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ON THE VELOCITY-DISTRIBUTION AND THE MIXING
LENGTH PECULIAR TO THE THIN SUPERCRITICAL FLOW
STREAMING ON A ROUGH BED

By Dr. Eng., Shigeru Tanaka, C.E. Member* and Shiichi Sugimoto, C.E. Member++

Synopsis One of the characteristics of the thin supercritical flow running down a steep-slope
pavement, a mountain-side, or a reservoir spillway, may be that the surface disturbances are re-
markable. It may be considered that the disturbances are marked not only on the water-surface but
also in the whole flow-profile. The research workers took up the uniform sieady flow involving not
only the said kind of flow but also’ channel and river flow, and studied especially how the mixing
length of disturbances and velocity-distribution along the stream-profile varied with the flow-depth
(measured normally to the bed surface), clarified the above relations theoretically, and finally incduced
two theoretical formulas. Then they performed many experiments concerning the velocity-distribution
of the above titled flow, and determined the two constants involved in the theoretical formulas re-
presenting the mixing length relations, in order that the results obtained by the experiments and
those obtained by using the above-mentioned two theoretical formulas might show good agreement. It
is to be hoped that the writers also determine the two constants involved in the formula, so as to be
able to apply the formulas induced by the writers to the river or channel flow, and then stress the
characteristics of this kin& of flow by comparing the values of these constants peculiar to the flow in
question and an ordinary river or channel flow, if time permits. Up to now, they have been unable to
ascertain these points, but they are intending to study further these details hereafter.

Introduction In the study of smooth pipe-flow, Prof. Prandtl was the first to introduce the con-
cept of ‘‘the mixing length of turbulence’’ in the flow and clarified the characteristics of this flow.
His way of thinking stood on the assumption that ‘‘the mixing length is proportionate to the flow
depth’’. Then, V. Kéfmén“ induced the mixing length by assuming the dynamical similarity of the
flow. After that, H. Gebelein® made public the mixing length from his original way of thinking based
on the probability theory.

Meanwhile, concerning the turbulence of open channel-flow, many research workers tried to define
the mixing length by applying the ways of thinking of the above mentioned authorities to this flow.
Dr. Shoichird Hayami® applied H. Gebelein’s way of thinking to the open channel flow.

Lately, J. Rotta” considered that the proportional relation between the mixing length and the
flow depth would come into existence within the turbulent flow range over the laminar boundary
layer, and calculated the velecity-distribution along the flow-profile in the case of the gentle-slope
open channel fiow. W. Szblewski® aquired the mixing length relations by the use of the similar
assumption to that used by J. Rotta, for the convergent channel flow, and simultaneously proposed
that the mixing length was to be conciuded as the sum of two terms, i.e. the term which is pro-

portionate to the first power of flow-depth and the one which is proportionate to the square of the
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same. Very recently, Yaichi Iwagaki® improved the idea of J. Rotta, and represented the relations
between the mixing length and the flow-depth as a refracted line.

Thus although there are numerous important researches on the mixing length of the open channel
flow, the fact is either there are still some points to be incomprehensible in the fundamental ideas
of research workers or there are many researches based on the assumption that is far from the actual
state, i.e. the relation between the mixing length and the flow-depth are supposed as nearly constant,
irrespective of the flow-depth.

In this report, the writers induced theoretically the mixing length of turbulence in the open
channel flow, setting up no such artificial assumptions beforehand which have been the foundations
of the usual researches.

Besides, they are also introcducing a fundamental equation by the use of which the velocity-
distribution of the thin supercritical flow running on a rough steep bed is easily clarified; and this
kind of equation has never been induced ‘yet.

Fundamental Equations concerning Open Channel Flow Let us take a point on the bottem-
center-line of a straight open channel as an origin, and name the center-line running toward the
lower stream-side along the channel-bottom-surface as ‘‘x axis’’, and the line perpendicular to the “x
axis’’, running toward the water surface as ¢y axis’’. Designate the velocity components referring to

c

the above selected co-ordinate axes as ‘“‘»’’ and ‘“v’", respectively, the density of the flowing water
as ‘““po”’, the flow-depth along the ‘‘»’’ axis as ‘‘A’’, the acceleration of gravity as ‘“‘g’’, the inclined
angle of the channel-bottom referring to the horizontal as “‘0’’, the pressure as ‘‘p’’, the viscosity-
coefficient of the flowing water as ‘“#’’, the kinematic viscosity coefficient of the same as ‘v’ ; then,

considering the gravity force as the outer force, the Navier-Stokes equation can be expressed as

follows :
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If the flow is uniform and steady, we furthermore can assume »=0, Eq. (1) is simplified and ex-

pressed as follows :

d du
o0 gsin+——-(pu——)=0 2
g " dy (ﬂ dy) . 2
When turbulence exists in the flow, the shearing stress due to the turbulence, i.e. the Reynolds
| du | du . . . by . s
stress pl |7y_ d_y’ should be taken into consideration, where ‘/” is the mixing length of turbu-

lencz. Then, the fcllowing equation exists :
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Integrating this differential equation with respect to ‘‘y’’, we have:

. du \ du
[/ Py i — e
ypgsinf- p(\a -1 2 ) a const. (4)

In this equation, using the condition that at the channel-bottom, i.e. y=0, /=0; we have :

<0) du > (ﬂ du ) ¢
ov—"— ={u— =const.
dy /y—o dy / y=

. du
If we represent [u—— =7,, then we get:
dy /-
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const=r,.

Then, Eq. (4) can be written in the form :

gy sin a+(u+12— —— = = gk2, 5

du \ du <z,
dy

Now, this equation also be expressed as follows, by using the relation E=ylh:
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In the uniform-steady flow, the following equilibrium condition should be expressed as follows :

T
—=ghsind.
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Then, we get:
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Therefore, we have :
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If we put Zz—'=.0, we get:
du 1 1 !
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Given the suitable values to //k,- we are able to get the velocity-distribution (% versus y) of the
flow, by integrating the Eq. (9’) with respect to & or ».

The Mixing Length In the first place, we ought to remind ourselves of the physical meaning
of the mixing phencmena” of turbulent flow. »

When we consider the said mixing phenomena, it may be easily understood that some physical
quantities are transported from one layer to another and the diffusion-phenomena of the quantities
may happen, on the basis of the mixing of lines of flow.

This fact is, for example, just like.in the following case, i.e. when fine particles take the
Brownian movement ; heat, momentum, etc. are transported from a layer to another together with the
movement. Namely, some fluid-mass in a layer moves across the mean flow transversely, carrying
some physical characteristics held in the original layer, and get to another one, and there the
brought-in characteristics and the ones peculiar to the layer melt together, and thus the transpor-
tation and diffusion by turbulence-mixing take place.

Thus the distance where the physical quantities are transported across the mean flow transversely
is called ‘‘the mixing length’’, corresponding to the so-called ‘“‘mean free distance’ in the case of
molecular heat motion.

Accordingly, this distance / is only the expected one obtained by means of statistics based on the
mixing of flow lines, and the distance / is a function of water-depth. This latter fact only is corre-
sponding to the probability-distribution of the diffusion, namely the distribution of probability-density

versus y.
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1f we regard the diffusion-phenomena due tc the turbulence of flow as a stochastic process and
the transition-probability as making the so-called “Markoff’s chain”, the probability F(&0, %oy %y, 8) A,
dx,dx, of which the state at the time 7 exists in the extent between the co-ordinates (&,, %,, %) and
(#,+ A%y, %otdx, x,+dx,), was introduced by A.H. Kolmogoroff in the following eguation:

af 7] - 0®
o7 - v p )= )
Y T%’ 37 (o) }‘275 95,078 (Binf)=0, 0)

where a is a vector, and fj; is a variance tensor.
Now, when the open channeil flow is uniform and steady, the mixing length / becomes a function
, 3 g
of y only. Accordingly, if we now represent /cc f, f becomes a first order function of y, and Kolmo-

goroff’s equation becomes as follows:

di d*f
—= - 11
dy dy* . an
Integrating Eq. (11) with respect to y, we get
af
af=f + 12
=8 ay 12

where 7 is a integration’s constant.

In case, the larger y increases, the smaller dose the increase-rate of j decreases to be, we put:

where 2 is a constant.
Then Eq. (12) becomes :
af v
Ll 13
dy f 7. 13)
When we integrate this differential equation with respect to y, we have:

1

f=t—s G, (14)

W |

where C is an integration’s constant.
If we use the conditions at y=0, f=0, we have:
71
C— T2
8 2.

Eq. (14) becomes

1
fey e, (15)

Accordingly, as we take tce mixing length / to be in proporticn to j, assuming £ as constant,

we get:
l=r(1—e %),
or Ih=A—e BY), F=y/i. s

If we interpret that at the free flow surface the fluid motion zlong the y axis is not restricted,
we are able to understand that the mixing length has some value even at the free fiow surface.

Experimental Apparatuses and Method of Tests The experimental flume which we have been
using is 3 wooden framed rectangular flume with glass pannels on both sides, the inside measure-
ments of which are 20 cm. wide, 15 cm. high, and 734 cm. long, and the bottom of which is roughened

with the “Soma-sand’’ grains fixed on the bottom plate (Fig. 1). Going into detzils, first the research
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workers painted the bottom plate with white paint, then sprinkled the ¢Soma sand’’ grains (the:
average diameter being about 1 mm.) over the undried paint-coating, and made the surface of sand
grains even with a trowel; and, after the paint was completely dried, they fixed the sand-grains on
the flume-bettom by spraying transparent lacquer on them with av sprayer.

The uppermost portion of the flume is made to act as the receiver and simultaneously a fiow-
regulator equipped with one gravel wall (the average dia. of gravel being 2.5mm.) sandwiched
between two 1 mm.-mesh screens placed at 5cm. intervals and with another 1 mm.-mesh screen placed
in the lower siream side 20 cm. apart from the lower screen of the gravel wall.

The elevated steel tank is 123 cm. in inner diameter and 113.5 cm. deep and is mounted on a

trestle which is a timber frame work 330 cm. high. Near the top edge of this tank an overflow pipe

is equipped in ocrder to keep the water level in the tank constant, and at the tank-bottom a 2.5”
delivery pipe having a sluice valve is connected. Through the lower end of the pipe, water is poured
into the uppermost portion of the flume.

The flowing water is circulated as follows: it is pumped up from a lower pit into the elevated
tank, poured into the flume, flows down the flume, at the lower end of which the flow discharge is
measured by the weighing apparatus receiving the water at a short period of time (5sec.-10sec.),
and the water falls into the return conduit leading the water to the pit.

The discharge is regulated by
Fig. 1 Diagrammatic arrangement of the experimental

valve operation. The velocity meas- apparatuses
urement is taken at the point in the 423

lower stream side 495 cm. apart from

the lowest regulating screen. The

total pressure is measured by means
of the Pitot tube which is made of a

stainless steel injector needle, 1.12

mm. in outer diameter and 0.75mm.

in inner diameter. The hydrostatic

pressure is measured by the use of

manometer connected to the hole 6.5
mm. in inner diameter bored normally
at the flume bottorn, with a {ransparent vinyl pipe. The total pressure is measured at several points
by the ahove-mentioned Pitot tube which is able to slide smoothly along the center line of the static
pressure hole. The hydro-dynamic pressure is obtained by subtracting the hydro-static pressure from
the total one.

The measurement of water-depth is rather difficult, owing to the fact that the surface-disturbances
such as roli-waves and capillary-waves are rather predominant as compared with the thin flow-depth
and the bottom unevenness.

We caught the lowest suri’a;:e, and the crest of bettom-unevenness, by using the point gaugs and
watching carefully through the side glass plate. The summation of the difference of these iwo rsad-

ings and the size of bottom unevenness is taken as the water depth.
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Experimental Procedure and Analysis of Fig. 2 Curves representing the culculated
velobity-distribution along the fiow-

the Results Obtained We selected as the flume depth, points showing the mean

slopes, 1/10, 1/7, 1/5, 1/4, 1/3, and as the mean values of observed velocities taken
three times precisely
discharges, 1 000, 1 500, 2 000, 3 000 and 4 000

cc./sec.. In each test we measured the velocities = mm -

at some points on the center line of the statical £
1000 /S

head hole, from the bottom toward the water
surface, and at each point the total and statical /0
readings are taken three times precisely.

Now, we determine the values A and B in
Eq. (16) by the trial and error method in the
following way ; firstly, assuming that A and B

have proper values respectively, secondly, calcu-

lating the corresponding value of //k, andjthird-
ly, substituting this value for //% in Eq.

(9", we thus get the values of # by inte- Fig. 3§ Same the Fig. 2
grating Eq. (9) with respect to £ nummeri- mm }
1000 /3 Sope [ 17

cally, (we use the nummerical calculation i ——;LT

jnstead of pure integration because the /0

e v30
N
S
Q
o

latter is rather hard to use here), and 4
compare the calculated # values with the

experimentally obtained ones to check if 5F
these values coincide with one another or

not, and if they do not coincide, we repeat

I}

the above procedure until they become ¢ O = 5 /OLO /50' .
w cin/s

200

quite consistent.

The results thus obtained are shown Fig. 4 Same the Fig. 2
in Fig. 2-6, and the results show good M7}
o o /000 -
reement with the e i tal ope [ :
agreem w1 xperimental results, 1 & /50% wope [ 5
in consequence of the determination of A g 5820
@ 4000
proper values of A and B. The values of
5._
A and B thus obtained are shown in -
Table 1. ]
In this table, with regard to the
le) e P T . L
. . S0
values of B, in the lines of slopes, 1/10, 700 150 w Cm/$200

1/7, 1/5, it is obvious that the majority of the values is 3. So, in the case of B3, if we take the
Vv/ghsin0-value as the abscissa and the A-value as the ordinate, we are able to obtain a curve

representing the relation between the values of A and /g% sin 0 by plotting the A-value versus the

v/ gh sin 6-value, and the curve is shown in Fig. 7.
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Table { The values of A and B
A ! B
Slope 1000 | 1500 | 2000 | 3000 | 4 000 1000 1500 | 2 000 3000 | 4 000
| | | cclsec | . l cclsec
1/10 0.150 0.132 0.125 0.120 0.108 3 3 3 \ 3 3
1/7 0.136 0.136 0.125 0.115 0.118 3 3 3 3 3
1/5 0.136 0.128 0.125 0.118 0.160 3 3 3 3 2
1/4 0.098 0.125 0.118 0.160 0.150 4 3 3 2 2
1/3 0.100 0.104 0.112 0.157 0.153 5 4 3 2 2
Fig. 5 Same the Fig. 2
mm s
8 o L
2 g //?gg“/s Hoe | .4 Fig. 7 Curve representing A-
ol & 2000 value versus 1/ gh sin 0-value
| © 3000
4 @& 4000
5 020
] B=3 O 1:/0
ar/yy
2 arst < : v/ 5
ot . P \“\\‘Fou\
0 50 700 730 oTs T
o 8 9 /0 _Jr 72 73
) Vi# 4im6
Fig. § Same the Fig. 2 "
mmi
%é" o /008 /S Sspe /03
® /50 .
| S 2088 And, the calculated results of
0 . .
4 © 3 I/k versus y/k in each case by using
ot the above obtained values of A and
L & . .
; L o B are shown in Fig. §-12' respect-
0 50 /00 /50 200 Cm/S )

w

ively.

Dr. S. Hayami fermerly introduced the following formula showing the relation of the value of //k

versus that of //y or //¢, applying the Gebelein’s way of thinking to the open channel flow :

o -5
l/h”cl/22_~5)2+52 ,

an

where C is a constant to be determined by the experimental results, and Dr. S. Hayami gave the

following value based on the velccity-distributicn obtained from the observation at the lower reaches

Fig. § Curves representing the calculated

10
iz

o5

results of //h versus y/h

ey / i/
B=3) —F
( \Q=/000°"
| 1500¢H
o HCI/W
e

a0 g4 Yo%

10|

Yk

o5t

Fig. § Same the Fig. 8

GI0 Ly Ol
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Fig. 1§ Same the Fig. 8 Fig. 11 Same the Fig. 8
10
1.0 ] =
Hlope 175 1Z3
Wh o
=J ) o
(B= B=2)
—290 o) W lo= %050 os
05 . 4 L1000 _ 5. 3
500
© ° Haymu’é o
- g :
4 ao0s /O prp Q15
o a5 oYy I i
of the Yangtse-Kiang, Fig. 12 Same the Fig. 8
C=0.17 10 7
Calculating the values of //k in the cases Y4
of our tests by the use of this value of C, and 3 s
plotting the values versus these of y/k, we have o5 B+ L3000 (522
s ’ 1000
the points as marked o in Fig. 8-12. Ll
Referring to the curves in the above- o /-’-/afvy'azmw
mentioned figures, it is certain that in the o 5T Y mrors Y

portion of bottom flow, the values obtaiﬁed by
using Hayami’s formula are smaller as compared with those obtained by using Eq. (16), and on the
surface the former values show approximately the average ones of the latter. Eq. (17) has been con-
sidered as the most reasonable one of the numerous formulas representing the value of //Z in the
open channel flow, and the fact that there exists the above-mentioned discrepancy is probably based
on the disparity between our way of thinking and that of Gebelein. .

Now, if we represent the mean flow-velocity as u,,, the size of the bottom roughness as %, and
when we calculate the values of /v, F=u,/v gh, and ku*/v; we obtain the values which are shown

in Table 2, based on our experimental data.

Table 2 The values of hu,,/v, 1,,/v gh, and Euw*y

Slope | 1:10 | 1:3
& cclsec 1 000 4 000 1 000 4 000
e Vgh 3 130 13 640 1820 10 430
F=umlVgh 2.7 3.7 5.2 6.6
ku* |y 58 122 68 112

Conclusion In this paper the writers have introduced theoreticaily the mixing length of turbu-
lence as a function of water-depth in the case of open channel flow, and simultancously a new formula
concerning the velocity-distribution of steep-slope-channel-flow with regard to which no reports of the
{heoretical researches have ever been made public so far. They have also determined the constants
A and B involved in the mixing length equation by applyingkthe experimental data to the velocity-
distribution formula. The important item left for future study is to determine the values of A and B

theoretically, at least either A or B, and, if possible, beth A and B.
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And yet, in order to give the bottom roughness, the writers have used only one kind of sand,
i.e. the ‘‘Soma-standard-sand”’, and it is preferable to use many other kinds of sand. If they had used
many kinds of sand having different sizes to form bed unevenness, the constants 4 and B might show
other different values from those shown in Table . If the values of A and B to be obtained from
the use of many kinds of sand having different sizes were made clear through more tests, it might
be of more help in applying the equations introduced by the writers to the technical aspects of this
kind of flow. They much regret that they have had no available time allowance encugh to perform
tests in the instances of different conditions of bed-roughness in various sizes, and they are intending
to continue such not-yet-conducted tests as early as possible.

Acknowledgement It is a pleasure to acknowledge instructive advices given this work by Dr.
Eng. Tojiro Ishihara and Yaichi Iwagaki in the University of Kyoto and the efforts put forth by Mr.
Akira Kiyomoto.

References

(1) V. Karméan: Proc. 3 Int. Congr. App. Mech., Stockholm 1930, 1, 85-93.
(2) H. Gebelein: Tiirbulenz : Physikalische Statik und Hydrodynamik, Berlin, 1935.
(3) Shoichirc Hayami: Hydrolegical Studies on the Yangtze River, China; 4. On the mechanics of
Flow in a Wide Alluvial River: The Journ. of the Shanghai Science Insti.
Section 1, Vol. 1, July, 1939, 239-261.
(4) J. Rotta: Das in Wandn#he giiltige Geschwindigkeitsgesetz tiirbulenter Strémungen, Ingenieus-
Archiv, Band 18, 1950, 277-280.
(5) W. Szablewski: Tiurbulente Stréommungen in Konvergenten Kan#len, Ingenieur-Archiv, 20, 1952,
37-45.
(6) Yuichi Iwagski: On the Laws of Resistance to Turbulent Flow in Open Smooth Channels, Trans.
J.S.C.E. Vol. 16, April 1953, 22-28.
(7) Goldstein: Modern Developments in Fluid Dynamics, Vol. 1, 1938, 205.
(#4.31.1.9)






