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VIBRATION OF AN INITIALLY DEFLECTED WEB PLATE
UNDER PERIODIC BEAM BENDING

By Shigeru KURANISHI*, Shigehivo FUKAY A**
and Toshihide SHIM A***

1. INTRODUCTION

It is a well-known phenomenon that the initial
deflection of plate girder webs induces additional
plate deflections under the action of girder bend-
ing moments. If the bending moments are caused
by the girder vibration, the action of the bending
moments becomes periodic, resulting in the dyna-
mic magnification. This vibration of the web
plate will yield the possibility of the initiation of
fatigue failure at the welded joint connecting the
web and flange plates, and/or of the generation
of undesired acoustic radiation. In this paper,
the vibrational behavior of a plate with the
initial imperfection subjected to sinusoidally
varying inplane bending moment is examined
from this point of view.

The influence of the initial imperfections has
already been discussed in the post buckling
problem® or the effective width problem?®, and
has been studied recently in connection with the
initiation of fatigue cracks by Maeda and Okura®.
On the other hand, the out-of-plane vibration of
plate under periodic edge thrusts has been at-
tracting the interest of many researchers® and
has been studied in relation to the parametric
excitation.

Some other dynamic thrust problems are
studied to check the impulsive edge thrust effect
by Tassel® and Ueda and Yao examined the
impulsive effect on the notch of steel plates using
the Newmark’s f method.

The quantitative evaluation of the amplitude
of the parametric and/or forced vibrations has
not been done so far because of the difficulty in
defining the interaction effect of the nonlinearity
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between the deflection and thrust and the param-
etric and forced excitation. In order to get more
practical value for the dynamic response of the
plates, a numerical analysis must be carried out.
In the analysis, the effect of the geometrical non-
linearity is taken into account, but the effect of
plastification and structural damping is not
included. Itis true that the damping capacity has
not been known so clearly, but these assumptions
are made mainly to emphasize the effect of the
geometrical nonlinearity and without these
damping effects, the dynamic responses are
expected to be more crucial. Of course, there will
exist inherent errors due to the numerical integra-
tion in the calculated dynamic response and it is
expected to have some kind of damping effects.
But, since the main purpose of this analysis is to
get practical values of the response approximate-
ly, the presentation of more accurate values is
not intended in this paper.

2. NUMERICAL ANALYSIS METHOD

In the analysis, the geometrical nonlinearity
is taken into account by the incremental formula-
tion and is evaluated by the piecewise linear and
iterative calculation procedure. The second order
terms are included in the strain-displacement
equations, and the linear relation is assumed for
the stress-strain equations that are obtained by
the Murray-Wilson’s” method. The strain-
displacement relation for thin plates is given by
the theory based on the von Karman’s and
Kirchhoff’s assumption. Then, the element equa-
tions for a triangular finite element are derived
using the finite virtual displacement and the
principle of stationary potential energy. The
dynamic response is calculated by the Newmark’s
S method. The displacement functions used
here are as follows:

U=+ a2+ oy

V=04t 0lsX +OleY
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where x and ¥ coordinates are fixed to an element;
# and v are the displacements in the x and ¥
direction; w is the displacement perpendicular to
the z-y plane and is expressed by the area coordi-
nate §;, {;, and {; o (i=1~6) and fi (i=1~9)
are the generalized coordinates.

3. MODEL AND PARAMETERS

Web plates are simulated by an initially deflect-
ed plate which is simply supported along the
vertical sides and is constrained against rotation
along the upper and lower sides to examine the
clamping effect of the flanges. But the inplane
displacements are not restrained on four sides.
With the aid of the symmetry, the half panel
of the plate is analysed and is divided into sixty
four triangular elements as shown in Fig. 1.

The maximum initial deflection wo is chosen
here to be two-hundred-fiftieth of the width be-
ing refered to the Specification of Japanese High-
way Bridges. The influence of this value and
applied periodic bending moment on the dynamic
response is checked preliminarily by changing
those values in a certain case. The results show
that the dynamic response is approximately
proportional to the initial deflection and applied
periodic bending moment. The influence of the
static bending moment is also checked in the
range from zero to 0.3 Mer, where Mer is the
critical bending moment for elastic buckling.
This influence is not significant within that
calculated range and possibly is absorbed in that
of the initial deflection. Therefore, the static
bending moment is not considered here. Finally,
the major structural parameters adopted here
are as follows:

width thickness ratio : 250
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Fig. 1 Analysed model.

Table 1 Natural frequency of the plate.

Vibrati}znz:il)mode Nat}erg(x]Iu(e:i;ccyular Natu‘ral period
' wm,n (rad/s) Tmn (s)
(I, b 88.30 0.071 16
1, 2) 211.10 0.02976
3, 310.53 0.020 23
(1, 3) 394.24 0.019 54
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Fig. 2 Assumed initial deflection modes.
aspect ratio o : 1.0
periodic bending moment Mos  : 0.3 Mer
damping factor § 0 0.0

Two modes of initial deflection which are sym-
metrical and unsymmetrical modes are con-
sidered here as shown in Fig. 2. The circular
frequencies of the periodically varying bending
moment load are wi,i/4, w1,1/2, w1, 2w1,1, ©i,2,
ws,1, and 2wi,2, where wn,m is the natural circular
frequency of the plate, and » and m indicate the
numbers of the half waves along the X and Y
axes of the vibration mode respectively, and are
obtained as shown in Table 1. wi,1/4 may roughly
correspond to the natural circular frequency of
the ordinary plate girders. Eight cycles of the
periodically varying bending moment are ap-
plied, which turn out to be approximately enough
for the vibration to reach the steady state. The
thickness-width ratio 8 is fixed to be 250 here.
In the case of smaller values for it, the increased
stiffness of the plate will result in the decrease of
the dynamic response and the higher speed vibra-
tion.  The decreased dynamic rtesponse will
reduce the damping effect because of the non-
linearity, and vice versa. But, it will be expected
that an approximate values can be obtained by
the calculated results and that the substantial
vibrational behavior will not change. The time
step used in the numerical integration is taken
as one-sixteenth of the period of the applied
bending moment.
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4. RESULTS OF NUMERICAL INTEGRATION

(1) In the Case of Symmetrical Initial Deflec-
tion Mode

When the frequency of the periodic bending
moment coincides with that of the asymmetrical
mode w13, the magnitude of vibration becomes
significantly large, and thus the vibration is in
resonance as shown by the history curve of Fig. 3
at the point A shown in Fig. 1. Consequently, if
the frequency of the bending moment is twice as
much as ws,2, the vibration is expected to grow
violently by the parametric excitation. Contrary

Fig. 3 Calculated history curve for the periodic
bending w,,, in the case of the sym-
metrical initial deflection mode (in
Resonance).

Fig. 4 Calculated history curve for the perio-
dic bending 2w,,; (parametric excita-
tion frequency) in the case of the sym-
metrical initial deflection.
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Fig. 5 Calculated history curve for the perio-
dic bending wy,2/4 in the case of the sym-
metrical initial deflection ({forced vibra-
tion).
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Fig. 6 Calculated dynamic  magnification
factor for the deflection and the edge
bending moments (out-of-plane).

to expectation, however, the growth of the param-
etric resonance vibration is not obtained. The
vibration has a tendency to change to the forced
one as shown in Fig. 4. For the frequency of a
quarter of the natural frequency, wi, the vibra-
tion is the forced one as shown in Fig. 5 and the
dynamic magnification factor becomes only about
one-tenth of that of the resonance vibration. Fig.
6 shows the relationship between the dynamic
magnification factor and the frequency of applied
bending moment in 8-cycle applications at the
point A by empty circles.

(2) In the Case of Asymmetrical Initial Deflec-
tion Mode

For the case where the initial deflection has
the asymmetrical mode, the resonance is excited
by the natural frequency of the symmetrical
modes. The fundamental behaviors are quite
similar to those for the symmetrical initial
deflection mode, except the dynamic magnifica-
tion factor and the frequency-resonance relation-
ship. The dynamic magnification factor at the
point A is illustrated by full circles in Fig. 6 also.

In this case, the growth of the parametric
resonance vibration is not again observed. This
tendency is same as the case where the initial
deflection has the buckling mode for the beam
bending. This may be explained by the fact that
the amplitude excited by the parametric bending
moment does not develop beyond the initial
deflection and that it does not become in reso-
nance because of the damping effect of the non-
linearity and excitation factor. As seen in Fig. 6,
the dynamic magnification factor is about 10 in
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the maximum value. It means that the damping
ratio corresponds to 0.05 approximately in this
analysis. Of course, this value stems from the
integration error, but it must be noted that the
actual structures have inherently many other
damping capacities. For this problem, further
analyses may be required in detail.

(3) Out-of-plane Bending Response at the
Flange Connection

The constraining out-of-plane bending stresses
are produced at the welded flange joints under
the static and periodic beam bending moments.
By the periodic bending moment, these stresses
are applied repeatedly and are expected to cause
the fatigue failure at the welded connection. In
Fig. 6, the dynamic magnification factors of the
stresses for the symmetrical and asymmetrical
initial deflection mode shown by full and empty
triangles respectively. These values are almost
same as those of the deflection. In this analyzed
case, the maximum bending stress reaches to
about 72 MN/m?.

5. CONCLUSIONS

In this paper, the dynamic behavior of a web
plate, which has the initial deflections and which
is applied by the periodical beam bending mom-
ents, is studied numerically by the dynamic
elastic finite deformation analysis. From the
results, the following conclusions may be drawn:

(1) For the plate with the symmetrical initial
deflection mode, the plate vibration shows
resonance when the frequency of the applied
periodic beam bending moment coincides with
the natural frequency wi,: of the symmetrical
plate vibration mode. The dynamic magnifica-
tion factor grows over 10.

(2) For the plate with the asymmetrical initial
deflection mode, the plate vibration shows
resonance when the frequency of the applied

periodic beam bending moment coincides with
the natural frequencies wi,1 and wi,s of the asym-
metrical plate vibration mode. In this case, the
dynamic magnification factor becomes above 5.

(3) In the both cases of the symmetrical and
asymmetrical initial deflection mode, the para-
metric resonance vibration is not obtained in this
numerical analysis, even in the main resonance
region of the applied periodic beam bending
moment, that is, when the frequency of the ap-
plied bending moment is equal to a half of the
natural frequencies of the plate.

(4} The dynamic magnification factor of the
out-of-plane bending stress at the flange con-
nection takes almost same value as that of the
deflection.
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