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GROUP THEORETIC DESCRIPTION OF BIFURCATION BEHAVIOR OF
AXISYMMETRIC REGULAR-POLYGONAL TRUSS DOMES

By Kiyohiro IKEDA* and Kunio TORII**

Bifurcation buckling behavior of polygonal-shaped, truss dome structures is studied
with the aid of a group theoretic method. This study extends the previous research on simple
regular-polygonal truss domes to those with greater number of degree of freedoms and with
much more realistic configuration, Unlike the previous research, radial and rotational
displacements of the domes are included here in describing their bifurcation modes, in
addition to vertical displacements. The method has permitted one to obtain potential
bifurcation modes of the domes and hierarchies of bifurcation paths under axisymmetric
loadings without performing bifuraction tracing analyses, The applicability of group
theoretic method to regular-polygonal domes has been fully assessed through this study.

Keywords . symmetry, bifurcation behavior, polygon, truss domes.

1. INTRODUCTION

Dome structures display highly complex bifurcation buckling behavior??. Extensive research conducted
by several engineers®~” has enabled us to trace such complex behavior, often at the expense of awkward
computations, Nonetheless the complexity somewhat slowed the progress of theoretical description of the
behavior, At present, a theory of elastic stability established by Thompson® and others early in the 1970 s
remains to be the most widely accepted way to describe bifurcation behavior. Their theory, formulated in
terms of derivatives of total potential energy function, is rather more theoretically complete than it is
practical in conventional analyses since one cannot expect estimation of the derivatives as a part of such
analyses.

Applied mathematicians, by contrast, have developed in last decades a group theoretic method to
describe bifurcation behavior®~'?  focusing on geometric symmetry. They succeeded in describing various
physical phenomena in a methodical manner utilizing compact groups, which include dihedral, rotation
groups, etc., as a mathematical tool to represent symmetry.

Extending this method, the authors™®-1? described bifurcation behavior of reticulated, regular-
polygonal truss domes shown in Fig. 1. Just as the method described well various physical phenomena, it
explained well the domes’ bifurcation behavior. The domes under axisymmetric loadings were proved to be
covariant with dihedral groups, where bifurcation behavior of systems covariant with a group has been
proven to be described mathematically by the group?-® (Refs. 18 and 19 may be appropriate for textbooks
for dihedral groups). Furthermore, the groups permitted one to arrive at potential bifurcation modes of
the domes and their bifurcation mode hierarchies, without carrying out tedious bifurcation tracing

* Member of JSCE, Ph. D, Associate Professor, The Technological University of Nagaoka, Nagaoka, Niigata, Japan 940-21.
** Member of JSCE, D Eng., Professor, ditto.
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Fig.1 Simple Regular-Polygonal Dome,

Fig. 2 General Regular-Polygonal Dome with Layers
of Free Nodes,

analyses, Most of the qualitative bifurcation behavioral characteristics can be obtained through mere
observation of geometric configurations of domes, By contrast, bifurcation tracing analysis techniques
were indispensable in arriving at quantitative aspects of the behavior, such as buckling loads, nodal
displacement values, and so on. The group theoretic method and the analysis techniques focus on different
aspects of the behavior.

While displaying a great promise at the least for those truss domes, the group theoretic method
somewhat lacked in generality since its application was limited to simple regular-polygonal domes and was
formulated by considering only vertical displacements of the domes. A lot to be studied remained regarding
the applicability of the method to more general cases, such as the description of bifurcation behavior of
realistic dome structures with greater number of degree of freedoms with reference to their vertical,
radial, and rotational displacements,

At the first step to extend its applicability, the method is employed in this paper to describe bifurcation
behavior of general polygonal truss domes made up of layers of regular-polygonal-shaped free nodes (see
Fig. 2) with reference to all the displacements. As can be seen, these domes hold much more complex and
realistic geometric configurations and greater number of degree of freedoms compared with the simple
polygonal domes (see Fig. 1). Those domes, accordingly, are expected to be of great assistance in
deriving general rules regarding bifurcation behavior of dome structures, We prove the domes under
axisymmetric loadings are covariant with dihedral groups, thus validating the usability of dihedral groups
in describing the domes’ bifurcation behavior. In addition, we obtain bifurcation modes of the general
polygonal domes to find that they possess the same types of possible bifurcation modes irrespective of the
number of layers of the domes, The data regarding bifurcation modes of simple polygonal domes advanced
in Ref. 14 are refined herein to be applicable to more general cases, A suggestion regarding future studies
concludes this paper,

2. VERIFICATION OF D,-COVARIANCY OF POLYGONAL TRUSS DOMES

The authors study bifurcation behavior of the polygonal truss dome structures with m-layers of
n-gonal-shaped free nodes (see Fig. 2) subjected to axisymmetric vertical loadings throughout this paper.
The members of the trusses have identical sectional and material properties so that the trusses have
axisymmetric stiffness distribution. Prior to applying a dihedral group D, to the description of the
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behavior, let us prove D,-covariancy of the domes. This verification is identical with that performed in
Ref. 13 regarding the simple polygonal domes (see Fig. 1), except for the presence of multiple layers of
regular-polygonal-shaped free nodes.

Using the equilibrium equations for the finite-displacement problem of elastic truss members advanced in
Ref. 7, one can write equilibrium equations for those truss domes as :

Hinlf 5 )= KumsaX)* Ls0— Funlx)— f * fuy=0 1,7=0,1,2, s N5

k, l=1, -+ ML seermseose ettt ( 1 )
where subscripts ; and j indicate the vector or matrix related to the j-th or j-th node; subscripts k£ and [ in
the parenthesis () denote the variable corresponding to the k-th or [-th layer ; m expresses the number
of layers. The matrix Ky, is the three-by-three sub-matrix of the non-linear (tangent) stiffness
matrix ; Fyy is the three-dimensional nonlinear vector, f is the loading parameter; f,, is the
three-dimensional, nodal-load vector. The summation convention applies to dummy variables j and [. We
employed a special way to identify nodes, that is, each node is represented by two types of numbers,
including : (1) the layer number and (2) the node number in a layer.

Equation (1) is covariant with a group if the following relationship is satisfied for all the
transformation T, initiated by elements of the group :

R O T e PP (2)
where g denotes the element of the group.

A dihedral group of degree n (D,), used extensively to express the geometric symmetry of
regular polygons in mathematics, is utilized here to describe the geometric symmetry of the regular-
polygonal domes. This group consists of the following 2 n elements :

o, and 70, J=1,2, e | T eeeeeeee e (3)
where ¢; denotes the 360 (j—1)/n degree rotation in the x-y plane about the z-axis and 7 is the
reflection in the y-axis. The element z¢, causes a 360 x(j—1) /n degree rotation about the origin followed
by the reflection in the y-axis; this element consequently denotes the reflection in the straight line
intersecting with the y-axis at the origin at an angle of —180 x(j—1) /n degrees. The group D,, made up
of these elements, denote rotational symmetry regarding 360 x(j—1) /n degree rotations (j=1,2, - ,
n) and line symmetry regarding n straight lines. For this group, the transformation T, equals either
T OF Troy (j=1,2, - ,n). The transformation T,;, for example, permutes the nodal coordinate vectors
Ly, Lagyy ***" Zna as in what follows :

...... t_ (Zrmgs Loms =+ L) for j=1
T {iom, Laons » o) (Tn- 5410005 Lnss20m5 > Ly Lacys Lamys **°° " » Tnsm)” for j=2 (4)
in which the superscript t denotes the transpose of a vector.

The transformation T, representing either such a rotation or reflection, merely permutes those nodes,
This transformation consequently denotes the following permutation of node numbers :

k) = alk) i=1,2, - B3 o R S R PP (5)
where the index g, takes a value either 1,2, --.--- , or 7.

Such permutation of node number does not alter the stiffness distribution but merely reallocates the
tangent stiffness matrix components, Hence one can arrive at the following condition of stiffness
reallocation :

me)( Tg( .’L‘))= Koaggaspy = vrermrrresmeeremesss BT PN ( 6 )

For axisymmetric loadings, all the nodal load vectors can be preserved by each transformation T,, that
is, '

Tofin=Jawm 1=1,2, 0000 » N

k= 1,2, - Y L wee ettt sttt e ( 7 )
with the use of these relationships, the left hand side of Eq. (1) for the truss dome structures

becomes
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Hi(k)(f’ Tg x): Kai(kiﬂd(l)xad(l)_Fm(k)—‘f'fat(k) ...................................................................... (8 )

Dummy variable g, in this equation can be replaced by a variable j and a vector f 4, is equal to Ty f;y as
indicated in Eq. (7). On considering these relationships in Eq. (8), one can show that the condition for
covariancy, Eq. (2), is satisfied for all the transformation initiated by elements of group D, Hence
those regular-7-gonal domes under axisymmetric loadings are D,-covariant. The authors will employ this
group in the remainder of the paper as a mathematical tool to describe the D,-covariant domes.

The verification of D,-covariancy of polygonal domes performed herein is applicable to other truss
domes under axisymmetric loadings, for which the condition of realocation of stiffness matrix Eq. (6) is
satisfied. The verification of covariancy of truss domes under a symmetry group, in general, reduces to
the proof of this equation, Such verification can be performed with ease by observing the domes’
configurations and investigating if their stiffness distribution can be preserved by the transformation
caused by each element of the symmetry group.

3. BIFURCATION MODES OF REGULAR-HEXAGONAL TRUSS DOMES

As we have seen in the previous section, the regular-polygonal truss domes under axisymmetric loadings
are covariant with a dihedral group so that the bifurcation behavior of the domes can be characterized by its
subgroups?-¥~17  As an application of this group, we study the bifurcation modes of regular-hexagonal
domes (see Fig. 3) with the aid of a dihedral group of degree six (D;). This group possesses the following
16 subgroups® :

Di=<{a, 03, 03, 01, 03, Ge, TOH, T2, T3, TOs, TC5, TOs>

Ce=<0'1, O3y O34 O4y O, 0'6> C3=<0'1, O3, 05) Cz=<0'1, 0'4> E=<01>
Di/2=<on, 03, 05, TOy, 103, To>  Dss2=<01, 03, 05, 102, TOU, TOW
D‘;:(a'l, G4y TOj, T0j+3> j:l, 2’3 D{:(a-l, raj> j=1'2, ...... '6 ....................... (9)

where the right hand side of these equations denote the elements of the relevant group and ¢4, denotes g
60 - (j—1) degree rotation and rg; a reflection in the straight line crossing with the y-axis at an angle of
—30- (j—1) degrees.

The nodal displacements of the ;-th nodes were expressed in terms of the cylindrical coordinates (r;, 4,
and z,) in order to express rotatory symmetry of the domes in a methodical manner, Following a method for
determining the interrelationships among the domes’ nodal displacements related to those subgroups”, we
arrived at the nodal displacement interrelationships for the hexagonal truss domes shown in Table 1. As
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(a) Single-hexagonal Dome (b) Double-hexagonal Dome (¢) Triple-hexagonal Dome

Fig. 3 Regular-Hexagonal Truss Domes,
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Table1 Nodal Displacement Interrelationships for Bifurcation Modes of the
Regular-Hexagonal Domes.

(a) Odd-Numbered Layers

Bifurcation

Modes

Displacement Interrelationships of the Nodes

U =r; o1z

9;

Uy = Up= U3 =Uq=Us= Ug
B = URa=U3 = Uy=Us = Ug
Ry =U3=Us ; U= Us=Ug
U= U= U3 = U= Us = Ug
Hp=Us | U= U= U= Ug
U3 =Ug ; UI=Uy=U4= Us
Uy =Ug | Up=Ua=UsT Ug
Up=U3=Us | Uy=U = Ug
Uy =Ug | Up=Us | U3=Ug
Uy =Ug ; Up=Us | U3= Uy
Wy =Us ; Up=Uy
By =g | UB2=U3 | Us=Ug
Uy =Uy | Usg=Ug
Wy =Uy ; U3=UG | U4=Hs
Up=1MNg ; U3=Us
arbitrary

61=Gz=03=94=05=65=0
9,=61=93=64=95=96
61=92=03=94=95=65=0
9|=—91=63=—94=95=—66
91=95=0 M 91=—93=94=—96
63=95=0 H 9,=-—92=04=—95
91=0.=0 H e;=—93=65=—65
0;=0;=05 ; 0,=0,=20¢
;=04 ; 02=05 ; 03=05
Oy=—08g ; B=—05 ; 63=—8,
03=05=0; 0)=—085 ; O,=—0,
By =—084 ; 6=—6;3 ; O05=—066
0,=05=0 ; 6;=—03 ; O,=—86
Oy=—10; ; 83=—05 ; 64=—10;
01=0,=0; 0;=—05 ; 63=—106;
arbitrary

(b) Even-Numbered Layers

Bifurcation

Modes

Displacement Interrelationships of the Nodes

W =r,orz;

9;

D¢
Cs

Uy = U= Uy = Uy =Us=Us
Uy = U= U3 = Ug=Us=Ug
By = U= U3 = U= Us= Ug
Uy =U3=Us ; U= U4 Us
Uy =Uq ; Ba=U3= Us= Ug
Up= U5 | U1 =U3=UQ= Ug
U3 =Ug ; Uy =1U3=UQ=Us
Uy =U3=Us ; Ug=Uy=HUg
Uy =g ; Up=Us | U3= Ug
Uz =Ug  U3=Us
Uy =Ug ; U =Ug | U3=1Uy
Uy =Uus ; Uza=1Uy
Uy =Ug 3 Uz=Uy | Us=Ug
Uy =Mu3 | U= Ug
Uy = Uz ; U3=Ug | Ug=Us

arbitrary

0,=0,=0y=0,=05=05=0
9l=02=63=94=95=96
) =— 0, = 0; =~ 0, = 8 = — O
91=92=eg=94=95=06=0
01=84=0 H 92=-93=05=—95
0y=05=0 ; B =8, =0, = B
By=0,=0 ; 6 =—8; =0, =— b
B, =8;=05 ; 0,=0,=04
6)=04 ; 6,=05 ; 03=0¢ .
6,=04=0; 0,=—65 : 63=—05
Oj=-0¢ ; 62=—05 ; 83=—104
03=0,=0; 8;=—05 ; 6,=—0,4
0y=—04 ; 6,==-0; ; 05=—0¢
6;=05=0; 6;=—03 ; B4=—18¢
6y=—0; ; 03=—8¢ ; 04=-0;5
' arbitrary

Cs

D3 (i=1)

DY (i=2) o% E
Fig. 4 Deformation Modes of the Triple-Hexagonal Truss Dome Expressed in Terms of Relative Displacements
of the Free Nodes,
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can be seen from this table, the nodes in all the odd-numbered layers possess the same types of deformation
patterns for each subgroup and so do those in all the even-numbered layers. The bifurcation modes for D},
Dj, and D} are rotatory symmetric and correspond to the same physical behavior, Such is also the case for
Di, D}, and Dj and Di, Di, and D{. These modes, therefore, are represented by Dj D¥-!, and D%,
respectively. A more detailed discussion regarding rotatory symmetry among subgroups (bifurcation
modes) can be found in Ref. 16.

We illustrated schematically the deformation modes of the triple-hexagonal dome in Fig. 4 in terms of
relative displacements of the dome’s free nodes, The symbols (), (A), - , and () indicate that
nodes with the same symbol have the same vertical and radial displacements. The solid-dash lines denote
the axes of line symmetry. The nodes on the axes of symmetry cannot rotate, whereas nodes elsewhere can
rotate in such a manner that the nodes after rotation satisfy the required line and point symmetries.

The group D, denotes a mode characterized by identical displacements for all the nodes belonging to the
same layer, The group D},, expresses a three-axes symmetric mode exhibiting the same vertical and
radial displacements for the nodes in all the even layers and for every other node in all the odd layers. The
group D/, expresses another three-axes symmetric mode for which all the nodes in even layers displace
symmetrically and so do every other node in each of the other layers. The group D} is a two-axes symmetric
mode that is line symmetric in two perpendicular axes. Groups D¥~! and D¥ denote bifurcation modes with
an axis of line symmetry. Point symmetric modes are represented by groups C;, C; and C, ; for these
rotational symmetric modes, nodes with the same symbols must rotate toward the same direction with the
same angle so as to satisfy the point symmetry required. The completely asymmetric mode is expressed by
the trivial group E.

Considering only vertical displacements, we had noted in Ref. 14 for the single-hexagonal dome that
groups Ds, C,, and D}, degenerated into a mode and so did groups D, ,, and C;. We had interpreted such
cases that multiple modes degenerated into the same mode (mode degeneration). Mode degeneration, by
contrast, did not occur for any of the hexagonal domes when radial and rotational displacements were
included.

As reported in Ref. 14, hierarchial frame-

works of bifurcation paths of domes can be Table 2 Bifurcation Modes Hierarchies for Hexagonal Domes.

represented by subgroup structures of relevant Considering only Vertical Considering All the

) K Displacements of the Domes Displacements of the Domes
dihedral groups (D, for this case). Based on DA Doy Do
the method for obtaining subgroup structures Ve

Dg»D{'—»C,—>E | D} D{é:c,l*s
of dihedral groups>'” we obtained hierarc- N \ / \ Y: .
hial frameworks of bifurcation modes of the Do —>D} \D 6'7\‘4’:%
hexagonal domes. Table?2 compares the Ce —\o-*c,

hierarchy obtained by considering only vertical S— T : group T is a subgroup of group S.

displacements and that by all the displacement

- components, The symbol S — T — U in this table denotes that the group T is a subgroup of S and U is
of T ; furthermore, one can bypass group T and interpret that group U is a subgroup of S. The hierarchy
obtained by considering all the components was significantly more complex than that arrived at by using
only vertical displacements in that the former possessed the modes related to groups C,, C;, and D;,,,
while the latter did not owing to mode degeneration. Radial and rotational displacements, to be precise,
must be considered in describing bifurcation modes of truss domes.

As we have seen, the consideration of radial and rotatory displacements resulted in more diversified
types of bifurcation modes and hierarchies than those obtained by considering only vertical displacements.
All the hexagonal domes possessed the same bifurcation modes and hierarchies and that the distinction of
the number of layers was immaterial. The validity and usability of these data will be verified through
bifurcation path tracing analyses of these dome structures in the next section,
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27

BIFURCATION BEHAVIOR OF REGULAR-HEXAGONAL TRUSS DOMES

We have advanced a series of data regarding the bifurcation modes of hexagonal truss domes in the

previous section. In order to assess the usefulness and
usability of these data, they are adopted in this section to
describe the bifurcation behavior of the double and triple-
hexagonal domes subjected to the axisymmetric vertical
loading pattern (a) or (b) listed in Table3. The
behavior of single-haxagonal dome is not studied here but
its behavior has already been found in Ref. 13 to satisfy
those data. Figure5 contains equilibrium paths of the
domes obtained with the use of a finite displacement
analysis technique”, During the course of this analysis, we
investigated deformation modes of the domes to ascertain
that each path can be represented by a subgroup of D,. The
types of paths are indicated in this figure by means of
various kinds of lines, while the types of bifurcation points
by the symbols (@), (O), and (A). Although these
equilibrium paths had various types of bifurcation paths,
each type matched perfectly with what advanced in Fig. 4

Table3 Vertical Loading Patterns Applied to the
Double and Triple-Hexagonal Domes.

Layer Node Loading Loading
Number | Number | Pattem (a) | Pattern (b)
0 0 12 0
1 1 1 0

2 1 0
n 1 0
2 1 1 1
2 1 1
n 1 1
3 1 1 0
2 1 0
n 1 0

The loads on the third layer must be
ignored for the double hexagonal -dome.

Types of Bifurcation Points
® : Symmetric, Single Root;
O : Symmetric, Double Root;
A : Asymmetric, Double Root.
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Fig. 5 Equilibrium Paths Computed for the Double and Triple-hexagonal Domes under the Loading Patterns (a) and (b).
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and every bifurcation process followed perfectly the bifurcation mode hierarchy advanced in Table 2.
Furthermore, bifurcation paths represented by the group D;,, existed in the equilibrium paths for those
domes for the loading pattern (b ). This validates the aforementioned prediction that the hexagonal domes
can possess a mode relevant with group D},,, which was not identified by considering only vertical
displacements of the domes, Although we could not find a path relevant with groups C,; and C,, these types
of paths are theoretically feasible and are expected to exist in some other cases,

As we have seen, the bifurcation behavior of the polygonal domes occurred exactly as predicted in the
previous section. To be precise, the potential bifurcation modes advanced in Fig. 4 covered all the
bifurcation modes found in those equilibrium pahts, while the bifurcation path hierarchy advanced in
Table 2 explained well every branching process encountered, This insures the applicability of the group
theoretic method to the study of complex regular-polygonal dome structures with realistic configurations,

5. BIFURCATION MODES OF REGULAR-POLYGONAL TRUSS DOMES

The study of bifurcation modes of a series of regular-hexagonal domes performed in previous sections
revealed that the mode degeneration did not occur when radial and rotational displacements of the domes
were considered. These components, therefore, must be considered in describing the bifurcation modes.
This implies the inadequacy of the information regarding bifurcation modes derived on the basis of
single-polygonal domes' by considering only vertical displacements, for which several bifurcation modes
were lost owing to the mode degeneration. To enhance the generality of the information, the authors
obtained bifurcation modes of rgular-polygonal dome structures with reference to all the displacement
components, (that is, by arriving at the modes expressed by all the subgroups of relevant dihedral
groups) .

The bifurcation modes of regular-n-gonal domes with degrees three through 16 were obtained by
examining all the subgroups of corresponding dihedral groups by means of the method for obtaining the
subgroups of dihedral groups advanced in Refs. 10 and 17. The subgroups of D, consist of :

Dy, Cay Doconm and Cgcanm m=1,2, - , (n—1)/2 for odd n;

Dy, Cay Dnys, Cays, Dgcanm and Cgeanm m=1,2, - , n/2—1 for even . ------n (10)
where gcd (n, m) denotes the greatest common divisor of the numbers 1 and m and Dycgnm denotes the
following groups :

Docanm= Dicanm j=1,2,-,n/ged (n,m)  when n/gcd (n, m) is odd;

Ditm and Dibanm J=1,2, +e0e+ , n/(2+-gcd (n, m)) when n/gcd (n, m) is even,
.................................................................................... (11)

The groups in Egqs. (10) and (11) can be defined as :

E=C,={op

Ci=X01, G1ins1s Orami-nso i=gcd(n, m)

D£=<01, Orin/is *°°°° s Ovinii-1)/1s TOjs TOjan/is "° """ y Ta'j+n(i—l)/r’>

D?—l:((’l, Crin/iy """ » Orani-1/is TO25-1s TO2j—14m/4y "°°°"° » TOy_1mi-1)/

D§j=<01, Oren/iy *°°"°° s O14nii—1)/iy TO2jy TO25+n/ iy *°°""" ’ ‘l'0'u+mz—1)/t>

D/ s={an, 05, - s On_1y TOL, TO3y **o** s TOn_

Drnjr=<a, 03, === s Onoiy T2, TOay **o** , TOY

D.=<a1, 02, =+ s Ony TO1, TGy oo Ry P PPN (12)

Table 4 contains renewed data regarding the existence of bifurcation modes. The symbol (Q) in this
table expresses the mode obtained by considering only vertical displacements; (A) denotes the mode which
were identified by considering radial and rotational displacements, in addition to the radial ones. As can be
seen, groups C,, D,,, and C,,, did not undergo the degeneration for the formulation considering all the
displacement components but did for the other formulation (we investigated the domes’ deformation modes
related to these groups to insure their existence when all the components were considered). Such
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Table 4 Potential Bifurcation Modes of Regular-Polygonal Domes

(n=3 through 16).

Degrees

Modes

9 10 11 12 13 14 15 16

8
E 0O 0 0 0 0o O O 0O 0 0O o o o o

]

by
D

00
[eNe)

D3t
D3

o0 0O

D3
DY

D~
DY

o0
[oX o)
00 OO

00 00 00O

[e}e]

(el eR-28-4
cob b
oob b

Q O O

O

[eleR- o -
[oN el
[eNeN 233
oo

O =} o

O  : bifurcation modes identified by considering only vertical displacements of the domes;

A bifurcation modes identified by considering all the displacement components of the domes.

Table5 Hierarchal Frameworks of Bifurcation Modes.

n=3,5711,13 @)

-1

R ———— ]| E Dyp D
\C“/ D./ﬂ Cz >>E

Lon

nﬂ}\om———a—u,ﬁ/

D{—D{

D.K /c, /: /

D, —>DH 1 —>p¥]

D, ———C,—>»C4—>C,—>E

P4
m‘omf:nz’f — 1”/

7=6,10,14 (@p)

n=9 (p? n=|
D.n PHN
D,,/ \ {3C,—>E
\D, n\_A\D l2/
Cngc‘nll

n=12 (2*p) D#

Die Y e A A RN
RS, ARG

D, >C, D> C,—»Cy—> C4y—>Cy —>E
\\Wéz,/ \D,,,/-:D}i Z:Dgi—/:u.’i/
n=15 @-q) n=16 (2%

() : faclorization of degree;
pq : prime numbers.
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avoidance of degeneration for the former is attributable to its greater ability to represent symmetric nature
of bifurcation modes.

The existence of bifurcation modes was highly periodic and systematic with regard to the degree of
polygons. For example, a mode related to group D] existed solely for odd degrees, while modes associated
with groups D¥'~', DV, D,,, and D),, did only for even degrees. Such periodic nature arises from
dependency of subgroup types on degree n, as can be noted from Eq. (10).

Table 5§ shows updated bifurcation mode hierarchies, which include more bifurcation modes than those
advanced in Ref. 14. The consideration of radial and rotational displacements made the hierarchies much
more theoretically complete and systematic. The data regarding bifurcation modes obtained herein will be
of great assistance in studying bifurcation behavior of regular-polygonal-shaped dome structures subjected
to axisymmetric loadings. For another type of loading, the subgroup representing the symmetry of the
loading becomes its symmetry group. Then, the relevant bifurcation phenomena can be described by this
symmetry group and its subgroups. This is identical with the application of dihedral groups to truss domes
with imperfections advanced in Ref, 15.

6. CONCLUDING REMARKS

The group theoretic method has come to be used extensively to describe bifurcation behavior in last
decades, especially in applied mathematics®~'?, The authers extended and refined this method to be
compatible with conventional bifurcation buckling analyses of dome structures®~ While capable of
describing well bifurcation behavior of the simple polygonal truss dome structures (see Fig. 1), the
method had limited sense of generality as these domes had very simple geometric configurations,

This research was undertaken so as to extend the applicability of the method to dome structures with
more realistic configurations with greater number of degree of freedoms. For this purpose, bifurcation
buckling behavior of the general polygonal domes shown in Fig, 2 was investigated on the basis of a group
theoretic standpoint, We proved these domes under axisymmetric loadings to be covariant with dihedral
groups, thus insuring the usability of the groups in describing the domes’ bifurcation behavior. As an
application of these groups, we studied bifurcation behavior of the regular-hexagonal domes, Potential
bifurcation modes of the domes and their bifurcation mode hierarchies were expressed in terms of the
subgroups of a dihedral group of degree six (D¢). An investigation of actual equilibrium paths obtained
through bifurcation path tracing analyses insured the validity and usability of the information advanced
herein.

The group theoretic method, whose validity has been assessed herein and in previous papers®~1 was
used to obtain the potential bifurcation modes and hierarchies of regular-polygonal domes with degrees
ranging from three through 16. Because of avoidance of mode degeneration, the use of radial and rotational
displacements of the trusses resulted in more diversified and theoretically complete bifurcation mode
hierarchies than those obtained in Ref.14 by considering only vertical ones, All the displacement
components should be included in describing bifurcation modes, These bifurcation modes and hierarchies
obtained herein were suggested for use in studying bifurcation behavior of dome structures.

As we have seen, the group theoretic approach described well bifurcation behavior of regular-polygonal
domes, whereas retaining desired simplicity and theoretical completeness. In this manner, the bifurcation
behavior may be understood not as a result of highly complex nonlinear phenomena but as a natural
consequence of highly systematic and organized bifurcation hierarchy. Most of the qualitative bifurcation
behavioral characteristics of domes can be determined from their geometric configurations, while the
loading condition and detailed aspects of the domes (their height, radii, etc.) can determine quantitative
aspects. Provided with a number of group theoretic information regarding bifurcation phenomena, one can
trace such phenomena with much more confidence and hopefully with. fewer mistakes. Of course, care
should be taken regarding the fact that the domes selected here as examples can represent only a structural
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type of domes among numerous alternatives so that one needs to investigate bifurcation behavioral features

of various types of domes prior to arriving at general rules. The information regarding those polygonal

domes obtained in this paper could form a basis in studying the other types of domes,
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