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ULTIMATE STRENGTH DESIGN CRITERIA FOR TWO-HINGED
STEEL ARCH STRUCTURES

By Shigeru KURANISHP* and Tetsuya YABUK**

Design criteria of two-hinged, parabolic, steel arches based on the ultimate limit state
design concept are presented. The design criteria on the planar ultimate strength are
formulated for arch ribs. The ultimate strength design criteria are specified by critical
cross sectional forces and critical stresses analyzed by the first order elastic analysis.
Variable, cross sectional effect of arch ribs is also discussed from a viewpoint of the
ultimate strength designing.

1. INTRODUCTION

Numerous research results on instability of arches have been reported so far. The third edition of
SSRC Guide* summarizes the then (1976) available experimental and analytical data and their relations to
design applications. However, the design applications of arches are not based on geometrical and material
nonlinear instability (i.e., ultimate strength or load carrying capacity) but elastic instability of them.

In the last decade, the design practice for various types of steel structures, which has based previously
on allowable stress principles and linear theory, have been changed to limit states design rules to obtain
more rational designs. As for steel arch structures, numerous researches on their planar ultimate stength
have been performed in Refs. 2),5),6),7),8),9),10) and 11). Extensive findings concerning them have
summarized in Ref. 12). Some design criteria based on the planar ultimate strength of parabolic steel arch
ribs were presented. Ref. 6) presented practical formulas for the prediction of the ultimate strength
expressed in terms of critical, bending moment and axial thrust, based on the ultimate strength of the
two-hinged arch ribs. They have idealized uniform sandwich cross sections (composed of the two flanges
separated by a web of negligible area). Practical formulas for the ultimate load intensity of the two-hinged
and the fixed arch ribs were presented in Ref. 5). The formula is expressed in the function of the normal
thrust.

In this paper, based on the ultimate strength results of two-hinged, parabolic, steel arches with
thin-walled box cross sections analyzed by the authors so far”®'", the planar ultimate strength design
criteria are presented for the arch ribs. The numerical approach used was based on the finite element
technique and the modified Newton-Raphson procedure using the incremental load method and the tangent
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modulus method. It considered the influence of finite deformations, spread of yielding zones in cross
sections and along the longitudinal axis, welding residual stresses and unloading due to strain reversal. The
design criteria are specified by cross sectional forces and stresses at a quarter point of the rib calculated
by the first order elastic analysis. The effect of a concentrated loading is examined from a viewpoint of the
ultimate strength designing. The design criteria which take into account in a direct manner the effect of
variable cross section of the arch ribs is also presented.

2. SCOPE OF APPLICATION

Generally, the major structural properties of an arch rib that affect q: OO e
the ultimate strength are its rise/span ratio, slenderness ratio, yield p ! ‘
stress level, cross sectional properties, and distribution pattern and " S
intensity of residual stresses. Among them, the cross sectional
properties are standardized here because of the smaller influence on the o 94/
ultimate strength as determined by the preceding investigations. The 1 v»"W‘ :;::ig’g
dimension of a thin-walled box cross section adopted as reference are L HoAJA, =09
shown in the inset of Fig.1, wherein H,B = depth and width of the = RN ;/'::3;2
reference cross section, #,=thickness of a web plate, 4,, A,=cross - B-—
sectional area of a flange plate and a web plate, and r,, k=radius of Fig.1 Arch Geometry, Loading and
gyration and core radius, respectively. The distribution and intensity of Reference Cross Section.

residual stresses are also fixed as shown in Fig.1 based on the results of
Ref. 8). For the range of the structural parameters adopted in the analysis, the proposed formulas are valid
in the following range ;

A=100~300 ; A/ L=0.1~0.3 ; ,=240~480 N /mm?

E =210 000 N /mm’
in which A=slenderness ratio of an arch rib which is given by the ratio of the curvilinear length of arch axis
L, to the radius of gyration of the cross section r,, g,=yield stress level, and E=Young's modulus. The
distribution pattern of load q is given by the loading parameter r-which is considered to vary from 0 to 0.99
herein as shown in Fig.1. The influence of a concentrated load is considered, corresponding to the line load
given by Japanese Specification of Highway Bridges®. In this case the concentrated load Q. is taken as
50(1—7)g/3, in which q is Kg/m and the constant 50/30 has the dimension of meters,

3. DESIGN FORMULATIONS FOR ARCH RIBS

Useful findings that are brought out by the numerous numerical analyses performed so far™®!" with
respect to general behavior of two-hinged steel arch structures with uniform cross section loaded to the
ultimate state in their plane are as follows; 1) The load carrying capacity of the steel arch ribs depends
chiefly on the slenderness ratio, the yield stress level of the material, the rise/span ratio, the
unsymmetry of the distributed loads, and the concentrated load placed on a quarter point of the arch
rib;*" 2) The effect of the variation of cross sectional proportions on the ultimate load intensity
nondimensionalyzed by the full plastic load g, is not significant, if the column slenderness ratio parame-
ter A for arch ribs is equal with each other (in which A=X/oy/E /z) ™" The full plastic load gp bro-
duces the squash axial force at the springing evaluated by the 1st order elastic analysis and given by

Aq oy

R ( )
S B ] |

=1

in which 1 =number of the nodes of an arch rib, ,=(;—1)/n, lL=1— /i, i{=order number of the nodes of
an arch rib, A,=cross sectional area of an arch rib. If the intensity of residual stresses is higher than a

certain value, their effect on the load carrying capacity is not a function of their intensity but is nearly a
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constant?; 3) The ultimate load intensity increases in proportion to the cross sectional area'™.

In addition to these findings, the following items are examined herein. Fig.2 shows the difference between
the ultimate load for a given arch subjected to symmetrical and unsymmetrical distributed loadings as
shown in the inset. As is obvious from the figure, the unsymmetrical distributed loading pattern gives a
lower load carrying capacity for the arch than the symmetrical loading. That is, loadings with
unsymmetrical distribution patterns are critical loading conditions for arches. Therefore, the unsymmet-
rical loadings are adopted hereafter in examining the ultimate strength design criteria. Typical results for
the influence of the slenderness ratio parameter A on the load carrying capacity are shown in Fig.3 for
various values of the slenderness ratio Aand the yield stress level g,. In this figure, the dotted line is shown
for the influence of the slenderness ratio in which a certain value of the yield stress level (g,=320 N /mm?)
is adopted and the solid line for the influence of the yield stress level in which a certain value of the
slenderness ratio (A=200) is adopted. It can be observed from Fig.3 that the difference between the two
kinds of curves is practically small. Therefore, from a practical viewpoint it can be concluded that the
influences of the slenderness ratio A and the yield stress level ¢, are collectively evaluated by the so-called
column slenderness ratio parameter A.

(1) Cross Sectional Force Expression

a) For the Reference Cross Sectional Rib

From the viewpoint of design practice, it is desirable that the design formulas of arch ribs are expressed
by the critical cross sectional forces or stresses calculated by the 1st order elastic analysis, even if
mathematical expressions of formulas become slightly complicated. Accordingly the calculated results for
the ultimate strength of the arches are reviewed again. Figs.4,5, and 6 show typical examples of the
interaction curves between the nondimensional maximum axial force N4 /N, and bending moment

1st

Nmax/Ny
roof— ] T L,
hL =01 A= 100 Nmax
0.6
bt =05 Gy = 320 MN/m?
0-75 '\77\1:02 r-=20-~099 r
— =03 N 04
0-50
0.25— - o2
1st
M IMv
=
0 0.25 0-50 0.75 1.00 1-25 [
Fig.4 Relationship Between the Maximum Force Fig.5 Relationship Between the Maximum Force
and Bending Moment (for A= 100). and Bending Moment (for A==200).
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MSt. /M, at a quarter point of arch ribs. Here, these N‘,,?g,‘(mv o i
maximum forces are calculated by the 1st order elastic odf oo | ——— 1 7 <00

. . 2 d, = 320 MN/m?
analysis for the arch under the ultimate load, and Ny, M, 0.3z 0 T e
are the squash axial force and yield bending moment 0o s e Sl
respectively. From these figures, it can be observed that o1l

hil-=.0-2 -
\ hiL_=0-3 . 1st
L i T mas /My

0 0.2 0-4 06 08 1.0

the interaction curves may describe a quadratic line when

the maximum axial force is greater than a certain critical
value, while the interaction curves show linear functional Fig.6 Relationship Between the Maximum Force
relationship when the maximum axial force is less than and Bending Moment (for 4=300).
the critical value. This critical value is defined as n,, in

this paper. By considering these results, the following design formulas are proposed herein :

o L (2'8)
a[ ﬁx]z_’_bli j‘ffx}+c|:V1%n%j|:f for ,k]\lr?SfX_n” .............................................. (2-b)
a[ A:;\Sfx}+ﬂ[ A‘r}nsfx}:f for %<”” ................................................................ 2-¢c)

where a,b,c, o, and g are coefficients depending on Aand h/ L. These coefficients and 7., are calculated by
substituting the maximum axial force N5 and bending moment MY, which are analyzed for various cases
of the slenderness ratio, the yield stress level, the rise/span ratio, the unsymmetry of distributed load and
the concentrated load placed on a quarter point of the arch ribs into Egs.2. Furthermore by applying the
regression analysis on statistics for the calculated values on n.,, a, and 8 the relationship between these
coefficients and A, h/L can be expressed by functional formulas as follows °

a=2.509—1.689 A;

b=—1.213+1.605 A—0.135 A* ;

c=(1.824—0.914 A+0.376 A)(0.82+1.2 /L) :

e=1/my;B=(mp—mec)/(MpNer) 5

m,=1.172—0.0469 A ;

Ner=(1—bme,—ami,)/c;

Mer=m, for (ami+bmn—1)/a<0 or

Mer=mp—ylambo+bm,—1)[a for (ami+bm,—1)/a=0

For demonstration of the accuracy of the ultimate strength design formula - Eqs.(2 ) - proposed herein,

comparison with the exact values calculated by the ultimate strength analysis are made for various cases of
the vertical loading condition (7 =0~0. 99), rise/span ratio (h/L=0. 1~0. 3), slenderness ratio (A=100~
350), and yield stress level (g,=240~480 N/mm?). Some investigated results are shown in Figs.7, 8, and 9.
The solid lines in these figures illustrate the interaction curves between N.3% and M!St given by the
proposed design formula and ® and ® marks show the analyzed results for h/L=0.1 and 0.3, respectively.
It will be seen from these figures that the results predicted by the proposed design formula and the
analyzed ones agree fairly well. In addition to them, the effect of the concentrated load Q. applied on a
quarter point of the arch ribs, in which the concentrated load corresponds to the line load introduced by the
Japanese Specification of Highway Bridge® is examined. The influence on the ultimate strength is shown in
Fig.10 and the accuracy of the design formula is tabulated for typical example in Table 1. Here, Qmax 18 the
ultimate load intensity of an arch subjected to distributed load, Q%ax is the distributed load intensity in the
ultimate state of the arch under the distributed load and the concentrated load Q. f(DESIGN) is Eq. 2a, and
f(ANALYSIS) is the f-value calculated by substituting N5}, and M 3%« values for the arch under g¥,, and
Q. into Eqs.2b and 2 c. Therefore, by comparing f{ANALYSIS) and f(DESIGN) the applicability of the
design formula for the arch under not only the distributed load but also the concentrated load can be
checked. From the results investigated herein, it can be seen that, with the investigated range, the proposed
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design formula always provides slightly conserva-
tive evaluation -f(ANALYSIS)>1- for the ulti-
mate strength of the arch ribs under the concen-
trated load. The applicability of the proposed
design formula is checked by varying the yield
stress level also. The typical results are listed in
Table 2 where the notation used are similar to
those in Table 1. From Table 2, fairly good
agreement may be found between the f-values given
by the proposed design formula and by the ultimate
strength analysis.

The maximum difference between the results
given by the proposed design formula and by the
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Table 1 Comparison of {-Results by the Design Formula
with those by the Ultimate Strength Analysis (for
Application of concentrated load).

S(ANALYSIS)

r N % max | Mg/ M, N/ Ny | rmar s

M Ghae/q /M, / v f(DI:SI()N)
1.24 0.719 0.831 0.333 1.098
0.5 2.48 0.715 0.754 0.158 1.115
3.73 0.736 0.640 0.090 1.056
1.24 0.801 0.586 0.479 1.086
0.76 } 2.48 0.814 0.532 0.237 1.147
3.73 0.829 0.610 0.130 1.247
1.24 1.000 0.130 0.746 1.124
099 | 248 | 0.978 0.077 0471 1.135
373 | 0968 0.047 0.243 1.139
h/L=0.15, 5,=320 N/mm?, Q,=50(1— r)q/3.

ultimate strength analysis is 7.8% on conservative side and 4.2% on risky side within the practical
range-r =0~0.9, ¢,=240~480N/mm? A=100~300. Moreover, the design formula yield conservative
estimation for the cases of 127/140=90% in all the results discussed herein. Therefore, it may be
concluded that the design formulas proposed by Eq.2 evaluate the ultimate strength of two-hinged steel

arch ribs accurately enough for practical purpose.

b) For Arbitrary Cross Sectional Ribs

By the 1st order elastic analysis, the bending moment of arches is in proportion to the load intensity and
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Table 2 Comparison of f-Results by the Design Formula with span length, and the axial force is in proportion to
those by the Ultimate Strength Analysis (for various the load intensity, approximately. The yield moment

values of slenderness ratio and yield stress level). L. . .

is in proportion to the section modulus. Therefore,

c _ F(ANALYSIS) . . . .
RPN Mig/M, | Ngw/N, | oo
(Nymmy| 7 /M, /Ny | DESIGN the design formulas for arch ribs with arbitrary
0.932 0217 1009 cross sections should be considered for the above-
240 1.076 0.659 0.427 1.003 mentioned factors.
0.106 0.751 1.185 . . .
The cross sectional forces acting on an arch rib
0.932 0.214 1.023 th arbi " . by °
280 1162 0.645 0.418 1ot with arbitrary cross section are given by .
0.105 0.744 1172 1st 1st st
100 max _ Nmax Amax Vv (3-a)
0.914 0.212 1.023 Ay Ny =t Ay
320 1.242 0.628 0.407 1.013
1st 18t 1st M
0.105 0.744 1174 max  Mmax  Dmax Hv (3-b)
- 1st
0.898 0.206 1.021 By My max By
360 1318 0613 0.397 L1016 in which AL, Bhiy=axial force and bending
0.105 0.744 1.180 . .
moment at a quarter point of an arch rib calculated
0.865 0.102 0.998 )
240 2.152 0.624 0.216 1.051 by 1st order elastic analysis for the rib with an
0.058 0.573 1125 arbitrary cross section under the ultimate load,
0839 0.099 0.995 st MS =those for the rib with the reference
280 2.324 0589 0.204 1.049 ’ .
0.054 0.529 1125 cross section under the ultimate load, 4,, B,=
200 . . .
03811 0.095 0.986 squash axial force and yield bending moment of an
520 Za84 0558 0.198 1044 arbitrary cross section, and N,, M,=those of the
0.049 0479 1.104 ] ] ot .
reference cross section. an are
0.787 0.092 0.981 C Nmax ) M/ L
360 2.636 0529 0.183 1.034 practicaly in proportion to the ultimate load inten-
0046 0.453 1130 sity for the arch rib with the reference cross
0.776 0.061 0.940 . . . .
; section. From the item 3) in the previous paragraph
240 3.228 0533 0124 0993 ctio om the item 3) p paragrap
0.034 0.328 1129 (1) of this chapter 3, the ultimate load intensity
0.741 0.058 0.932 increases in proportion to the cross sectional area.
280 3.486 0.493 0.117 0.999 . .
' 1 15 and M1 are also in proportion to
0,029 0307 Lot Namely, N« max/ L prop
300 ;
0709 0056 9% the cross sectional area of the reference cross
320 3.726 0.458 0.107 0.989 section. Similary, ALY and BLSY./L* are in propor-
0.026 0.249 . . .
L119 tion to a cross sectional area of an arbitrary
0.681 0.054 0.930 . Ist Ist
360 3054 0.428 0.100 0994 cross section.  Therefore, e/ NEL  and
0.023 0.241 1211 (LBEL)/(L*¥*MSL) are approximately equal to a
h/L=0.15, 3=(i/7) Vo, /E ratio of a cross sectional area of an arbitrary cross

section to that of the reference cross section. On
the contrary, Ny/A, and M,/B, are equal to the ratio of the reference cross sectional area to an
arbitrary cross sectional area and to the ratio of the section modulus of the reference cross section to that
of an arbitrary cross section. Therefore, considering above-mentioned relation, it becomes possible to
define the criteria in the form of the critical stresses as follows :

rlnsalx llrlsél'x
TY_ L (4_ . a)
A2 max ’]“satx—* ’I“S;‘x. i* '7L .....................................
, . R R T TR E PP PP PR PRPPP PR (4 B b)

in which k*, [ are the core radius of an arbitrary and the reference cross section, respectively. L* is a
span length of an arbitrary cross sectional arch. For an arbitrary cross sectional arch, Eqs.( 4 ) should be
substituted into Eqs.(2 ). Detail examinations of the ultimate strength design formula for arbitrary cross

sectional arches proposed herein are performed in the paragraph on “Critical Stress Expressions” later
on.
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(2) Critical Stress Expressions
For structural design it is more conventional to express the design criteria by the critical stresses (or
allowable stresses into safety factor). The critical stresses g,, due to maximum axial force and ¢,, due to

maximum bending moment acting on an arch rib with arbitrary cross section are given by :

1St 1st
O'aah max . Uba_ max

o A, 'Uy_By .............................................................................................. (5)

Substituting Eq.(5) into Eq.(4), it becomes possible to define the criteria in the form of the critical
stresses as follows

Ooa __ :nilx . Oba __ rlnsatx k L*

R L (6)
The typical values of k/I adopted herein as the

reference cross section are listed in Table 3. In Tadie 3 Core Radius of Reference Cross Section

order to inspect the accuracy of the ultimate Nondimensionalyzed by the Span Length.

strength design formulas expressed in the form of rsl;% Slenderness Ratio
critical stresses for arbitrary cross sectional arch ratio 100 200 250 300
ribs - Eq.(6 ) -, four kinds of various proportioning 0.1 | 0.823x107 | 0412107 | 0.320x10 7 | 0.274x10°*
of box cross sections are taken up and checked. The 0.15 | 0.848 o424 0.339 0.383
results are listed in Table 4. Columns 2, 5, 8 and 11 o2 0-881 0440 0352 0.204

03 | 0.966 0.483 0.386 0322

in Table 4 show (Biik/By)/(M ax/M,) calculated
using the results of the ultimate strength analysis,

directly. Those values are approximately equal to the ratio of the core radius of the reference cross section
nondimensionalized by the span length L to that of an arbitrary cross section nondimensionalized by a span
length L* listed in Columns 3, 6, 9, and 12, respectively. Judging from those comparisons and referring
Eq.4b, it can be said that the expressions for critical stresses proposed herein can evaluate the ultimate
strength of arch ribs with sufficient accuracy.

(3) Variable Cross Sectional Effects

Generally speaking, in proportioning steel plate girders, the size of the flange plates can be conveniently
reduced in regions where the bending moments have decreased below the maximum values. In designing
based on 1st analysis it may be advantageous in some cases of steel arch bridge structures under higher
bending moments to use flange plate with reduced thicknesses where the bending moments have dropped
appreciably, to make up the arch ribs. From a viewpoint of the ultimate strength designing the effect of the
above-mentioned variable cross section of the ribs is examined and a design proposal for the effect is
presented herein.

By examining stress conditions at the ultimate limit states for several types of variable cross sections,
thickness change location of the flange plates in the arch rib without causing stress concentrations is

determined herein and w, is a certain value of 0.8, as shown in Fig.11. Fig.12 and 13 show typical examples

Table 4 Examination of Accuracy of the Design Formula Expressed by the Form of the Critica} Stresses
(for various proportioning of box cross section).

Type-A Type-B Type-C Type-D

4 Bi | R @-® | B | k| -6 | B * -9 | B % | an-Q2)

M, k* (2 M, E* (5) Mise, T+ (8) M, B* an
H @ 3) (O] 5 (6) &) ® ) a0 an 12 (13)
100 0.960 0.966 0.6 % 1.004 1.000 0.4 9 1.075 1.054 2.0 9, 1.228 1.157 5.8 9
150 0.966 0.966 0.0 1.010 1.000 1.0 1.070 1.052 1.7 1.201 1.155 3.8
200 0.971 0.965 0.6 1.005 1.000 0.5 1.059 1.052 0.7 1.170 1.155 1.3
250 0.966 0.965 0.0 0.993 1.000 0.7 1.040 1.052 1.1 1.139 1.155 14

k=k/L, kr=kr/L*, Mbh =Mig/M,, Blft, =Bl /B,, L=100 m, L*=300 m, 6,=360 N/mm?, r=05

235s



122 S. KUuraNIsHI and T. YABUKI

Qmulqp

r=099¢uL)

0.9+

_r=075¢5L)

_r=05(sL) - r:075(50)

- TR
-\

r= 05 ) 02F r= 075Uy

Y S (=05 (L)
0-6F ]
Y FLANGE THICKNESS OF THE REFERENCE CROSS SECTION / A =100 [ A=300
| nit=o0.1s 01} \ hiL= 015
) 5
Fig.11 Reference Thickness Change |G = 320 Nimen® L& - 3z08mm
. 0-5r SL SYMMETRICAL LOADING st SYMMETRICAL LOADING
Location of Flange Plate. o o as, room w, UL UNSYMMETRICAL L0ADING W,
L L 1 = oLl ) L S
0-4 0.6 0.8 1.0 04 0.6 0.8 1.0
Fig. 12 Interaction Curves Between the Fig. 13 Interaction Curves Between the
Non-Dimensional Ultimate Load Nondimensional Ultimate Load
Intensity and Change of Flange Intensity and Change of Flange
Plate Thickness (for A=100). Plate Thickness (for A=300).

of the interaction curves between the nondimensional ultimate load intensity and the change of the flange
plate thickness. From these figures it can be observed that the ultimate strength of the arch ribs with the
variable cross sections under unsymmetrical loading is more critical than the strength under symmetrical
loading. This phenomenon is similar to the case of the uniform cross sctional arch ribs as shown in Fig.2.
The symmetrical loading patterns in Fig.12 and 13 are same as the patterns as shown in the inset of Fig.2.
From Fig.12 and 13 it can be also observed that the application of the flange plates with reduced thickness
is advantageous to the ultimate strength designing of the arches under the higher bending moments (i.e.,
loading case with lower value of r - the range of r in actually well-designed steel arch bridge structures may
be from 0. 65 to (. 85). By the ultimate strength analysis the load carrying capacities for z,=1, shown in
Figs.12 and 13, agree with those for the reference uniform cross section as shown in Fig.1. Considering
these results the following formula can be presented as an ultimate strength design recommendation for
two-hinged steel arch ribs with reduced flange thicknesses ;
W T0.8 5 W08 v v v re et e e (7)

where the reference thickness transition points are located as shown in Fig.11.

4. CONCLUSION

Practical design formulas based on the ultimate strength were presented for two-hinged steel arch
structures. These design formulas were derived within the range of conventional structural dimensions of
steel arch bridges. The major findings can be summarized as follows:

(1) The design citeria for the ultimate strength of the steel arch ribs can be expressed by the cross
sectional forces - axial force and bending moment - or stresses at the section of a quarter point of the arch
span. Consequently, the criteria are described independent of the distribution pattern of the distributed
load and the intensity of a concentrated load. The design criteria can be formulated by the characteristic
parameters of arch structures such as the slenderness ratio parameter and the rise/span ratio as shown in
Eq.(2).

(2) If designers desire to examine the ultimate strength by using so-called allowable stresses, they
must consider the core radius of cross sections in addition to the above-mentioned characteristic
parameters as shown in Eq.(6).

(3) The ultimate strength design recommendation for the arch ribs with reduced flange thicknesses
can be presented by Eq.(7), in direct manner, provided that the reference thickness transition points should
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be located as shown in Fig.11. After applying the design recommendation as shown in Eq.( 7 ) to the ultimate
strength designing, designers do not require to pay attention to the effect of the reduced flange thickness on
the load carrying capacity.

In this paper, the safety factor or load factor is not refered to in proposing the design formulas. However,
noting that the proposed criteria are established on the values calculated by the 1st order elastic analysis,
it could be permissible to determine the allowable sectional forces and/or stresses by dividing those
critical resultants specified in Eqs.(4) and/or {6) by the conventional safety factor or load factor.
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