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A NEW APPROACH TO THE ELASTO-PLASTIC
LATERAL BUCKLING STRENGTH OF BEAMS

By Yoshiji NIWA*  Eiichi WATANABE** and Satsuki SUZUKI***

This paper is concerned with an interpretation and analysis on the elasto-plastic
lateral torsional buckling of beams in a simplified manner by means of catastrophe
theory. The numerical analysis does not require having recourse to the ordinary
nonlinear numerical procedures, but can be performed using a relatively small
microcomputer,

The proposed analysis takes into account the elasto-plastic behavior of the material,
the geometric imperfections and the residual stresses. The ultimate strength of the
beams is shown to be presented in the form of the bifurcation set in terms of the elasto-
plastic buckling moment and the imperfection term that follows the 1/2 power law.

It is found from the study that the characteristics of the elasto-plastic lateral
torsional buckling may be identified as the fold catastrophe just like the case of
centrally compressed columns,

1. INTRODUCTION

Beams constitute one of the most important civil enineering structures. Slender beams under bending in the plane
of the maximum flexural rigidity can become unstable by the combination of twist and lateral deflection, This
buckling phenomenon is usually referred to as the lateral torsional buckling, Beams with low torsional rigidity such
as of narrow rectangular section or I-section are known to be vulnerable to this phenomenon unless they are
laterally supported.

Since prandtl's initiative study on the lateral elastic buckling in 1899, a great number of researches have been
underway including the elasto-plastic buckling. The early developments of the study have been surveyed by G.C.
Lee in his literature survey”, A method of summarizing a great number of available theoretical solutions in a useful
way has been suggested by Nethercot and Rockey? . The detailed discussions on the basic concepts underlying the
lateral buckling' and on the design methods in various countries are provided in a text book by Allen and Bulson?
The current interests in the design of laterally unsupported beams are now focused on their elasto-plastic strength
taking into account such effects as the support conditions, the shape of bending moment distribution, the position of
load application, the shape of cross section, the residual stresses and geometrical imperfections®.

In this paper, however, the main interest of the study is focused on the application of the catastrophe theory in

the elasto-plastic range. Thus, only the simplest models of beams are considered herein.
2. BASIC ASSUMPTIONS

The basic assumptions made herein are summarized as follows
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(1) The beams are of doubly symmetric cross section and are subjected to the pure bending moment, M,, acting
in the plane of the web as shown in Fig. 1 : \
where

b . width of the flange plate,
h : depth of the web,
t, . thickness of the flange plate,

t, - thickness of the web,
(u)

o~

: lateral buckling length,

: lateral deflection,

: vertical deflection,

Fig.1. Beams under pure moment.

s ¢ =

: angle of rotation.
(2) Both ends are simply supported, namely,
©= i”:¢:¢”:o at z=( and Z T e ( 1)

where the prime designates the differentiation with respect to z.

(3) The material is ideally perfectly elasto-plastic as is shown in streéss
Fig.2 Gy [:

(4) Residual stress is taken into account only in the flange plates. tan”'E
It is assumed to be distributed in the triangular form as shown in strain
Fig. 3. where g, refers to the magnitude of the residual stress. Fig.2.  Perfectly elasto-plastic

. . . material.
(5) The cross section does not undergo distortion.

(6) Neither the gravity center nor the shear center changes the b

original position. C:COMPRESSION

. . . . . 4 O, e
(7) The plastic portion of the cross section is assumed to provide %E Ag, f T:TENsION
g
no resistance to further bending, 4T

(8) The rotation and the geometric imperfection are assumed only Fig.3. Triangular residual stress in
flange plate,

in the following form

z

¢=0 sinﬁé, =6, Sin R R (2)

(9) The vertical deflection v is assumed to be small.
(1) Elastic Buckling

Before discussing the elasto-plastic buckling, let us
briefly summarize the classical elastic buckling problem.

If the global and local coordinate system is designated

respectively by (x, y, 2) and (&, 7, £), then the small
deformations of the beam in x- and y- direction are

sketched as in Fig. 4 :

Since the direction cosines are related as shown in

Table 1, each component of the applied bending moment in

the local coordinate system is given respectively by : Fig.4.  Configuration of laterally buckled beam,
MEZMJ‘
M B e (3) Table 1. Direction
du cosines,
M=
4 X y z
Then, the basic equations of equilibrium can be obtained in the followinyg : el 1| o | 9
i dz
Myd=—EIL.u” with respect to p-axis N A -3’}
My=—ElL.v” with respect to £-axis | «rooooererr (4) . %‘1 %V' N
2 z z

Meuw'=GJ ¢o— ECyede with respect to ¢-axis,
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where
I - moment of inertia about y-axis,

I:. - moment of inertia about x-axis,

GJ . St. Venant torsional rigidity =~ ) coooeo (5)

EC . . warping rigidity

Pe=— o

The substitution of the 3rd equation of Eq. (4 ) into the st equation yields the following well-known equation :
M2

GJ¢Z"ECwe¢g//:_'Ejje'¢ ........................................................................................................... (6)

The case of plastic buckling has been treated by Kachanov” ¥ within the framework of the theory of plasticity
making a modification to the elastic moduli*. One may assume that flexural and torsional rigidities are reduced in
accordance with the tangent modulus theory like Flint”. The more accurate analyses for I-beams have been proposed
by Nethercot” and Galambos?® in such a fashion that a perfect elasto-plasticity is assumed and the torsional rigidity
remains at its elastic value ; whereas, the flexural and warping rigidity are reduced by the tangent modulus factor,
It is concluded that the lateral buckling strength, M., can be reduced by as low as 30 % for some range of the
slenderness ratio if the residual stress is present.

(2) Elasto-Plastic Lateral Buckling

The proposed analysis is based on the modification of the elastic equations® ~'",

The residual stress distibution
considered herein is of the triangular form in the flanges and the stress distribution will become as shown in Fig. 5
under the applied bending moment, M, :

Following Galambos® and Nethercot”, a modification may be made to the flexural and warping rigidities in the

subsequent manner :
ElL,=kElye; hz%#+kﬁ—35+kﬂ

2K EB-3K+E?
ECy=kECye; ki=— - = ;0
WAL Cu TR+ EG-3K+EY
where k and k" refers to the ratio of the elastic portion of the compression and the tension {lange, respectively, to
the total width of the cross section,

Thus, the equation of equilibrium, originally given B o
g_0

r vr 1
by Eq. {6 ) can be modified in the following form ; ** — r}.,_ [RENEEY S S——
. -COMPRESS 10N

BELGI ¢e— KELEC,¢."=— ¢ M3 o) FLANGE
where 4

pe=— o elastic range —— | —w elasto-plastic

@, - initial twist, namely, the imperfection (a)

ki=k k=K KG3—-3k+k7 o, o, Oy ¢ Oy

fe—| :TENSION FLANGE

-
................................. (8) oo T
Now, let us assume the solution ¢ and the { % .
Mn’i

imperfection ¢, in the following form, respectively :

elastic range ~— | —» elasto-plastic

. Az . R
¢= 8 51n~T ; ¢0: 6, SlnT .................. ( 9 ) .
Then, the equation of equilibrium can be given by : Fig.5. Triangular residual stress distribution in flanges.

*Kachanov treats inelastic lateral bucklings of beams under pure bending and cantilevered beams under concentrated load at the
free end. The effect of residual stresses is not considered.

**Hereafter, subscript e on the rigidities will be omitted for simplicity. Furthermore, it is particularly to be noted that
coefficients k, & k, are evaluated assuming the ideally perfect beams without the imperfection.
The effect of the imperfection upon k, & k; thus is not explicitly taken into account but may be so implicitly by means of the
equivalent imperfection that is defined afterwards.
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Uk GIEL () + kECLEL (] )/ 6= M36)sin ¥ =0
Where  h e e (10)
f.=6—6,
The equation of equilibrium. may be rewritten so that the problem is treated as if it were nonlinear elastic and the
first partial derivative of a certain pseudo-potential [ with respect to the generalized coordinate § vanishes : 9~
UXE%%ZfECwEIy<£l>‘0e_M;0:0 ............................................................................................. 1y
where f indicates a secant factor f= f(4,) such that
fe=f0)= k= k(1 + kin)
WHEFE b e (12)
_( I\ GJ
’7=<';) EC,
Following the procedure adopted in the analysis of elasto-plastic buckling of columns, the secant factor f(4,) can be

evaluated in the form : ¢

J8)=F+ S0,

Where e e (13)
e OF | 4
£=3g, | =0

Let the surface of the equilibrium be designated by M,
and let it be expressed in terms of the coordinates (8, &,
M?Z), then it can be graphically drawn as shown in Fig. 6.
The solid curve ACE or ACF corresponds to the perfect
system, ¢,=(. Moreover, the critical pathological curve
can be obtained in such a way that the mapping from a set of

coordinates (8, 6, to thatof (6,, MZ) through equilibrium

surface M, becomes singular. This is equivalent to say that

) . EQUILIBRIUM
the Jacobian J(#, MZ%:8, &) vanishes or the second

SURFACE
partial derivative of U(#, 6, M?2) with respect to 4
vanishes. E
It has been demonstrated in reference 9) that the stability of a, H , dg
the system can be discussed by evaluating the partial cl T <z Mf
derivatives of the pseudo-potential such as shown subse- g 2 »
quently : ° z
o Fig.6. Equilibrium surface M,
4
Uu= G =+ £0) ] ) ECuBL— M3 )
. _aU_ Y
U.=5; =~ JEC.EL(T)
L BUa (14)
" alMh)
_o2'U e m\*
U= =fEC.EL () +0*
For the perfect beam free from the imperfection, it follows that
2 ¢ e LAY
Mi=(f+ f8)ECLEL (7) ........................................................................................................ (15)
thus, the elasto-plastic buckling momen: M., can be obtained as :
MZ.,=f°ECWEI (_’lf> ............................................................................................................... (16)

*Thus, the catastrophe is identified to be “fold”, that is, “asymmetric bifurcation buckling”.

44s



A New Approach to the Elasto-plastic Lateral Buckling Strength of Beams 83

Consequently, the pathological critical curve of M,— @ can be shown to be given by :

Due to the Shanley effect, it can be shown that ¢<<¢®, Thus, Eq. (17) designates straight lines CE and CF in
Fig.6. Consequently, the buckling point and its vicinity are characterized by the stable symmetric buckling in a
global sense, This implies that there exists no extremum value of M. around here and the evaluation of the
imperfection sensitivity must be performed at some point other than this buckling point*.

The elasto-plastic buckling moment can be computed from Eq. (16) by letting f¢=k, For simplicity, let us
assume that the residual stress in the web is self-balanced and the in-plane bending strain of the web is equal to that
of the flange at the junction to each flange and that the effect of the residual stress in the web upon the yielding of
the web is negligible, Then, the stress distribution in the web can be seen to be symmetric with respect to the x—x
axis and M,., can be obtained in a reasonably approximate manner with the aid of Fig.7, and using the average
stresses in the flange plates §=(1—k*5,) and the web bending stress §,,=1+d,{1—2 k) at the junction of the web

and each flange by the following equation : **

vk

LAY 1 p2s MIUYI) Or,
hiier (5 ) VECER=1- Ko+ 7t [T a2
l2+sli—2k+5| for o<ksle | e (18)
’ ’ =1 (1-2%) 41
Aw ¢ Or Oys

=1—k’6r+%[1+&r(1—2k)] for 1gk>%g

A,
Again, following the same procedure as for the column, let us consider the “equivalent bifurcation point” which is
obtained as the intersection of the postbucking path AC and the curve of failure mechanism BCD in Fig. 8%.

In order to obtain the failure mechnism curve, the interaction curve and the moment-rotation relationship will be

necessary .

oyf[l‘ﬁr(l-lz‘b)l
i

DROP DUE TO
IMPERFLCTIONS

~ .~
—D
P~ (x> %(’) (k;%;)
Web Bending Stress
feb Bending steess 0
Fig.7. Evaluation of elasto-plastic buckling of beams. Fig.8. Equivalent bifurcation point for beam,
mi+my=1 ' interaction curve'?
where
M. . I
Mp= 7 : Mrﬂ=plast|c moment @ D-AXES | e (19)
p
p— My

my= ;  My,=plastic moment @ y-.axis
My,

and

*e. g. Point C in Fig. 8.

**G=g/0y, . non-dimensionalized stress in terms of the yield stress.
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M,= ¢M, . moment-rotation relationship, Eq. (3) ............................................................................ (20)
As far as the beams are concerned, the postbuckling reservation may be thought to be quite insignificant so that
path AC will be assumed to be a horizontal line in the subsequent analysis.

Upon substitution of Eq. (19) into Eq. (20), the following equation can be obtained :
my=tm0=1—m}k

where

................................................................................................................. (21)
_M,
M,
Thus, the generalized angle of rotation, #, can be expressed as :
171
_? <E — mx> ....................................................................................................................... (22)

This relationship can be designated by Curve BCD in Fig. 8, and represents a pathological limit in a sense that
the strength of beams can never exceed the value obtained by Eq. (22). From this consideration, the value of o in

Eq. (17) is assumed to be approximated by the slope of Curve BCD

= — :0( M;),—:z,lf:nz Ee e et e e (23)

(3) Eguivalent Imperfection and Imperfection Sensitivity

The strength of actual beams is affected by the imperfection as well as by the residual stress, and is control'ed by
the plastic unloading curve. Thus, the following arguments are provided with a view to utilizing the intersection
point C in Fig, 8 as the equivalent bifurcation point in stead of the original bifurcation beint 4.

Since the relationship between the torque and the rate of twist is assumed to take form invariant to the magnitude
of g, it can be shown that the equation of equilibrium can be rewritten using another pseudo-potential V(§— 8*, &,
M%) about the “equivalent bifurcation point”, Point C in Fig, § .

V=ML (0565~ M6 6%)=0

where

— fC l ‘¢
FON= 1o+ fr6s 24

=0 6% 6,
ME:<!ZT'>Z,/EC,‘,EIy . Euler buckling moment

Fig. 9 shows the surface of the equilibrium, M,, express-
ed in terms of the coordinate system (§—8* 4, M2). In
order to obtain the relationship between the maximum
bending moment, m,,. and imperfection parameter, §, one 1
may use a criterion that the transform from a pair of
coordinate system (§—@4*, §,) to the pair of coordinate
system (4,, M) through M, becomes singular. Or, one may

evaluate the 2nd partial derivative of V with respect to 4 7]

and let it vanish.

The relationship between M, and §, obtained through this , smgular
singularity transform is usually referred to as the bifurca- map

tion set, or in other words, the imperfection sensitivity

curve, of the beam. It can be expressed in the following

form :

abp . ion s M’z‘
= Maery | 10l [2 0B (1457 ) oo (25) 5

o

The cross sections are conveniently assumed to be Fig.9. Equilibrium space M, and singular bifurcation set.
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doubly symmetric as shown in Fig, 1. The section properties thus can be given by :

L=y Ab'

=55 (14 55)
cw—»{: h’~§4’ b*h*
J=2an 1+2A»f;"; ( i‘/”)

Then, the elasto-plastic lateral torsional buckling moment, m ., can be expressed by the following formula :

where A is referred to as the generalized slenderness ratio for the lateral torsional buckling of beams.

Following reference 9), the imperfection §,
may be replaced conveniently by the same
expression of the equivalent imperfection #¥
that has been introduced in the case of columns:

5:511(/\)90

an= (A, =2 (1-2)

where A, refers to the value of A at which the
elasto-plastic buckling curve bifurcates from the
Euler curve. This is to take into account of the
fact that neither very stocky nor very slender
The

detailed discussion on this matter is provided in

beam is sensitive to the imperfection.

two references” ' and is not repeated here due
to the limitation of pages.

Figs. 10 to 13 show several examples of the
numerical analysis on the strength of laterally
unsupported | -beams with certain combinations
Au/As h/b. A/(bR), B o
and (I/7)*GJ/(EC.).
elasto-plastic buckling curve, (b) the bifurca-
the JRA basic beam strength
curve'”  (d) the beam curve by Trahair'" and

(e) the ECCS curve* for n=1.5 with some

of parameters :

Shown are (a) the

tion set, (c)

experimental values of beams either rolled or
welded quoted from references™ ' It is to be

noted, however, that curves (c) and (d) are

*ECCS CURVE : M/M,=1/(1+ A"

NONDIMENSIONALTZED MOMENT

M/My:

NONDIMENSIONALIZED MOMENT

MMy

STRENGTH CURVES FOR BEAMS

———  BIFURCAYION SET

Co.-. ELASTO-PLASTIC Hrs/Hy
N .. JRR SPECIFiCATION
ECLS LURVE fer o = 1 5
LR EULER #KD FULLY PLASTIC CURVES

TRARSIR® § CLRVE

h/b= 4
YETA= ]

0. =
Sre 8.5 =
Wo/b= 8.01 A

[] 8.5 P8 15
SLENDERNESS RATIO OF BERMS
Fig.10. Beam strength curves (4,/A,=1. h/b=4. p=0.

A,/ (bh) =003, ,=0.5 and 6,=0.01)

STRENGTH CURVES FOR BEAMS

BIFURCATION SET
ELASTO-PLASTIC Mer/#y
PR IRA SPECIFICRTION
ECLS CURVE for n = 1 §
a4 __ _  EULER AND FULLY PLRSTIT CURVES

TRRHRIR'S CURVE

1
4§
YETAx 8. 356971 “ e
RE /bh= 2 03 S~ :“‘\
Sre 2.5 -
Wo b= ¢ o1 1
85 1o is
SLENDERNESS RATIO OF BEANS
Fig.11. Beam strength curves (A,/A,=1. h/b=4. n=0.36.

A,/ (bh) =0 03. 6,=0.5 and 6,=0 01)
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STRENGTH CURVES FOR BEAMS non-dimensionalized in terms of the yielding

moment ; whereas, curves (a), (b), and (e) are

- - BIFURCRIION SET

Lor e ELUSTO-#LASTIC Her /My in terms of the fully plastic moment. The
= Y & eveemen JRA SPECIFICRTION

_____ €ocs CURYE Tor @ 1.8 magnitude of residual stresses, ¢,, is assumed

S m-- BULER BMD FULLY PLASTIC CuRves conservatively to be 50 % of ¢, and that of the

T e imperfection, §, is assmed also conservatively
to be 1/100.

Both of Fig. 10, neglecting the effect of GJ,

5 = and Fig, 11, considering this effect, show an

o bl identical case of A,/A,=1, h/b=4. A,/ (bh)

;L':NDERNESS Rnr‘t‘uﬂ oF seAms s =(.03. Whereas, Figs. 12 and 13 show another

Fig.12. Beam strength curves (4,/A,=1, h/b=8. n=0. identical case of A,/A,~1, h/b=8 and 4,/
A+/(bh) =0.03. 6,=0.5 and 6,=0.01). (bh) =0.03.

The obtained results by the proposed bifurca-

Rw/RY =
2.5 h/b=
YETR=

NOND[MENS[ONRLIZED MOMENT

At /bh=
Sr=

1
8
a
2.
2.
8.

M/My

Wo/b=

STRENGTH CURVES FOR BEAMS tion set may be thought to well explain the lower

bounds of the tested results, although the

. BIFURCATION SET

_____ ELASTO-PLASTIC Mer sty consideration was restricted to the simplest
. JRA SPECIFICATICOR

problem of lateral torsional buckling of beams,
..... ECCS CURYE for n = 1.5

4 ___  EULER AND FULLY PLASTIC CURVES

TRRMALR' § CURVE 3. CONCLUSIONS

e In this paper, a new simplified approach to
9.5 -

YETA= . 348858 N
[X] >~ i i
. ~ - laterally unsupported beams is proposed using

Bt 2 concepts of the catastrophe theory. It takes into

predict the lateral torsional buckling strength of

NONODIMENSIONAL IZED MOMENT

Af/bh=

Sr=

A -

MMy

¥o/b=

o e rs account the elasto-plasticity of the material, the
SLENDERNESS RATIQ OF BEAMS

Fig.13. Beam strength curves (A,/A,=1. h/b=8. p=0.35, . ]
A/ (bR) =0.03. 5,=0.5 and 6,=0.01). tions. The proposed method is most characte-

residual stresses and the geometric imperfec-

rized by the part of the imperfection sensitivity
function invariant to the imperfection and determined entirely on the basis of the perfect system without the initial
imperfections. The main conclusions obtained through the study include the following :

(1) The elasto-plastic lateral torsional buckling of beams may be basically interpreted to be the fold
catastrophe.

(2) The lateral torsional buckling strength of beams may be evaluated in terms of the bifurcation set in the
catastrophe terminology and thus can be characterized by the 1/2-power rule.

(3) The lower bounds of the tested results of beams quoted here can be well predicted by the proposed
bifurcation set,

This study was financially assisted by a Grant-in-Aid for Scientific Research from the Ministry of Education,
Science and Culture in the years of 1981-1982. The numerical computations were mainly performed using a
relatively small microcomputer.
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