment T,=6.69X107°
P..L was given at the initial stage, A similar
feature is observed as the in-plane behavior but
with noticeable difference between the initial
yield and ultimate loads, particularly when the
Fig.6 shows also the
spatial behaviour of the same problem but with

yield strain is large.

the tangent modulus E,=0.1 E, in comparison
with the previous case of E,=(. It is noted
that the end of equilibrium is not observed,
that is, there would always exist equilibrium
for any displaced configuration, just as seen in
the elastic problem,

(2) Shear stress combined with axial
stresses . ge,=+v02:13 0%

Since the deformation due to the shear
stress in equilibrium with the axial stress is
neglected in the beam mechanics, the shear
stress itself seems rather supplementary, and
then does not cause much influences on the
beam-behaviour as far as elasticity is concern-

2
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“® Shear Stress not reflected
5 Shear Stress reflected
<O & Initial Yield
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0 .05 A .15 2 .25
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Fig.7(a) Effects of Shear stresses on Spatial Behaviour of a
Cantilever Beam with E,=0 and e,=0.1 %.
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Fig.7(b) Effects of Shear Stresses on Spatial Behaviour of a
Cantilever Beam with E,=0 and e,=0.5 %.
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Fig.7(c) Effects of Shear Stresses on Spatial Behaviour of a

Cantilever Beam with E,=0 and e,=1.0 %.

ed. When inelasticity is involved, however, the shear stress is a primary factor for the Mises yield

criterion, leading to a remarkable effect on the inelastic behaviour. Fig. 7 shows the results of computation
for the same example as Fig, 5, indicating the effects of shear stresses on the spatial behaviour of the
cantilever with £,;=(. For all the three different values of yield strains, it is evident that the inclusion of
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shear stresses on the Mises yield criterion gives naturally a remarkable difference on the initial yield load,
leading to a significant difference on the inelastic load-displacement behaviour.

6. SUMMARY AND CONCLUSIONS

Based on the second order kinemateic field, the general stiffness equation of linearized finite
desplacements for a thin-walled member with inelastic material has been formulated, using the theorem of
virtual work. The stiffness equation is in a simillar form as in the case of elastic material, with additional
block stiffness expressions appearing due to the nonlinearity of the material, Also, unlike elastic material,
the block stiffness expressions are in terms of area integrals involving axial stress, and tangent moduli for
axial and shear stresses, which correspond to the stress resultants, Young’s and shear moduli respectively
for elastic material. )

The direct solution of the stiffness equation is adopted to obtain the nonlinear finite desplacement
behaviour of thin-walled beams with inelastic material, using an updating procedure available in Reference
5). An incremental approach is adopted in updating the strains, stresses and the tangent moduli across the
cross section also,

Numerilcal examples are presented for the spatial as well as in-plane nonlinear load-displacement
behaviour of thin-walled beams with inelastic material. It has been noticed through the numerical examples
that the effect of shear stress resulting from the equilibrium with axial stresses towards the member axis is
significant, and thus it should be incorporated in the yield condition, even though the shear deformation
itself is naturally neglected in the incremental formulations of beam mechanics, Compared with the existing
analysis procedures for structures with inelastic material, the present scheme has assumed a rather
simplified constitution equation, and partly by virtue of this, seems efficient and versatile, helped by its
concise and explicit expressions. It remains to be further investigated, however, that some appropriate
modifications need to be introduced within the frame work of the present formulation in order to predict
well the real inelastic finite displacement behaviour of thin-walled members.
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