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GROUP THEORETIC STUDY OF BIFURCATION POINTS OF
TRUSS DOME STRUCTURES

By Kiyohiro IKEDA* and Kunio TORII**

This papar offers a group theoretic study of symmetry breaking bifurcation points of
truss dome structures. A dominant role of symmetry in bifurcation phenomena has been
demonstrated through case studies performed on bifurcation points of a series of
reticulated regular, polygonal-shaped, truss domes subjected to axisymmetric loadings.
Various characteristics of bifurcation points are described in relation with the level of
symmetry of main and bifurcation paths. Several rules governing bifurcation points have
been derived through these studies with an aim toward the development of a more complete
theory in the future,
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1. INTRODUCTION

Bifurcation buckling serves as one of the typical collapse modes of structures, One can point out various
structures having potential to display bifurcation buckling behavior, including : the beam-column
members”, the shallow arches?, and the dome structures*?. Naturally, the theoretical description and
categorization of bifurcation points have drawn great engineering and academic interest.

Thompson and Hunt® have developed a general theory of bifurcation buckling behavior with the use of
total potential energy function and perturbation technique. Bifurcation points were devided into the
following major types : the symmetric bifurcation point, the asymmetric one, and so on. Niwa et al. 6
categorized bifurcation points based on a catastrophe theory to arrive at basically the same major types as
those obtained by Thompson and Hunt. They defined a symmetric bifurcation point as what possesses
bifurcation paths with a zero slope of the loading parameter, and an asymmetric point with a non-zero
slope. Hosono” advanced an alternative way to define these two types of points. His definition can be
restated as follows : for symmetric bifurcation points, bifurcation modes for a bifurcation path can be
carried into those for the other bifurcation path branching toward an opposite direction through a rotation
or reflection, thereby denoting the same physical behavior; however, such is not the case for asymmetric
ones. This is one of the first attempt by engineers to describe bifurcation behavior based on symmetry.
Fujii®-? divided bifurcation points into two types . symmetry preserving bifurcation points and symmetry
breaking ones, The geometric symmetry of deformation modes is preserved for the formers, whereas
reduced for the latters. In addition, he noticed that bifurcation points with double roots consist of two
types : parametric ones and group theoretic ones. These occur by virtue of geometric symmetry ; those do
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as a consequence of a concidence of two critical points with a single root.

At present, bifurcation tracing analyses of dome structures rely primarily on an analytical standpoint.
While it is not feasible to expect the evaluation of potential energy and its derivatives as a part of such
analyses, the concept of symmetry may provide additional information. Currently, a lack of bacic
understanding of bifurcation buckling behavior is impeding the development of systematic means of
bifurcation tracing. Extending mathematical studies on bifurcation behavior performed by Fujii and
others® %19 the authors!?'? performed a group theoretic categorization of bifircation "paths’ of regular
polygonal-shaped truss domes subjected to axisymmetric loadings. This sutudy revealed the predominant
influence of symmetry on bifurcation buckling phenomena, The domes’ bifurcation phenomena were
described completely by the subgroups of a dihedral group, which is a typical mathematical tool for
representing the symmetry of regular polygons®. We, however, somewhat disregarded the description of
bifurcation points in favor of the study of bifurcation paths,

This investigation is undertaken in order to make the group theoretic method applicable to the
description of bifurcation points of D,-covariant truss dome structures under axisymmetric loadings, The
bifurcation points studied herein belong to the symmetry breaking bifurcation points with a single root and
those with group-theoretic double roots. We emphasize their qualitative and symmetric aspects, as Hosono
did. The properties of bifurcation points are described in relation with the characteristics of main and
bifurcation paths passing through these points. Several rules concerning bifurcation points are derived so
as to achieve a deeper insight into bifurcation behavior,

2. SYMMETRY IN BIFURCATION BEHAVIOR OF A REGULAR-HEXAGONAL TRUSS
DOME

This section offers a study of symmetric nature of bifurcation paths and points. For this purpose,
bifurcation behavior of the reticulated, regular hexagonal, truss dome shown in Fig. 1 is investigated
based on a group theoretic approach.

Dihedral groups, which have been employed extensively for represent-

ing symmetry of regular polygons in mathematics®, are utilized here and Table 1 Vertical Loading Pattern.

in the sequal to express symmetric nature of bifurcation modes (paths). Node | Loading

. . . . Number | Pattern
As reported in Refs. 11 and 12 bifurcation modes (paths) of a regular 0 0.5
n-gonal dome (n=3,4,5- - -) can be represented by subgroups of a ; }g
dihedral group of degree n, D, Bifurcation paths of the regular 3 10
hexagonal dome, for example, are categorized with the aid of the : :
following subgroups of group D, : E, C,, D¥!, D¥, Dj, Ds,, (or Dj in .
Ref.11), D;,, (or Di), C; and D?. Group E denotes a completely n 10
asymmetric deformation mode ; D¥~! and D}’ are modes with one axis of n=6 for the hexagonal dome.
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line symmetry.

Groups Cg and C, denote rotatory symmetric modes ; D;,, does a three-axes symmetric mode. These
three modes were disregarded in Refs. 11 and 12 that ignored rotatory and radial displacements and
considered only vertical displacements of truss domes. A (sub) group representing the deformation pattern
of a path is called a symmetry group of the path®.

Figure 2 shows equilibrium paths of the dome obtained by using a finite displacement analysis for the
axisymmetric loading patten listed in Table 1, Figure2(a) is a spatial sketch of the paths showing
interrelationships among the loading parameter and vertical displacements of nodes 1 and 2 of the dome,
while Fig.2(b ) shows the corresponding external force versus crown displacement relationship of the
same bifurcation phenomena, Dark continuous lines express the path represented by the group D,, light
continuous ones do D? and so on. The symbol (@) denotes the symmetric bifurcation point with a single
root ; (O) expresses that with a double root ; (&) is the asymmetric point with a double root. The authors
followed the aforementioned Honoso’s way to define symmetric and asymmetric points of bifurcation. The
multiplicity of a bifurcation point denotes the number of zero eigenvalues of the tangent stiffness matrix of
a structural system to be analyzed,

As can be seen, as many as twenty paths branched from the fundamental path O at bifurcation points, a,
b, and c. Points a and ¢ belonged to symmetric bifurcation points, while point b to an asymmetric one. Each
bifurcation path is smoothly connected with another path branching toward the opposite direction, such as a
pair of paths A+ and A~. The authors henceforth term such a case that the paths form a ’pair’, Paths that
can form a pair are indicated in this and subsequent figures by means of the same name and with the symbol
+ or —.

Symmetry has strong influence on bifurcation modes corresponding to these bifurcation paths, Table 2
illustrates schematically these modes in terms of vertical displacements of nodes ] through 6 of the dome,
where dotted-dash lines express the axis of line symmetry and symbols ( &), (1), - - -, and (v),
denote that nodes with the same symbol have an identical vertical and radial displacements, The nodes on
axes of symmetry cannot rotate, whereas those on elsewhere can rotate in such a manner that the nodes

Table 2 Bifurcation modes of Several Bifurcation Paths of the Hexagonal Dome.

Paths ing from Pt 3

A+ (Ded A Ded

B2+ (D}) B3+ (D)

B3- (03)

*
A

c3- D)

O, 4,-+, ¥V  : nodes with the same symbols possess identical vertical and radial displacements;
——=——-— axis of line symmetry;
{ ) :symmetry group of a bifurcation path.
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satisfy the required line symmetries, The symmetry groups representing these modes are shown in this
table with the use of the parenthesis. As can be seen, a 180 degree rotation about the origin carries the
mode for At into that for A~ In this manner, the authors arrived at the folowing interrelationships among

the modes
Xa+r™= O L4~ X g1+ 03X p2+=— Os X3+ Xp-= 03X 3-— T X p3-
Xor1+= 02X c3+= 03 XLcs+= O4Lci-= OsLca-=0edLcs—  toremresesessasessssensieetetieeteiteieieans. ( 1 )

Xczr™= O2Xcar™ 03X ce+™ 04X c2-— 05X ca—— O s~
where vector x, denotes a deformation mode of the dome related to a bifurcation path ; the subscript &
expresses the name of relevant path; variable ¢,(j=1,2, ---, or 6)indicates the 60 - (j—1) degree
rotation around the z-axis. The first equation of Eq. (1) indicates that the deformation mode for path A+
can be obtained by rotating the mode for A~ around the z-axis through an angle of 180 degrees. Since such
a rotation does not deform the dome but produces its rigid body displacement, these two modes represent
the same physical behavior. In that equation, all the modes related by equalities with the aid of a rotation
denote the same physical behavior. As a result of this, the twenty bifurcation paths in Fig. 2(a) denoted
only five independent bifurcation phenomena,

Symmetries in these bifurcation paths can be divided into two general types, including : (1) the
symmetry between two paths forming a pair and (2) the symmetry among paths belonging to different
pairs. The former is attributable to line symmetry of the dome and the latter to its rotational symmetry,
The first type symmetry determines if a bifurcation point is a symmetric or asymmetric one, Such
symmetry can be seen in each pair of paths branching from the symmetric bifurcation points a and c; by
contrast, a pair of paths branching from the asymmetric bifurcation piont b denoted different physical
phenomena, The second type symmetry, arising from rotatory symmetry, was observed in paths B1+, B2+,
and B3*, whose symmetry groups are D}, D3, and D3, respectively, The rotational symmetry among these
groups resulted in symmetry among the paths, Likewise, the rotatory symmetry of groups D!, D}, and D}
led to the symmetry among (1) paths C1*, C3* and C5* and (2) C1-, C3-, and C5~.

As a consequence of the two types of symmetries, some of the bifurcation paths shown in Fig 2(a)
represented the same external force versus crown displacement curves in Fig. 2(b ). For example, a pair
of paths A* and A~ degenerated into a single path A in these curves, Similarly, (1 )paths B1*, B2* and
B3+; (2) paths B1-, B2, and B3—; (3) C1*, C1-, C3*, C3~, C5*, andC5~;and (4) C2+, C2~, C4~,
C4~, C6* and C6~ degenerated into paths B¥, B~ C and C’, respectively.

As we have seen, the bifurcation paths had a lot of symmetries associated with the geometric symmetry
of the regular hexagonal dome. In post-bifurcation analyses of highly symmetric structures with many
branching paths, one needs to trace only a few paths since most of them can be automatically obtained from
the condition of geometric symmetry (Mathematically, such sym-
metry can be monitored through the derivation of bifurcation  Table3 Vertical Loading Patterns Applied to

equations®?_ ) The concept of symmetry, in this regard, should the Triple-Hexagonal Dome.
be of great importance not only in theory but also in practice. Layer | Node | Loading | Loading
Number | Number | Pattemn (a) | Pattern (b)
3. BIFURCATION POINTS OF REGULAR-POLY- . : 2 o
GONAL DOMES 2 1 0
(1) General n 1 0
This section offers case studies on bifurcation points in the 2 ; } i
equilibrium paths of reticulated regular polygonal-shaped truss : . _
domes with an emphasis on their symmetric nature. The domes n 1 1
studied include the regular five through ten-gonal, single- } ; } 8
layered, truss domes (see Fig. 3 for their typical configuration) ; ;
subjected to the symmetric vertical loading pattern listed in Table n 1 0
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Fig.5 Equilibrium Paths of Various Types of Regular Polygonal Domes,

1, and the triple-hexagonal dome (see Fig. 4) under the loading pattern (a) or (b) listed in Table 3 .
These domes, with various configurations, should offer us various types of bifurcation points, The
single-layer domes should reflect the effects of degree of polygons and the triple dome does those of
multiple layers, Figure 5( a ) through (h) shows equilibrium paths of these domes obtained through the
aforementioned analysis technique. The bifurcation paths were categorized by investigating deformation
patterns of the domes at the course of the analyses based on the group theoretic categorization adv-
anced in Ref. 10. Point symmetric modes represented by groups C, and C,,, did not exist in these fig-
ures although their existence is theoretically feasible,

The authors inspected the bifurcation points of these domes to find that all the single roots were
symmetric points of bifurcation and all the asymmetric points had double roots. This agrees with the
general fact reported in Ref. 8) that single-rooted points on D, are symmetric bifurcation points, The
bifurcation points consequently belonged to one of the following three types . the symmetric bifurcation
point with a single root, that with a double root, and the asymmetric point with a double root. The
properties of these three types of points are studied below.,

As reported in previous papers'’-'? symmetry breaking bifurcation buckling behavior of dome structures
occurs as a result of the loss in geometric symmetry. The nature of bifurcation points, therefore, is
expected to be greatly influenced by the amount of reduction of symmtry encountered at a bifurcation point
relative to the symmetry of a main path,

Such a reduction can be characterized by the index'?, denoting the ratio of the orders of symmetry
groups of main and of bifurcation paths, where the orders express the level of symmetry of the paths,
Index, which enlarges in association with greater degradation of symmetry, will be employed in describing

254s



Group Theoretic Study of Bifurcation Points of Truss Dome Structures 39

bifurcation points in the sequal, in addition to the other parameters.

Tables 4 and 5 tabulate a series of parameters characterizing the bifurcation points in the equilibrium
paths shown in Fig.5. These include ;: (1) the type of bifurcation point, (2) the symmetry groups
representing main and bifurcation paths, (3) the number of branching paths, and (4) the index. Ascan
be seen, the types of bifurcation points are uniquely determined by the types of main and of bifurcation
paths, at the least for these bifurcation points. For example, bifurcation points a, e, g, j, and k of the
hexagonal dome and the point a of the eight-gonal dome, defined as the intersection points of paths
represented by D, and by D,,,, all belonged to the symmetric bifurcation point with a single root. Such
dependency of the types of bifurcation points on the types of paths passing through the points suggests that
the study of bifurcation points should be achieved with an emphasis on path types.

Table 4 Categorization of Bifuraction Points of Single-layer Domes,

Types of Name of Types of Symmetry Groups No. of Index
Domes Bif. Points { Bif. Points | Main Paths Bif. Paths Bif. Paths | Valucs
5-Gonal ab A D, (10) D{ (2 10 5
c [ D{(® E (1) 2 2
6-Gonal a,e,g.j.k [ D, (12) D,p (6 2 2
bdh A D, Di @ 6 3
cfi o D, D1 & DY (2) 12 6
m,n A D, (6) - D¥©Q 6 3
0,5,u g D4 (4) D () 2 2
pr ° D} C,(2) 2 2
qt [ D DH @ 2 2
v,W [ D¥ () E (1) 2 2
7-Gonal abgc A D, (14) D{ (2 14 7
d [ D{ () E (1) 2 2
8-Gonal a ° D, (16) D, (8 2 2
bd [¢] D, DY & DY (2 16 8
c o D, D' & DY (@) 8 4
eg o D, (8) DY (2) 8 4
f ] D.n D¥ (4) 2 2
h L DI @ D 2 2
9-Gonal acd A D, (18) D{ 2 18 9
b A D, D{ (6) 6 3
ef A D (6) D{ 6 3
gh L D{ 2) EQ@) 2 2
10-Gonal a ) D, (20) D (10) 2 2
bd A D, D4 (4) 10 5
ce ] D, DY & DY (2 20 10
f A D, (10) DY (2 10 s
g . Di (4 D () 2 2
h [ DL (4) DY (2) 2 2
i [ D¥ E (1) 2 2

: symmetric bifurcation point with a single root;

+ symmetric bifurcation point with a double root;
: asymmetric bifurcation point with a double root;
() : order of a symmetry group.

=00

Table 5 Categorization of Bifuraction Points of The Triple-Hexagonal Domes
(Obtained for Two Types of Loading Patterns).

Loading | Name of | Types of Symmetry Groups No. of Index
Pattern

Type Points Points Main Paths { Bifurcation Paths | Bif. Paths | Values

(a) a [ ] D, (12) Dyr2 (6) 2 2

b A D, D} (4) 6 3

c o] D, DYt & DY () 12 6

d A Dy (6) D (2) 6 3

eh ° Dj (4) DY (2) 2 2

f [ Di C, 2 2 2

g ° D} DY (2) 2 2

ijk [ L Yime)) E (1) 2 2

® a ® D, (12) D.p © 2 2

b A " D &) 6 3

c [o} D, DY & DY () 12 6

d A D, (6) DY (2) - 6 3

e ® D3} (4) DY () 2 2

f [ D4 C2(2) 2 2

g [ C, (2 EQ) 2 2

h ) DY (2 E Q1) 2 2
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(2) Influence of index

As can be seen from Tables 4 and 5, the values of index greatly influenced the types of bifurcation
points, Index values were equal to two for bifurcation points with a single root and greater than two for
those with a double root. To be precise, their values equaled two for symmetric bifurcation points with a
single root, even numbers other than two for symmetric points with a double root, and odd numbers for
asymmetric points with a double root, respectively. These characteristics may serve as a convenient and
promising alternative way to identify bifurcation point types. During the course of bifurcation tracing
analyses, the types of bifurcation points can be determined easily by obtaining the orders of symmetry
groups of main and bifurcation paths at the points and calculating the values of index.

As reported in Ref. 8, two bifurcation paths branch from bifurcation points with a single root. For
double-rooted bifurcation points, we noted from Tables 4 and 5 that the numbers of branching paths were
the twice of indexes, that is,

(Number of Branching Paths) =2 (INdex) «+-+++++++r+esreererermieeurenreeiieieeemeiere e eseeeeneenne (2)
although this formula may be hypothetical at this stage of research, it should be of great assistance in
bifurcation tracing analyses if proved to be correct,

(3) Influence of degree of polygons

The influence of degree of polygons on bifurcation point properties can be monitored by referring to
Lagrange’s theorem, stating that the order of a group can be divided by the order of its subgroup® .
Combining this theory with the fact that the order of group D, equals 2n, one can say that an index
value is a factor of the number 2n. Because this number always has 'two’ as a factor, every polygonal
dome can possess 'two’ as an index, thereby having potential to hold a symmetric bifurcation point
(with a single root) . In particular, for a polygonal dome with a degree 2, the index is always an even
number so that the dome should only possess symmetric bifurcation points, Domes with degrees other
than 2™ possess an odd index (es), as well as an even index (es) so that they potentially hold both sym-
metric and asymmetric points,

We investigated the interrelationships between the degree of the domes and the presence of the three
types of bifurcation points. Table 6 lists these interrelationships, where the symbol (E) denotes the
existence of relevant bifurcation point type; (N) expresses the type which did not exist. The regular
eight-gonal dome with a degree 2° only had symmetric points, whereas the other domes whose degrees had
an odd factor(s) possessed both symmetric and asymmetric points. Domes with odd degrees did not hold
symmetric points with a double root ; domes with even degrees other than 2™ had all three types of points.
As we have seen, the presence of bifurcation point types matched perfectly with what predicted above, thus
validating the prediction, :

Bifurcation points on fundamental equilibrium paths, determining buckling capacity of domes, possess
much greater engineering importance. Let us recall the aforementioned rule that bifurcation points with a
single-root occur only for the case where index equals two and that those with a double root do for an index
greater than two. The index equals two only for the case where paths represented by D,,,, D}/, or C,
branch from the fundamental paths, Hence symmetric points with a single root on fundamental paths should

Table 6 Existence of Three Types of Bifuraction Points for the Domes with Various Degrees.

Degree of Bif. Points (in general) Bif. Points on Fundamental Paths
Polygons L4 o A [ ) e} A
2™ (m is an integer) E E N E E N
Even No. other than 2™ E E E E E E
0Odd Number E N E N N E

: bifurcation point 'exists’;

: bifurcation point did *not” exist;

: symmetric bifurcation point with a single root;

: symmetric bifurcation point with a double root;
: asymmetric bifurcation point with a double root.

oozt
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have either D,/;, Dj/s, or C, as a symmetry group of bifurcation paths. All the other types of paths, by
contrast, branch from fundamental paths at bifurcation points with a double root. Only asymmetric
bifurcation points existed in the fundamental paths of the domes with odd degrees.

(4) Influence of multiple layers

As can be seen from Tables 4 and 5, the bifurcation points of the triple-hexagonal (three-layer) dome
had exactly the same properties as those for the single-layer ones. The rules regarding bifurcation points,
therefore, appear to hold generality regarding the number of layers of the domes,

(5) Summary

The rules regarding bifurcation points advanced herein would permit one to develop fundamental
understanding of bifurcation buckling behavior of dome structures. With the aid of such rules, bifurcation
phth tracing analyses can be performed in much more systematic manner (for example, in tracing
bifurcation paths of a regular eight-gonal dome, one should expect only symmetric bifurcation points). The
rules are very likely to hold for single-layer regular polygonal domes with relatively small degrees;
furthermore, some of the rules may be valid for more general cases as well. It should be at the least
appealing to academic interest that various bifurcational characteristics can be described well by means of
a single variable, index.

4. SUMMARY AND CONCLUSIONS

The authors have advanced a group theoretic method for describing bifurcation paths of axisymmetric,
polygonal truss dome structures in previous papers'’ =  This method described well bifurcation behavior
of the dome structures subjected to axisymmetric loadings in a methodical fashion and permitted us to
arrive at several information concerning bifurcation phenomena simply through an observation of the
domes’ configuration, The method, however, somewhat disregarded the description of bifurcation points in
favor of the study of bifurcation paths. The following studies were performed in this paper to make the
method applicable to the description of bifurcation points.

Symmetry in bifurcation paths was inspected for a few symmetry breaking bifurcation points of a regular
hexagonal truss dome. Two types of symmetries were seen in the bifurcation paths branching from these
points, These symmetries, ascribed to the dome’s geometric symmetry, include (1) the symmetry
between two paths forming a pair and ( 2) the rotational symmetry among paths, Owing to the symmetries,
as many as twenty paths were divided into only five independent paths, In post-bifurcation analyses of
highly symmetric structures, the concept of symmetry can reduce the number of paths to be traced, thereby
greatly simplifying such analyses.

We performed case studies on bifurcation points in the equilibrium paths of a series of regular
polygonal, truss domes subjected to axisymmetric loadings. These bifurcation points belonged to three
general types, including : the asymmetric point with a double root, and the symmetric points with a single
and a double root. The index was advanced as a parameter to characterize bifurcation points, At the least
for the equilibrium paths inspected herein, symmetric bifurcation points occurred for even-numbered
indexes, while asymmetric ones did for odd ones. Single-rooted points had two as an index and
double-rooted ones did three or greater number. These characteristics were suggested for use in
distinguishing the types of points at the course of bifurcation tracing analyses. We combined the
characteristics with Lagrange’s theorem to conclude that every polygonal dome has potential to possess a
symmetric bifurcation point (s) . The polygonal domes with a degree 2" moreover, should possess only
symmetric points, while do domes with other types of degrees both symmetric and asymmetric points, The
number of paths branching from bifurcation points with double roots equaled the twice of index values.
Index, influencing strongly various bifurcation properties, should greatly contribute to the description of
bifurcation behavior,

In order to extend the generality of the rules of symmetry breaking bifurcation points advanced herein,
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42 K, IKEDA and K, ToRix

we investigated bifurcation points of the triple-hexagonal (three-layer)dome to note that the rules
described well its bifurcation points as well. The rules, therefore, appear to hold generality concerning
the number of layers of domes.

The group theoretic method for the description of bifurcation points displayed a great promise in
studying the bifurcation behavior of a series of truss domes. This method, combining completeness and
simplicity, will be of great assistance in deriving general rules governing the nature of bifurcation points of
domes, The rules advanced herein should form a basis in developing more general rules, or may eventually
serve as general rules. Future studies should be directed toward developing such rules so as to enable one
to perform bifurcation tracing analyses based on firm theoretical bases,
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