89

Structural Eng. / Earthquake Eng. Vol 3. No.2, 257s-266s. October 1986
Japan Society of Civil Engineers (Proc. of JSCE No. 374,/ [-6)

GROUP THEORETIC CATEGORIZATION OF BIFURCATION
MODES OF TRUSS DOME STRUCTURES

By Kiyohiro IKEDA*, Kunio TORIP** and Shogo MATSUSHITA***

A study of potential bifurcation modes of dome structures is performed based on a group
theoretic method for predicting the bifurcation modes. Potential bifurcation modes of a
series of polygonal-shaped truss domes were advanced by investigating the subgroups of
dihedral groups. These modes were classified into seven general categories and several
rules regarding the presence of the modes were drawn. In addition, hierarchal structures
of bifurcation modes were investigated. The information regarding bifurcation modes
obtained in this manner was used to trace bifurcation buckling behavior of an eight-gonal
truss dome. While an initial imperfection technique was used for tracing bifurcation
buckling behavior, the information was employed to determine the initial imperfection
modes which can initiate the bifurcation behavior.
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1. INTRODUCTION

Symmetry plays an important role in the field of structural engineering. Numerous structures have been
constructed to hold a number of point and line symmetries. Such examples can be found literally
everywhere, including a series of historic structures : the Colosseum in Rome_ the Pyramids in Egypt, and
the Blue Mosque in Istanbul. Dome structures can be set forth as a representative of modern structures
with highly symmetric geometries, Dome structures, however, often exhibit bifurcation buckling behavior
at the onset of a sharp reduction of load carrying capacities and drastic loss of symmetry?. Naturally, itis
of great engineering interest to evaluate bifurcation modes of dome structures and trace their bifurcation
behavior,

Several analytical methods?~" have been developed by a number of engineers for the purpose of tracing
the behavior, These include initial imperfection® ¥ perturbation”, and eigenvalue analysis® techniques.
However, these techniques focused on the analytical tracing aspects of bifurcation behavior, while
somewhat ignoring symmetric nature of bifurcation modes that should have a great influence on the
behavior. Because of this, there exists only limited information regarding bifurcation modes, which has
been obtained through case studies performed in a heuristic fashion®~7,

By contrast, extensive mathematical studies on bifurcation behavior have revealed that such behavior is
a process of losing symmetry. Dihedral groups, which can measure the level of symmetry of figures, are
used to describe the symmetric nature of bifurcation modes, The bifurcation behavior has been found to be
covariant with (analogous to) the groups.
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The previous papers®-* applied such a mathematical approach to the description of bifurcation modes of
dome structures. Bifurcation buckling behavior of polygonal-shaped, reticulated, truss domes was proved
to be covariant with (analogous to) a dihedral group, which is uniquely determined from the geometry of
the dome and its loading conditions”-""'. Bifurcation modes of a hexagonal-shaped dome was advanced
through an investigation of dihedral groups.

The objective of this paper is to develop a systematic and practical method for predicting bifurcation
modes of dome structures with the use of dihedral groups, Potential bifurcation modes of a series of
polygonal-shaped truss domes are expressed by means of the groups, A categorization of the modes is
performed and general rules regarding the existence of modes are drawn. In addition, the information
regarding bifurcation modes is utilized to select appropriate initial imperfection modes which can induce
bifurcation buckling phenomena.

2. GROUP THEORETIC METHOD FOR DESCRIBING SYMMETRY

This section briefly reviews a group theoretic method for describing bifurcation behavior of dome
structures that was advanced in the previous papers®? and is directly employed for the purpose of
discussion in this paper.

Isometries of a plane can be defined as one-to-one mappings on the Euclidian plane that preserve the
distance between any two points in the plane'?  Isometries are the products of reflections, translations and
rotations, A figure in the Euclidian plane is stated more symmetric if the geometry of the figure can be
preserved by more isometries.

Symmetry groups, made up of a set of isometries, have been extensively employed for representing
symmetry of figures in mathematics'®. These group are utilized here to express the symmetry of
bifurcation modes. The order of a group, equal to the number of the elements of the group, serves as an
appropriate parameter to represent the level of symmetry,

The symmetry group of a regular n-gon (n=3, 4, 5, ---) is called the dihedral group of a degree n, D,.
This group, whose order is equal to 27, consists of the following 21 isometric transformations in the x-y
plane :

o; and to; T TR T (1)
where g, is the 360 (j—1)/n degree clockwise rotation about the origin O and 7 is the reflection in the
y-axis ; the multiple of transformations denotes that the transformations are achieved in sequence from the
right one to the left. The level of symmetry of a deformed configuration of the n-gon can be expressed by
the number of elements preserving its geometry, or, in other words, by the order of its symmetry group.

Fujii" ! found that bifurcation behavior of a certain system is covariant with a symmetry group G
(G-covariant). Such behavior is a process of losing symmetry and analogous to the subgroup structure of
the symmetry group. His findings with respect to a G-covariant system are summarized as : (1) The
paths of a G-covariant system are characterized by their symmetry groups, which are subgroups of the
group G; (2) the path having the group G as its symmetry group is called a fundamental path ; (3) a path
will preserve its symmetry group until a bifurcation point is reached ; (4) when bifurcation paths branch
from an equilibrium path at a bifurcation point with a single root, symmetry groups of the bifurcation paths
are subgroups of the equilibrium path’s symmetry group; (5) all the single critical points on the paths
with the trivial symmetry group E, in general, are stationary points of the loading parameter f, where E
is the group made up of the identity element ¢,.

Ikeda et al. ® applied these findings to the description of bifurcation behavior of an i3—gonal, reticulated,
elastic, truss-dome (see Fig.1) subjected to symmetric loadings applied at the nodes 1 through n. Its
bifurcation behavior was proved to be covariant with the dihedral group D, and described by Fujii’s
findings. We concluded that potential bifurcation modes of a dome structure should be determined through
the observation of subgroups of a dihedral group covariant with the behavior,
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3. BIFURCATION MODES OF POLYGONAL-SHAPED TRUSS DOMES

In order to assist the study of bifurcation behavior of dome structures, potential bifurcation modes of a
series of polygonal-shaped truss domes are investigated here (see Fig. 1 for their typical configuration) .
As reported in Reference 9, deformational properties of these domes can be monitored by observing the
subgroups of the group D, which is a symmetry group of a regular n-gon.

At first, a four-gonal dome shown in Fig. 2 is studied as a simple example. Potential bifurcation modes
of this dome are characterized by the subgroups of the dihedral group D, :

E =g C,={0ay, o3>*=* C,={0, 03, 03, O

DV '={ oy, 102510 DV =< o0, 702> j=1lor2
Dy=<{a, 03, TOY, TOD " D, =<0, 03, 0w, TOY
D=1, G2, Gz, Os, TOU, TO2y T3y TOy) **7tre s retseetsne s st ettt ettt ittt et et st st b b te b e e (2)

These subgroups were obtained with the aid of the following two steps : (1) obtain the subsets of the
group; (2) check if each subset can become a group'”?, These steps should enable one to obtain all the
subgroups of a group without fail

The bifurcation modes related to these groups are schematically illustrated in Fig. 3 in terms of the
typical deformed states of the nodes 1 through 4 of the dome. Multiple subgroups represented the same
bifurcation mode ; such cases can be interpreted that multiple bifurcation modes are degenerated into a
single mode (mode degeneration)®. The highest-ordered subgroup among the subgroups, which can most
accurately represent the symmetry of the mode, should be selected as its symmetry group. Consequently,
bifurcation modes of the dome can be represented by the following five subgroups : E, D¥', D¥ D,
and D,.

The group E denotes a completely asymmetric bifurcation mode, which cannot lose any more symmetry.,
The groups D¥~' and D¥ (j=1 or 2) represent bifurcation modes having one axis of line symmetry. Every

o free node
® fixed node

O free node Y

y ® fixed node

b TS /‘?)\*

Fig.1 n-Gonal Dome. Fig.2 4-Gonal Dome,

Y D4 ] D’l’ ] c4
Fig.3 Geometries of Bifurcation Modes of 4-Gonal Dome (Deformation of Nodes | through 4) .
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other node displaces identically for the Table1 Potential Bifurcation Modes of Polygonal Domes.
mode represented by the group D,,,. The Modes Degrees
3 4 5 6 7 B8 9 10 11 12 13 14 15 16

group D, expresses a completely symmet- F C 6 05 6o 0 o0 0 0 0o o o o o
ric deformation mode, which is not associ-
ated with a bifurcation path but with a gi x (3 o o o 8 o 0
fundamental path. C, x x o

Next, potential bifurcation modes of the c ) *
polygonal domes with degrees of three 0 o o o o o o o
through 16 were obtained in this fashion. g;%; o © ©
Table 1 shows the existence of these gz © o
modes, where the symbol ((O) expresses
the subgroups which have relevant bifurca- DYt o) 0 o) 0 o) o o
tion modes and (X) denotes those not oy © © © © © © ©
having relevant modes due to mode de- ggif" x 8 S 8
generations, pai-1 % o

The subgroups of the group D, used to og! x o
represent these modes can be classified g:zj" x 8
into the seven general types E, C, Di,
D¥', D¥. D.,,and D,, which are defined Daya o o 0 o) 0 0 O
as follows ° Dy O 0O 000 0O 0 QO 0o O 0 9 o O

O Bifurcation mode exists.

E =<0‘> %X  Bifurcation mode does nol exist due Lo a mode degeneration.

Ci=<a, Or+n/iy """ al+mi—1)/i>

le=<01, Oirnsis “" Oreni-v/i T05 TOiyn/is "'TUj+mi~l)/i> j=1, 2,0, n/i

ij4=<0h Cren/is """ Oemi-n/is TO25-1, TO25-14m/is "'TUzj—1+mi4)/i> J'=1Y 2, -, n/2 )

ij:<f71» Ti+n/iy "2 Ovemi-1/i, TO025, TO2+m/iy '“Ta'zj-i»mi~li/i> jzl, 2,0, TL/Z )

Dys2=X0y, 03, """ On_1, TO2, TO4, ***TOw

Dp=X01, O, """ Ony TO1, TGz, == TOp) =t s r s ot s e st tereteatn sttt ettt ettt et sttt st et et ra s et (3)

Some of these modes may not exist in actual analytical behavior of certain domes ; however, the modes
should cover all the possible bifurcation modes without fail. The presence of element ¢, ,,,; in a group
denotes that the mode related to this group is symmetric about the origin O and can be preserved by a
360 &/ i degree rotation about the origin ; the presence of rg,,,,; indicates that the mode is symmetric in
the straight line which intersects with the y-axis at the origin at an angle of —180-k/{ degrees.
Geometric configurations of some of these modes are schematically illustrated in Fig. 4, where the symbols
(O), (A).--- denote that the nodes having the same symbol displace identically.

The trivial group E represents a completely asymmetric deformation mode, which exists for all kinds of
degrees. The mode has the most unsymmetric configuration among the bifurcation modes since the group
has the smallest order among the subgroups.

Bifurcation modes represented by the group C; (=2, 3, ---) exist for the domes with degrees which can
be factorized by the number ;, except for the case where a mode diminishes due to a mode degeneration
(see Table 1). As can be seen from Fig. 4, these modes are symmetric about the origin since the group C,
is made up of a series of rotations g,.

The modes represented by groups D! and D% exist for the domes whose degrees can be factorized by
the number 2;. The modes related to the group D] exist for the domes whose degrees cannot be factorized
by the number 2; but factorized by the number {. As can be seen from Fig. 4, these bifurcation modes
exhibit both point and line symmetries owing to the presence of the elements g, and zg; in the groups,
except for the case of j==]1 where the modes have only line-symmetric nature.

Bifurcation modes represented by the group D,,, (n=4, 6, §, -} exist for the polygonal domes with
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Fig.4 Geometries of Typical Bifurcation Modes.

even-numbered degrees. These modes, which exhibit an identical displacement for every other node (see
Fig. 4), have the highest-leveled point and line symmetries among the bifurcation modes because of their
greatest order, 7. Accordingly they should play an important role in determining load carrying capacities
of dome structures.

The group D, represents a perfectly symmetric deformation mode, which exists for all degrees. This
mode, related to the fundamental path, is not concerned with bifurcation behavior but with pre-bifurcation
behavior.

As illustrated by these examples, the existence of bifurcation modes is highly periodic with respect to
the degrees. For example, the mode represented by the group D7 exists for odd degrees, whereas do those
by D¥* and D¥ for even degrees. Such a feature can be well explained by Lagrange’s theorem, which
states that the order of a group is divided by the order of its subgroup'?. The order of the dihedral group
D,, equal to 271, has the degree n as a factor so that the bifurcation behavior covariant with this group
should be greatly influenced by the way how the degree is factorized. For example, in the case where the
degree is a prime number, the order 27 has only three factors, 1, 2, and n. Otherwise, the order has more
than three factors in association with the factors of the degree n.

As can be expected from these discussions, the bifurcation behavior of a polygonal dome is greatly
influenced by the way how the degree is resolved into factors. Such an expectation can be insured from the
hierarchal structures of bifurcation modes shown in Table 2 (The symbol ’§— T— U’ used in this table
indicates that the group T is a subgroup of the group S and U is of T ; moreover, one can bypass the group
T and interpret that U is a subgroup of S). As can be seen, the degrees having the same factorization
exhibited the same hierarchy. Based on this feature, the degrees three through 16 can be divided into the
following eight general categories : p, 2%, p*, 2-p, p-q, 2°, 2% p, and 2*, where the variables p and ¢
denote the prime numbers other than ’2’. During the course of this categorization, the factor’2’ played
different roles than other factors did.

A strong correlationship existed between the complexity of hierarchal structures and the categories,
Polygonal domes with a prime degree p (3, 5, 7, 11 and 13), which have only three types of bifurcation
modes, exhibited a very simple bifurcation mode hierarchy. By contrast, those with non-prime degrees
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Table 2 Hierarchal Frameworks of Bifurcation Modes.

Dy Dy —»E | Da>=Dn,2 ————— D} L
.4
n=35"71113 (p) _ n=WDf"l
Dayz D3 Dn~—-——~———————>D§i'1—>Dfi"1\\
D, Di»pf-t»FE D2 Co—E

P

n=6,10,14 (2-p) \Cz/ n=8 (zﬂ)\p' 27‘/

D, > D Cy E ]
\D{/

n=9 (p? n=12 (2%p) pg = p2i
DL = Cs

Dy —— ij‘l—»Dzzj‘l_FDlEi—d

D, D

4 D E
n=15 (P )\ C,q/

had much more complex hierarchies.

As the factorization of the degrees tended to be more complex D, \t__.H: 5427 —T:., Dy lJt>1),21 )
| .

T —
Dol Cy ey v
increasingly complex in a systematic manner. The growth of the ‘T\Dfi' z 7)5_; i ;)_;Z;_
hierarchal framework was so rapid that the dome with a degree2™ - =-Zz-

from 27 through 2° to 2¢, the correspondent hierarchies became

(m is a large integer) should exhibit an extremely huge ______ Removed for n = 8
framework, However, the recurrent properties of the —-——- Removed forn = 4
frameworks (see Fig. 5) can be of great assistance in studying the  Fig.5 Recurrent Properties of Hierarchies
behavior, For example, the hierarchy for the degree 2™ can be (n=2%, 2, and 29,

determined by referring to the hierarchies for small degrees

(e.g., 22 and 2°) and constructing recurrence formulae,

The hierarchy also became complex for the case where a degree was composed of multiple prime
numbers, For example, the domes with degrees 6, 10, and 14, which belong to the category 2 p, had
greater number of bifurcation mode types and a more complex hierarchy than the dome belonging to the
category 22 did. Since the level of symmetry of polygons is directly proportional to the complexity of the
factorization, the complexity of bifurcation mode hierarchy of polygons is enhanced with increasing
symmetry, The concept of symmetry should play an important role in describing bifurcation buckling
behavior, to be interpreted as a process of losing symmetry® !V,

These studies regarding bifurcation modes have demonstrated that the method for determining
bifurcation modes proposed can advance potential bifurcation modes and their hierarchal frameworks in a
methodical manner, The studies dealt with the bifurcation modes of polygonal-shaped domes with specific
degrees in a heuristic manner so that it will be a natural course of future studies to make the conclusions
drawn herein to be applicable to more general cases.

4. ANALYTICAL BIFURCATION BEHAVIOR OF POLYGONAL DOMES

In order to demonstrate the usefulness of the categories of degrees introduced in the previous section,
bifurcation path tracing analyses were conducted on some of the polygonal domes. The finite displacement
analysis technique and computer program for truss structures developed by Nishino et al, © were employed
for these analyses. The loading pattern listed in Table 3 was utilized. The parameters for defining the
domes’ geometries were specified as follows : R=50, r=25, H=8.216 and h=6.216 cm. Figure 6
compares external force versus crown displacement relationships (equilibrium paths) obtained for
five-gonal and seven-gonal domes, whose degrees are both characterized by the category p. During the
course of these analyses, deformation modes of these domes were investigated. This investigation has
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revealed that each bifurcation path can be characterized by one of the seven types of subgroups introduced
in Eq. 3. In this figure, the bold-solid lines express the paths represented by the group D, ; the solid lines
denote those by the group D and so on. The symbol (@) expresses the bifurcation point with a single root,
and () does that with a double root. As can be seen, both of these domes exhibited the same hierarchal
structure made up of three types of bifurcation paths, Such a feature can be confirmed from Fig. 7, which
shows equilibrium paths for the six-gonal and ten-gonal domes, whose degrees belong to the category p- q.
These domes also exhibited the same hierarchy with the same types of paths.

As can be seen, bifurcation processes among these sets of equilibrium paths follow perfectly the
inter-group relationships listed in Table 2. For example, the paths O), A), B) and C) follow the
relationship D,—~Dj—D¥'—E. Of course, there are cases where certain subgroups in the relationships
are bypassed. For example, the paths D), E) and F), represented by the group D', branch directly
from the fundamental paths represented by the group D, at the bifurcation points a, b, and ¢. In these
cases, the group J)j in that relationship is bypassed.

As we have seen, the categories introduced herein characterized the bifurcation properties. These
categories would greatly contribute to the study of bifurcation modes. For example, a study of bifurcation
modes of the dome with a small degree (e. g., 2-3) should serve as a good reference in studying those for a
large degree belonging to the same category (e.g., 2-11 and 2-23).

5. TRACING BIFURCATION BEHAVIOR BY INITIAL IMPERFECTION TECHNIQUE

Typical bifurcation modes of a series of simple truss domes were advanced in the previous section. In
this section, these bifurcation modes are used to determine the initial imperfection modes which can
initiate bifurcation buckling phenomena.

£ (x107°EA) £ (x107'EA) Types of Equilibrium Paths

"

1 Crown
DI g‘ ) ) DGispt.
(cm) © gifurcation Paint cm)
{multipie root}
@ Bifurcation Point
(single root)
(a) 5-Gonal Dome (b} 7-Gonal Dome

Fig.6 Equilibrium Paths of 5-Gonal and 7-Gonal Domes (Category p).

f (x107%EA) f (x10"*EA)
P

Table 3 Loading Pattern (Vertically

Applied at Nodes () to n). /.)</
Node Loading /
Number | Pallern (\///
0 0.5 7
1 1.0 )
2 1.0 E) 05
. Crown
3 1.0 Displ
. . (cm)
. (a) 6-Gonal Dome (b) 10-Gonal Dome
n 1.0 Fig.7 Equilibrium Paths of 6-Gonal and 10-Gonal Domes (Category 2-p).
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An elastic, eight-gonal, truss dome (see Fig.8) subjected to the symmetric loading pattern listed in

Table 3 is used here as a numerical example, The bifurcation behavior of this dome is covariant with the

group D,.

As we have seen in Table 1, this dome has the following seven types of bifurcation modes, represented
by the subgroups E, C,, D¥', D¥, D¥', D¥, and D,,, Figure9 schematically illustrates typical
geometries of these bifurcation modes. In addition to this qualitative information regarding bifurcation

modes, the following theoretical finding® was used to determine the initial imperfections : the external

load vector f is orthogonal to the critical bifurcation mode vector dx at a bifurcation point, that is,

dl"f:() ............................................................................

where the symbol ( -) denotes the inner product.

On the basis of these features, normalized initial imperfection
modes were selected as listed in Table 4. The imperfection modes
for the groups D,,, and D}~ were uniquely determined from the
features ; however, such was not the case for the modes for the
other groups owing to redundant number of degree of freedoms in-
volved. These modes were specified in such a way that their compo-
nents have the simplest integer ratios as possible,

The initial imperfection modes were scaled by a constant value
0.01 cm and the z-direction coordinates of the nodes | through 8 of
the dome were altered according to these scaled modes. Figure 10
compares the equilibrium paths of the dome obtained by using these
initial imperfections and those obtained for the perfect configura-
tion of the dome. As can be seen from this figure, the initial im-
perfections evaluated in this manner offered us excellent approx-
imations of bifurcation buckling capacities of the dome.

The imperfection modes and the actual bifurcation modes are
compared in Table 4, These two types of modes perfectly matched

(L

G 1
D3 D3’ D/ D,

Fig.9 Geometries of Bifurcation Modes of 8-Gonal Dome,

Table 4 Comparison of Initial Imperfection and Bifurcation Modes,

Mode Initial Imperfection Modes Used Bifurcation Modes Obtained
Type Node Number
1 5 6 7 B11 2 3 5 7

Dajz |1 -1 t -1 1 -1 1 1)1 -1 1 -1 1 -1 1 -1
D¥tte 1 1 0 0 -1 -1 O0fo 1 1 0 O -1 -1 O
p¥ o t 0o -1 0 1 9 -1{0 1 O -1 0 1 O -t

pgtile 1 -1 2 -2 -1 1 2)2 -5 5 -2 -2 5 -5 2

DY 0 1 2 1 g -1+ -2 -1]0 -3 6 -3 0 3 -5 3

o free node

l e fixed node
Y

Fig.8 8-Gonal Dome (unit in cm),
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Fig.10 Tracing of Bifurcation Behavior
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for the groups D;,,, D5' and D¥. The two modes were not in good accordance for the groups P#-!
and D¥, which had rather more complex bifurcation modes. However, as we have seen in Fig. 10, such
a drawback did not limit the usefulness of the imperfection modes in estimating the bifurcation buckling
capacities,

With the aid of the information regarding bifurcation modes, the initial imperfection technique will
enable one to efficiently obtain bifurcation buckling capacities of domes with much more confidence since
the number of imperfection modes to be attempted is greatly reduced from the information, Such
information would be of great practical assistance in determining bifurcation buckling capacities of dome
structures.

6. SUMMARY AND CONCLUSIONS

This paper has advanced a study of potential bifurcation modes of truss dome structures. Dihedral
(symmetry) groups, extensively used to describe the symmetry of regular polygons in mathematics'®'V,
were suggested to be used as a mathematical tool for investigating the bifurcation modes. Fujii’s findings
with regard to the system covariant with a symmetry group were introduced and explained in detail. This
explanation clarified the interrelationships between the bifurcation behavior and symmetry groups.

Potential bifurcation modes of a series of polygonal-shaped truss domes were determined from the
investigation of the subgroups of dihedral groups, which are symmetry groups of regular polygons. The
bifurcation modes were classified into seven general types and the existence of the modes was found to be
highly periodic with regard to the degree of polygons.

The degrees three through 16 were divided into eight general categories through the investigation of
hierarchal structures of bifurcation modes. The domes with degrees belonging to the same category had the
same types of bifurcation modes and hierarchy. The domes with prime degrees, belonging to the category
p, had only three bifurcation modes, thereby holding very simple bifurcation mode structures. By
contrast, the domes with degrees belonging to the other categories had significantly increased number of
bifurcation modes, especially for the case where the degrees had complex factorizations. As the
factorization of degrees became complex, the hierarchy grew huge and complex. The concept of
categories, which can characterize the bifurcation phenomena, would greatly contribute to the
investigation of bifurcation modes. A study of the modes of the dome with a small degree could serve as a
good reference in studying those for a large degree belonging to the same category. Such an expectation
was verified through an investigation of analytical bifurcation behavior of polygonal domes,

The level of symmetry of polygons had a strong correlation with the complexity of the factorization of
degrees. The complexity of bifurcation mode hierarchy of polygons was enhanced with increasing symmetry
associated with an increase in the number of bifurcation modes.

The information regarding bifurcation modes advanced in this manner was employed to determine initial
imperfection modes. A series of analyses were performed on an eight-gonal truss dome with the use of the
imperfection modes determined on the basis of the information. The analytical results obtained were
capable of accurately approximating bifurcation buckling capacities of the dome in an efficient and
methodical manner owing to a great reduction of the number of bifurcation modes to be attempted. This
procedure for determining initial imperfections will be valuable in evaluating load carrying capacities of
dome type structures undergoing bifurcation buckling phenomena.

Most of these conclusions drawn herein are based on an investigation of bifurcation modes of polygonal
domes with specific degrees performed in a heuristic fashion so that verification of the conclusions for

more general cases remains to be settled in the future.
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