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FORMULATION OF DISTORTIONAL BEHAVIOR OF THIN-WALLED
CURVED BEAM WITH OPEN CROSS SECTION

By Hiroshi HIKOSAKA* and Katsuhiko TAKAMI**

An investigation of the effects of cross sectional distortion on the elastic behavior of a
thin-walled open section curved beam is presented. In particular, the influence of the
distortion on the longitudinal stress and on the transverse bending moment is studied.

The formulation of the problem is derived from the principle of virtual work by assuming
the strain field of distortion, and a practical modification of the conventional curved beam
theory is established.

The theoretical solutions are compared with the experimental results, and the effects of
curvature, longitudinal stringers and transverse stiffening frames are discussed for design
purposes,

1. INTRODUCTION

The theory for a thin-walled curved beam with arbitrary cross section has been established by taking into
account the wall thickness not extremely small compared with other dimensions? as well as the different
radius of curvature of arc fibers?~¥,  In those analyses, however, it is assumed that the cross section of
any beam is stiffened against distortion. This implies the provision of an adequate number of stiffening
diaphragms, transverse frames and diagonal bracings. Where such stiffeners are spaced widely apart, the
cross section will distort and the analysis must be modified to account for this,

The distortion may result in considerable reduction in overall stiffness of the structure and may set up
unfavourable stress conditions. The present study arose from an investigation of the guideway beam for the

suspended monorail system®~?, in which it is impossible to insert cross-bracings and lateral members for

obtaining increased stiffness and for preventing the distortion,

The theory for distortion in the past has been focused chiefly on thin-walled straight beams of closed
section unstiffened or stiffened by diaphragms®  and the open section beam has received a little atten-
tion®1® Curved beams are, in particular, subject to distortion of larger magnitude than straight ones,
owing to the existence of radial components in axial stresses!”. Takahashi et al®®. proposed a method of
analysis for the distortion of curved thin-walled open section members, with singly symmetrical cross
section, but their theory is limited in that it can only be applied to the distortion of single degree of freedom
and to curved members without stiffening frames.

The present paper describes a practical method for estimation of the cross sectional distortion of

thin-walled curved beams with open section stiffened by transverse frames, The theoretical solutions are
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compared with the experimental results and the accuracy of the analytical method is also discussed.

2. COORDINATE SYSTEMS

A thin-walled and circular-curved beam of open cross section is shown in Fig.1(a). We define the
geometry of the beam by a fixed cylindrical coordinate system (o, a, ¢), in which p is a radial coordinate,
@ is an angular coordinate and ¢ is directed normal to the plane of the beam. We denote the radius of
curvature at the neutral point and at the shear center of the section by R, and R, respectively, asshownin
Fig.1(b). Note that the neutral point does not coincide with the centroid in curved beams. To define the
geometry of the cross section, we establish in addition to the usual x, y coordinates an orthogonal
curvilinear coordinate system (n, s), with its origin D. The tagential coordinate s is measured
counterclockwise along the center line of the wall, and 7 is in the direction of outward normal to s, The
wall thickness # is a function of s. Since the orthogonal axes x and y pass through the neutral point of the
section, we note that

l%dA:O’ ﬁ%dA=0 ......................................................................................... (1)

where A is the cross sectional area of the beam.

3. DISTORTION OF CROSS SECTION AND ITS DEGREES OF FREEDOM

Let us consider a thin-walled polygonal cross section consisting of N plate elements whose junctions are
numbered O, 1, 2, -, N—2 as shown in Fig.2(a). The cross sectional distortion is defined by the
deflection of each plate in its own plane accompanied with its transverse bending, It is assumed that the
effect of both the local bending of each plate without nodal displacements, as illustrated by dotted lines in
Fig.2(b), and its transverse stretching on the distortion is negligible.

As a result of these assumptions, an open section beam consisting of N plates has )V degrees of freedom
for movements in the -y plane. Since those degrees include three rigid-body displacements, the degree of
freedom for the cross sectional distortion itself is N—3. The N —3 components of the distortion 4,, &,

/-plate N

(a)

Yy (b)

Fig.1(a) General view and coordinate system.

(b) Geometry of thin-walled section, Fig.2 Degrees of freedom for distortion,

68s



Formulation of Distortional Behavior of Thin- Walled Curved Beam with Open Cross Section 93

-*+, By3 are defined by the relative rotation or the change
of the angle between adjacent plate elements. Fig.3 ! \ i
shows the definition of the relative rotation ¢, which is ‘\ \
assumed positive when the plate ;+1 rotates counterc- \e.

_1/p|ate i+1

lockwise from the plate ;+2.

4. STRAIN FIELD OF CROSS SECTIONAL —_——— =/
DISTORTION

Fig.3 Definition of cross sectional distortion,
(1) Initial Displacements and Stresses

If any cross section of a curved beam remains undistorted during deformations produced by various
loads, the displacement of any point in the section is completely specified by 42, ¥, w9 and ¢, in which
the former three components denote the displacements of the shear center S(x,, y,) in the x, y and «
directions, respectively, and the last, ¢ denotes the rotation of the section about the shear center.
These four components are termed the initial displacements of the distortion problem in the present
theory.

In the conventional theory for the thin-walled beam of open cross section, the displacements produce the
axial strain ¢ and the shear strain 7%, due to St. Venant torsion, and all other strains are neglected.
Corresponding to these strains, the initial axial stress ¢ and shear stress 7', are given by the relations

OO E R, g0 m Gyl cveremereremeeret ettt et (2)
in which E is Young's modulus and G is shear modulus,

(2) Additional Displacements and Strains due to Distortion

When the cross section distorts the total displacement of the beam will be described by the modified
rigid-body movements u$+u, 094+ v, WP+ w, and ¢¥+ ¢ plus the displacements due to relative
rotations of the plate elements, §,(i=1, 2, --, N—3). The unknowns u,, vs, wsand ¢ are termed the
additional displacements of the distortion problem,

Let s, be the counterclockwise curvilinear coordinate of the point j(x;, ;) located at the junction of the
plate ;41 and {+2, as shownin Fig, 4. Further let P (x, y) denote a point located on the center line of an
arbitrary wall, and let 4 and v denote the additional displacements of P in the x and y directions. Then

N-3

u=us—(y—ys)o— 2 (Y— ¥:)buss
i=1
e e (3)
v=0,Hx—xJo+ 2 (x—x:)bus
1 if s<s;
where = ]
0 if s>s;

For further development we define the direction
cosines [ and m as follows :

_ _Jdx _oy
I=cos(x, n)——an =35 »
_ _dy_ ox
m=cos (y, n)——an ==

Let £ and 7 denote the displacements of P in n and
s directions, respectively. Then, from simple geometry
we find

N-3
§=usltv.m—hsp— g Tsitts O,

N-3
n=—usm+vsl+h,o+ Z} Tnstts Oy

Fig.4 Geometry of cross section,
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where
he=—(X—XIMA(Y—Ys)l,  An=(2— ) [ (Y YoM ---veeemeermeemeeemmeaitet e (6)
re=—(x—x)m+{y—y)l, P = (= L) LA (Y Yoo reeeemer e et (7)

Referring to Fig. 4, we find that hg and h, are, respectively, s and n components of the vector drawn
from S to P, and that 7, and 7, are those of the vector drawn from ; to P.

We shall assume that the effect of the shear strain y¥, along the center line of the wall on deformations is
extremely small and can be neglected. That is

w 2L 0N O (N e,
Ty e to5s () (8)
where w is the additional axial displacement of P. Substituting 5 of Eq. (5) into Eq. (8) and integrating

with respect to s, we obtain

T f oL\ A :

W= 1s—{x—.) <%§_E>_(y_ys) b +w(Rs 1’;2)+§_£;(¢i_¢w)%s. ...................... (9)
where

w:Rsp‘/s‘s}% hnds, R f ’r'm,ulds ............................................................... (10)

and ¢, is the value of ¢, at the shear center S(s=ss). InEq. (9) and throughout the present paper, the
prime denotes differentiation with respect to o, that is ( Y=d( )/da.

The locations of both the shear center S and the origin D of the coordinate s are chosen to satisfy the
following properties :

R, _ R, Rs _
[ S wda=0, [Zfwxda=o, [ awyda=o (1)
The additional axwl strain ¢, of any fiber due to distortion is

_1 (2w 00 _Re v Bl
eu=p (F2 ) =Tt 5 | (4 s =, (=W %) (12)

where &, represents the rigid body strain component included in the additional strain &q and is given by

_ _Rs
5a=7{5—(x—xs)ky—'(y—ys)kx+ w6}

1 1., D AP 1/, v
Rs (ws+ us) Xx= Ri‘ (US+RS¢)y Xy— Rg (us ws)9 8— Ri <¢ Rs)

e=

Since we have neglected the shear strain y¥, in Eq. (8 ), the only shear strain considered is ¥, due to St.
Venant torsion :

Yea 780—2&(}2; Igz)n ....................................................................................... (13)

5. ADDITIONAL STRESS DUE TO DISTORTION

(1) Additional Axial Stress

The additional axial stress g, due to distortion is, from Hooke's Law,

Gam=J£g *++++  + s e s e r et (14)

The additional stress system must be self-equilibrating since the initial stresses, +¥ and % in Eq.
(2), are already in equilibrium with the external loads. Therefore, at any section the additional stress
resultants are zero :

A%dA:O, joaydA=0, [%di:O, [andAzo ........................................... (15)

Since it is well known that in a thin-walled open section beam St, Venant torque is neglected as opposed
to warping torque'¥  the fourth condition in Eq. (15) indicates that the additional stress system is also
independent of twisting moment,
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Substituting Eq. (14) into Egs. (15) and performing the /member N
indicated integrations, we get the quantities ¢, x;. x, and 8 in
terms of 4, to eliminate z, from Eq. (12). Finally, substituting
€. thus obtained into Eq. (14), we get

E%;(W}%—Q‘%) ............................. (16)

where
Wz— R, (i~ s Coo— Cyx— Cizy— Ciow

&:=(y—yduti—Diw—Dux—Dixy— Diww
The eight coefficients C,, C,,, °**, D,, are known con-

stants, which have been determined so that Eq. (16) satisfies p-ac p-Qc
Eq. (15). '

(2) Transverse Bending Moment

Let a segment be cut out from a thin-walled curved beam by

two adjacent sections perpendicular to its axis. We treat it as a

=t

polygonal frame consisting of N members of flexural rigidity .
EI, as shown in Fig.5(a), and examine its bending moments M, skin plate
which produces transverse stress g, in each plate element. The

(b) \_stiffening frame

transverse frames as shown in Fig. 5(b) . If the spacing angle o, Fig.5 Bending of transverse frame.

beam may be unstiffened or stiffened by equally spaced

of the stiffening frames is small, their effect could be accounted

for by increased plate rigidity. Where the stiffening frames are spaced widely apart, however, transverse
bending moment produced by distortion may be almost carried by each frame whose flexural rigidity is
calculated for the section including effective width of plate elements. The bending moment M, is related to
the rotations ¢,(;=1, 2, *:, N—3) by the expression

where M, is the bending moment of the frame associated with a unit value of the rotation §,=1.

6. EQUILIBRIUM EQUATIONS AND BOUNDARY CONDITIONS

(1) Virtual Work Equation

We denote the n, s, o components of external forces per unit surface area on a thin-walled curved beam
by pn, Ds Da, respectively, and the n, s, a components of external forces per unit area on the boundary
cross section at ¢=( and a=¢ by P,, Ds, Da, respectively. The internal forces developed in the distorted
beam are the sum of the known initial stress and the unknown additional stress system, except that the
effect of the additional shearing stress on the distortion is extremely small and can be neglected,
Therefore, the equilibrium condition for the distorted beam is expressed by the principle of virtual work as
follows :

fff{ O+ g4)0eq + 050+ rsa()\)'salpdndsda—f f DPab€+ DO+ padwlpdsde
_[naj:(ﬁn3f+?s&}+—ﬁa3w)d/1]:=0 ........................................................................ (19)

where [ ( )ds indicates the integration taken over the entire length of the wall, f ( )dn over the
S n

thickness ¢ of the wall, n,=—1 at ¢=0 and n,=1 at a=¢.
If b‘?, 87, 0w, 8¢, and 87, denote the variations of the rigid body displacements and corresponding
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strains included in those of the additional displacements and strains due to distortion, the initial stresses
ind external forces must satisfy the virtual work equation given by

[¢£L(0§’83a+ 7(31375&)/’dndea__[¢fs(pn5‘?+pﬁﬁ%—paa‘u})pdsda

—[na[(ﬁnb‘g'f'ﬁsé‘ﬁ“l‘ﬁaﬁt—v)dz‘!]:=0 ...................................................................... (20)

Subtracting Eq. (20) from Eq. (19) gives the required equation governing the distortion problem of the
‘hin-walled curved beam as follows :

f ff{aa&-:a-i-as&es-*'z oy [( ~ ¢is) b}fg— R. (Yy—yu ; dendsda

R 88;
_ng A <ma130+mwz R. >da—2[na<T 50t+Mw R. >] = (Jerrer e (21)
For simplicity, we introduce the quantities with respect to the external forces defined by
2
m‘”zlﬁ (DsTri— DaTsptsdS,  Moi= fﬁz Dalim Qi) A+ rrrrerersrermaeanieiaiat 22)
Tizf(ﬁsrni_—ﬁnrst)#idA, M“"_fR Balim g dA - vmvrmeemmee e (23)

Furthermore, with respect to the initial stress ¢% and the initial shear flow ¢'” produced by both bending
ind warping torque of the beam, new quantities are defined by

(m_fR (0> ¢ts M(m__fa(ao) Yy— Y ,uldA ...................................................... (24)

T‘i‘”=fq‘°’m,utds ..................................................................................................... (25)
The above quantities m,;, MY, and T are related as follows :
T(i‘n:_%s M(g);—m‘” ................................................................................................ (26)

Now performing the integration of the first and second terms in Eq. (21), we get

f‘»f[aa&saz,t)dndsdoz=sti‘,3 (Mw SR(’?’ — M, iﬁl>da

............................................. (27)
[*[ [osbespdndsda=R,%, [* Fusbida
vhere
_5 9 gy O _% 9 _pp b e g,
Mo=3 (Bl gs—Edug ), Mo= 2 (Elugs—ERugy- ), Fum 0 full oo (28)
The quantities [;;, J;;, K;; and f;; are geometrical properties of the cross section defined as follows :
R, R, Rs MM;
Iijzj:'-p" W,-WjdA, Jij=[7 WtQJdA, K,:j: Q @jdA ﬁjz SE—IS ds """""" (29)
Finally, integrating Eq. (21) by parts, we arrive at the following virtual work equation :
8=3 ro MYy, . Mo, T MS s o 75 108:
RsZ f ( RZ R, +Fq R, R. mui>301da+§ [(M¢t+M¢i 'ﬂaMw)—s
My T S Pt
+< R. —— 4+ T¥ T > 30] (e e (30)

(2) Governing Differential Equations and Boundary Conditions
Since Eq. (30) must hold for any choice of virtual displacement 34, we obtain the governing differential
squations and the boundary conditions for the distortion problbm as follows ;

Equilibrium Equation :

T | s EL6; g EUu+ 1005+ furt i EK.) 8} - TV -

1

R M.(S‘)L mai=0
s
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(izlY 2, -, N—S) .............................................................................................. (31)
Boundary Conditions (at a=0 and at a=¢) :

RL My= TV— 'ﬂaTi

8:=D. or M,= ’ﬂaMsat M9,

01=_C—i or
(i=1, 2, -, N—3) ............................................. (32)

where C, and D, are prescribed values at the boundaries.

(3) Equilibrium Equation for Curved Beam with Discrete Stiffening Frames

When the beam is stiffened transversely by discrete frames positioned at a=a,(k=1, 2, -, K), we
must use the following virtual work equation in place of Eq. (31) :

=3 i ’/// 1 ” ]- £ 1
S [ (e ELt 5 B+ 0,065+ Bt 00da+ 3 - fubian 00k
_f <_, T t+mai>60ida=0 (i=1, 2, =+, N—3) -rrerrerermereecmmeniies (33)

7. NUMERICAL CALCULATIONS AND EXPERIMENTAL RESULTS

(1) Dimensions and Loadings for the Models

Curved and straight beam models, summarized in Table 1, were fabricated from 2. 3 mm-thick steel
plates, and theoretical and experimental results were compared. The models were chosen to represent the
proportions of guideway structures for the suspended monorail system”, Dimensions of the curved model A
are shown in Fig, 6 ; two longitudinal stringers of inverted T-section were welded to the lower flanges of
the beam, and equidistant transverse frames of T-section were also positioned by welding along the span,
Since the cross section is consisted of nine wall elements including the bottom stringers, the degree of
freedom for the cross sectional distortion is 6.

The ends of each model were held within rigid restraining frames, which could be adjusted by means of
steel rollers to provide simple support condition, Each model was acted upon by jacking loads consisting of
equal vertical point loads above the parallel stringers for two loading conditions, i.e., a vertical jack load
of P=2@150 kef (2.94 kN) applied at midspan (Case 1) and the same load applied at the framed section
close to midspan (Case 2).

(2) Numerical Calculation Method

For curved beams all the geometrical properties of

11@ 182=2000

the cross section are different from those for straight
beams, owing to their initial curvature. However,

when we analyze the curved structures with minimum

radius of curvature limited, such as horizontally
curved bridges and guideways for traffic use, it is well

known that the effects of curvature on the section %_ 153
properties are sufficiently small and practically g1 o
- N
negligible, Neglecting the effects of curvature, the 7 ' 1
cross section shown in Fig.6 have a vertical axis of alsoll23
symmetry and some geometrical properties which are -
wn
odd functions of y in Eq. (29) become zero. In this case -
P/2 P/2
Table1 Summary of experimental models. X l
. S
(3¢l
Radius of Interval of « (mm}
Model Span Length c:rvl:tsuroe stiffgn?xrl‘éairgmes - ‘ i’ .
72 Jzol 55 _[_ 49 Stringer
A 200 cm 400 cm 182 mm
B 200 400 95 Framed sectlon 1 General uctlon
C 200 oo (straight) 182

Fig.6 Dimensions of Experimental model.
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Fig,7 Symmetrical and antisymmetrical distortion.
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Inner web
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Distortiona! angle (;gian)
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Model A Model C

Fig.8 Variation along the span of distortional angle.

1000 ;

800 )\

Longitudinal stress

Case 1
600~ / s
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g s
k) AT
=~ 200 /
N
200 Pos.mon of 300 kgt
stiffening frame Experimental vaiues
o Outer stringer
800 s Inner stringer
Case 2 Theoretical values
600 Proposed theory
400 ¥ Beam theory

200

0 e

300 kgf

200 (2.94 kN)

Fig.9 Variation along the span of longitudinal stress in

bottom stringers of Model A.
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we can separate the six degrees of distortional freedom
into three symmetrical distortions (§,~#,) and three
antisymmetrical ones (4,~ @) as illustrated in Fig. 7.
By using Eq. (34) and applying the Rayleigh-Ritz
Method we can obtain the unknown displacements 4,
and then we introduce the results into Eqgs. (16) and
(18) to find the longitudinal and transverse stresses,
(3) Comparison of Resuits and Some Consid-
erations
Fig. 8 gives the calculated variation along the span of
the distortional angle §,+ §; between the upper flange
and the inner or outer web for the loading case 1. In the
straight model C the antisymmefrical component §; is
zero and the split between two lower flanges is
observed to be spreading, whereas it is closing in the
curved model since the magnitude of relative rotation of
the outer web is larger than that of the inner one.
In Fig. 9 and Fig. 10, the variations along the span of
longitudinal stress in the bottom flanges of stringers
with inverted T-section, corresponding to the loading
cases | and 2, are plotted for the curved models A and
B, respectively, The dotted lines in these figures
indicate the initial stress calculated by assuming that
the original shape of every cross secton is unaltered
during deformation. The magnitude of the stress in the
outer stringer is much larger than that in the inner one,
owing to normal stress produced by the warping
torsion. Even when the load is applied at the framed

1000

800 $

Model B

£

Qo

<

o

x

a

2 200 Experimental vaives

® o  Outer stringer

®

£ 800 s Inner stringer

©

2 Case 2 Theoretical values

E’ 600 —— Proposed theory

S [ S N Beam theor:

= 400| - y
200t}

200! 300 kgt

Fig.10 Variation along the span of longitudinal stress in

bottom stringers of Model B.
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|

E 600: Model C ° Theoretical values

N
-3
g K] i Case 1 Proposed theory
© =400 Y e Beam theory
S0
g 3 : o Experimental velues

= 200i- - -
§% A o/
S ; AR

0 et At T

300 kgt
I

Fig.11 Variation along the span of longitudinal stress in

bottom stringers of Model C.

section (Case?), significant additional stress
develops due to both the cross sectional distortion
and the local effect of concentrated forces. Fig, 11

gives the same stress variation for the loading case . b v - R .
1 in the model C. V/E L \ i : J“, 1 \
Because of the absence of a transverse stiffening N “

frame at midspan in each model, particular attention Theoretical values

is concentrated on the longtudinal stress of midspan '{" Proposed theory

200 kgt/em? .. Beam theory
. s .- (196 MPa )
Fig.12. When the contribution of the additional a Experimental values

cross section, the results of which are shown in

stress is taken into account, the stress on the inner Fig.12 Distribution of longitudinal stress at midspan
bottom flange is not small, as we might have cross section.
suspected had the distortion of the cross section been

not considered.
8. CONCLUDING REMARKS

Formulation for the distortional behavior of thin-walled curved beams with open cross section has been
presented. The conventional curved beam theory based on the assumption of rigid cross section has been
modified, and the governing equation for the distortion problem has been derived by virtue of the principle
of virtual work.

The definition for the distortion of cross section is that the deflection of each plate element in its own
plane accompanied by its transverse bending, and open section curved beams with any degree of freedom for
the distortion in accordance with the above definition can be treated. The equations and formula derived
herein are sufficiently general to be applicable to beams with large curvature, including, of course, the
straight beam as a special case. The beam is assumed to have constant cross section, but the effect of
transverse stiffening frames is taken into consideration.

The theoretical and experimental studies have revealed that a considerable increase in the deflections
and stresses may arise from the distortion in both curved and straight beams, and that the complicated
distortional behavior of thin-walled curved beam can be predicted with reasonable accuracy by the
presented analysis,
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