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DYNAMIC STRENGTH CHARACTERISTICS OF AXIALLY
LOADED COLUMNS SUBJECTED TO PERIODIC
LATERAL ACCELERATION

By Shigeru KURANISHI* and Akinori NAKA JIMA**

1. INTRODUCTION

Recently, studies on the ultimate strength of
bridge structures for static loads have been exten-
sively done and design practice have been gradu-
ally improving to that based on the limit state.
However, there are many problems to be solved
in order to establish the limit state design of the
structures under dynamic effects such as wind
forces or excitations by earthquake. Especially,
the structural instability to static loads inheres
in relatively slender bridge structures and the
instability is expected to be enhanced by the
dynamic loadings.  Therefore, the dynamic
behaviors of these structures in the ultimate
state including the structural instability is
required to be studied in order to extend the
limit state design to dynamic loadings.

Up to this time, many studies on the restoring
characteristics and the inelastic deformation
capacities of structures have been carried out™®.
Kato and Akiyama®~® discussed the dynamic
ultimate strength of building structures on the
basis of the concept of the input energy, where
the inelastic deformation capacities were con-
nected to the input earthquake energy. How-
ever, these studies did not sufficiently consider
the dynamic instability effects on the column
strength and the dynamic characteristics of
other types of structure subjected to combined
dynamic and static loadings. From the nature
of things, the dynamic ultimate strength should
be defined by the dynamic failure instead of
the ultimate strength estimated by the results
of experiments and analyses for static cyclic
loading. To accomplish this subject, it will be
necessary to clarify the ultimate state of struc-
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tures under dynamic loadings according to dyna-
mic loading experiments and/or nonlinear dyna-
mic analyses.

Owing to the remarkable advance of com-
puters, the dynamic analysis®® in which the
geometrical and material nonlinearities are taken
into consideration have been developed so far.
In this analysis, the general step-by-step integra-
tion such as Newmark’s 8 method (B=1/4) is
used. However, when Newmark’'s f method
(8=1/4) is applied to the linear dynamic analysis,
the analytical errors such as the phase error are
produced as well known®, by the reason of that.
the solutions are given approximately by dis-
crete points. By applying of this method to
nonlinear multi-degree-of-freedom systems, it is
checked roughly here that these errors decrease
with decreasing the time interval, and that this
method can trace the dynamic ultimate con-
ditions sufficiently enough.

In this paper, the dynamic ultimate strength
characteristics of the compression members such
as used for bridge trusses subjected to the lateral
sinusoidal acceleration whose circular frequency
is equal to the first natural circular frequency
of the column is investigated.

Furthermore, the effect of the static axial
compression force on the dynamic responses is
discussed using a simplified simulation model.

2. ANALYTICAL METHOD
(1) General

The geometrical and material nonlinearities
are included in the analysis using the modified
Newton-Raphson method and the modified
incremental load method. Firstly, the equation
of the virtural work of finite deformations is
derived basing on the incremental theory. Sec-
ondly, the equivalent incremental equation of
motion is formulated according to the standard
procedure of the finite element method. This
equation of motion is solved using Newmark’s
B method® ™. The stress-strain curve of the
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steel material is assumed to be the ideal elastic-
plastic relationship and the elastic unloading is
taken into account in the case where the stress
reverse occurs. In this paper, only the effect
of damping due to the hysteresis of material on
the structural responses is considered, because
the effect of the hysteresis damping is more
remarkable than that of the other inherent
structural damping for the dynamic ultimate
strength.

(2) Integration of the equation of motion

The formulation of the finite deformation
problems based on the incremental theory is
same as used in Ref. 9). The integration process
in solving the incremental equation of motion is
as follows.

The dynamic force equilibrium at time #» can
be written as

(Tn) + (R} = (Fn} woeeeervemsnsssrsnsniensnnnns (1)

in which {I»}, {R»} and {F»} are inertia force,
internal resisting force and external force vectors
at time #» respectively. The dynamic force equi-
librium at time fs41 can be obtained similarly.
Therefore, the incremental equation of motion
can be given by
+{r}={F} .
Hence, the incremental inertia force vector {7}
and the incremental internal resisting force
vector {R} can be approximately given as the

function of the incremental displacement vector
{D} by

(RY=[Kn]{D] «ooeeresermsmsmrinnssinicinn. (3-2)
(1) =) g g5 (D) = B0
1
~25 {Dn}> ................................. (3-b)

in which [K»] is the tangent stiffness matrix at
time ¢, and [M] is the equivalent consistent
mass matrix including the effect of rotary
inertia!®. (D} and {Dn) are the velocity and
the acceleration vectors at time #» and ¢ is the
time interval from #x to ¢s41. The terms parenthe-
sized in Eq. (3-b) are derived from the formula
of Newmark’s S method which is generally
written as

{Dn1) = (D} +A{Dn} + (4¢2/2) { D)
+ BA((Duyi) — (D)) .
By substituting Eq. (3) into Eq. (2), the following
expression is obtained
1
pAae

in which {I®} is the apparent external force
and obtained by substituting {D}=0 into Eq.

<[Kn]+ [M]) (D} =1{F}— (IO} reerernne (5)
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Fig. 1 Concept of iterative calculations.

(3-b). By solving Eq. (5), the first incremental
displacement vector {D®} is obtained. The first
incremental internal resisting force vector {RW}
and inertia force vector {I/®} can be determined
by using {D®}. When these equations are sub-
stituted into Eq. (2), the out-of-balanced force
results from the assumption of linearization of
the relationship between the incremental external
force and displacement. Therefore, the out-of-
balanced force is corrected by applying the
equivalent unbalanced force residual which is
given as follows

(FD) = [F} = (R} = (IW] | corerrrerrereenns (6)

The iterative calculation is continued until the
unbalanced force residual becomes nearly equal
to zero. Eq. (5) is rewitten in the general form
as follows

I
— M (@+1)
(Lo +5 o] (D<)
= (F) - (R) — (It")

in which the iterative calculation is performed
until {D¢+Y} becomes nearly equal to zero. Fig.
1 shows the concept of the iterative calculation
described above. Symbols of materices and

vectors are omitted in this figure.

3. NUMERICAL RESULTS

(1) Numerical model and parameters

Fig. 2 shows loading conditions and a cross
sectional shape of columns analyzed here. The
columns are simply supported and its length
I=10m. The applied static axial compression
force P is expressed by the ratio a to the static
load carrying capacity Per of the column with
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Fig. 2 Loadings and cross-section of columns.

Table 1 Characteristics of cross-section.

Slenderness Ratio 30 60 90 120 150

Flange Width (mm) 970 480 310 233 183

Thickness of Plate (mm) 23 17 21 18 14

1st Natural Circular Fre-
quency (rad/s) 155.6 1 79.7| 54.41 41.0} 32.7
1st Natural Period (s) 0.040 | 0.079 | 0.116 | 0.153 | 0.192
Load Carrying Capacity
of Column (MN) 18.30 | 6.24 | 4.08| 1.79 0.75

Ratio of Load Carrying
Capacity to Yield Axial | 0.969 | 0.903 | 0.740 | 0.509 | 0.347

Force

the initial crookedness which is given by a
sinusoidal curve with the maximum magnitude
at the middle being one-thousandth of the length.
Therefore,

P=aPer

In this analysis, the following cases are con-
sidered in which «=0.5 or 0.8 and the slender-
ness ratio A=30, 60, 90, 120 or 150. Table 1
shows the width of flange, the thickness, the
first natural circular frequency with no axial
force, and the ratio of the load carrying capacity
with the 7/1000 initial imperfection to the yield
axial force. The Young’s modulus is 206 GN/m?,
the yield stress is 235 MN/m? and the mass per
unit volume is 7.85 Mg/m?3.

In the finite element analysis, the column is
divided into 10 equal elements and the cross
section is divided into 22 segments in order to
estimate the yielded zone as shown in Fig. 2.
The stress-strain curve is assumed to be the
ideal elastic-plastic relationship and the residual
stresses are neglected here.

The applied periodic lateral acceleration load
is assumed to be sinusoidal and given as follows

D= I F +veeverevrrrmmnsirrinineiinniennsiiaeeaans (9)
in which Z is the amplitude of the input lateral

acceleration and w is the circular frequency and
taken to be equal to the first natural circular
frequency of the column subjected to the axial
force. Based on the obtained dynamic response
of the column subjected to ten cycles of the
sinusoidal acceleration, the dynamic ultimate
strength characteristics is discussed here.

(2) Fundamental response characteristics

In this section, the numerical results analyzed
varying the parameters of the slenderness ratio,
the static axial compression force and so on are
presented. Fig. 3 shows the lateral displacement
response at midheight of the column in the case
where A=120, «=0.5 and Z=6.0m/s?.. The
ordinate shows the displacement response nor-
malized by the column length and the abscissa
is the elapse time normalized by the first natural
period Ti. Since the circular {requency of the
sinusoidal acceleration is equal to the first natural
circular frequency of the column, the amplitude
of the flexural vibration increases gradually
showing resonance. And then, the yielded zone
appears in the cross section at the center of the
column (In Fig. 3, the circle shows that the
initial yielding occurs). In this case, the ampli-
tude converges to a certain magnitude and then
the center of vibration begins to shift only in
one direction decreasing the amplitude. The
behavior that the center of vibration begins to
shift only in one direction is termed herein by
the increase of dynamic residual displacement.
For Z=7.0m/s?, the displacement response
increases rapidly and the column begins to
collapse within ten cycles of application of the
sinusoidal acceleration as shown in Fig. 4. After
the dynamic residual displacement due to yield-
ing of the cross section occurs, the dynamic
residual displacement increases only in one direc-
tion and the amplitude decreases gradually in
the same manner as the case for Z=6.0 m/s%.
But in this case, the displacement response

Displacement Response()ﬂo'z)

10
!

TimelT1
Fig. 3 Lateral displacement-time curve at

midheight (z=6.0 m/s?%).
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Fig. 4 Lateral displacement-time curve at
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Fig. 5 Stress-strain relationships at midheight
(a) Tension (b) Compression.

Fig. 6 Relationship between resisting bending
moment and curvature at midheight.

increases rapidly and then the column collapses
when the lateral displacement at midheight
reaches a certain degree of value. The dynamic
residual displacement increases in the opposite
direction of the case for Z=6.0 m/s?, because the
flexural deformation can easily develop in the
direction of the initial yielding. Fig. 5 shows
the stress-strain relationship of the cross section
at midheight for Z=6.0 m/s%. In this figure, (a)
and (b) show that of the tension flange and the
compression flange respectively as the result of
the positive lateral deflection. The ordinate and
abscissa show the stress and strain normalized
by the yield stress and strain respectively. Both
flanges yield first in compression because the
static axial compression force is applied at its

initial stage. However, as the dynamic residual
displacement increases in the positive direction
(upper direction in Fig. 3), the flange at the
convex side begins to yield in tension and the
plastic tension strain develops in this flange.
The plastic compression strain develops in the
other flange at the concave side. Fig. 6 shows
the resisting bending moment-curvature rela-
tionship at midheight of this column. The
ordinate and the abscissa are the resisting bend-
ing moment and the curvature normalized by
the yield moment and the yield curvature respec-
tively. In the same manner as the stress-strain
curve, the curvature develops only in one direc-
tion according to the increase of the dynamic
residual displacement only in one direction.

(3) Consideration of dynamic failure charac-
teristics

In the case of columns subjected to combined
the static axial compression force and the lateral
sinusoidal acceleration, the dynamic failure
occurs as follows. Owing to resonance, the
flexural vibration develops and the cross section
in the vicinity of the midheight of the column
yields. By this yielding of the cross sections, the
dynamic residual displacement occurs and in-
creases only in one direction with gradually
decreasing the amplitude of the flexural vibra-
tion. If the dynamic residual displacement
reaches a certain degree of value, the displace-
ment response increases rapidly and the column
collapses.

In order to debate on the mechanism of this
behavior, the column is simulated here by a sim-
plified one degree-of-freedom system subjected to
the sinusoidal acceleration also shown in Fig. 7.
This presents the flexural vibration model com-
posed of a mass, rigid bar and rotary spring, and
the mass is subjected to the vertical static load
P. 1In this figure, m is the mass, % is the rotary
spring constant, 7 is the length of the rigid bar,
¥ is the horizontal displacement and assumed to
be much smaller than I and f(#) is the external
excitation. The restoring force characteristics of

B
J—J m 1)

T R~

¢
k

Fig. 7 One degree-of-freedom system.
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the rotary spring has the ideal elastic-plastic

relationship shown in Fig. 8. The external
excitation is given by
FU)=—mZ it @ eeereremesneieeeeeie (10)

in which Z is the amplitude of the input accelera-
tion and e is the circular frequency of the input
acceleration. The equilibrium equation of the
moment with respect to the support of the
vibration system shown in Fig. 7 can be written
as

I RePy=Lf{t) -weoveoremmrremnininins (11)

in which R is the restoring force of the rotary
spring. Depending on elastic or plastic, R can
be obtained as follows
R= +Ry—k(em—¢) : Elastic
—{iRV : Plastic
in which Ry is the yield restoring force, ¢ is the
rotary displacement and ¢m is the standard
plastic displacement introduced to estimate the
restoring force shown in Fig. 8. By multiplying
the both sides of Eq. (11) with ¢, and integrat-
ing this equation from # to ¢, the following
expression can be obtained by
Yz

| S :|1'/2 S“’z P [ 1 :’
—my? |4\ "Rdo——| —y?
[2 y V1 1 ¢ { 2 v Y

=Si2f(¢)ydt_ .................................... (13)

1

The first term is the incremental kinetic energy,
the second term is the incremental strain energy
and the last term is the incremental potential
energy due to the static load P in the left side
of Eq. (13). And the right side of Eq. (13) shows
the incremental input energy due to the external
excitation. It is noted that the static load P
transfers its potential energy to the system, if
y2*>¥:* and absorbes from it, if y:2<y:2.

0 ,At2/\

Displacement response of the single degree-of-
freedom system shown in Fig. 7 are presented,
using the nonlinear dynamic analysis described
in chapter 2. Fig. 9 shows a displacement response
curve of the mass. The ordinate shows the dis-
placement normalized by the length of the rigid
bar and the abscissa shows the elapse time nor-
malized by the period of external excitation.
Showing resonance, the amplitude of the dis-
placement response increases and then the
rotary spring begins to yield. By the yielding,
the dynamic residual displacement occurs and
it increases only in one direction gradually.
It is also found that the amplitude decreases
when the mass moves in the opposite direction
to the dynamic residual displacement. After the
dynamic residual displacement reaches a certain
degree of wvalue, the displacement response
increases rapidly. These behaviors agree well
with the dynamic behaviors of the column sub-
jected to the static axial compression force
previously described.

Then, the equilibrium of the energy expressed
in Eq. (13) will be investigated using the responses
of one degree-of-freedom system. If the rotary
displacement reaches the yield rotary displace-
ment ¢y at time £ and the displacement begins
to reverse as shown in Fig. 9 and the velocity
response is zero at this time. Fig. 10 (a) shows
the relationship between the restoring force and
the rotary displacement from this time to time
t2 when the velocity response becomes zero
subsequently. It is predicted that the supply of
the input energy results in [z} >|¢:i|=¢y, because
this system is subjected to the sinusoidal excita-
tion at resonance. In fact, the numerical results
shows that |es] is greater than ¢y. The velocity
response are zero at f1 and ¢, so that there is no

Mass m=10kg

Rotational Spring Constant k =5MN-m

Length of Rigid Bar T=5m

Static Load P =200kN
Amplitude of Input Acceleration Z = 5.1 m/s?
Matural Circular Frequency 2 =40rad/s -

1y /3

Ry

il
/17

Displacement Response(X107)

Rotational Yield Displacement Py = 0.002

Fig. 8 Restoring force char-

\

Time/Tt

acteristics. Fig. 9 Horizontal displacement-time curve.
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increment of the kinetic energy from # to f..
Therefore, Eq. (13) can be rewritten as

AE@=AEp+AE; wooeerereresresiniiianannnne (14)

in which 4FE,, AEp and AEy are the incremental
strain energy, potential energy due to the static
load and input energy due to the external exci-
tation normalized by the yield strain energy
(Ey=Fkoy?/2) respectively.  According to the
numerical results, |y:| is greater than |yi], con-
sequently AEjp is supplied to the system. In
this case, the strain energy increases and the
plastic deformation develops. At this time,
each value of Eq. (14) is calculated as follows

AE@=1.377, AE»=0.370, AE;=1.009
1.37750.370-41.009 . +ervcesseinnienns(15)

It will be seen that the Eq. (14) is satisfied in
the range of numerical errors. The equilibrium
of incremental energy from Z; to ¢ is considered.
The velocity response becomes zero at time #.
If the reverse of the displacement response from
the plastic zone occurs, the strain energy released
by the rotary spring is constant and the natural
period of the system becomes longer owing to
vielding. Therefore, the incremental input energy
due to the external excitation can not exceed the
incremental input energy during # and #. The
relationship between the restoring force and the
rotary displacement from #; to # is shown in
Fig. 10 (b). By the supply of the input energy
which is equal to that from # to %, |@s| becomes
less than ||, so {ys] is less than |y:]. This means
that the incremental potential energy of the
static load results in the decreasing of the strain
energy of the system. Consequently, the dynamic
residual displacement occurs in the direction in
which the first yielding is produced. If the system
displaces in the opposite direction, the potential
energy of the static load makes the displacement
decrease and the amplitude damped. By the
numerical results, each incremental energy from
¢z to #3 is obtained as

AE@=0.275, AEp=-0.526, AE;=0.807
0.275%—0.526+0.807 .
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Fig. I1 Incremental energy and absolute value
of horizontal displacement at every
peak.

It will be seen that the static load acts as an
absorber of energy in Eq. (16). Fig. 11 shows the
incremental strain energy, input energy due to
the sinusoidal excitation, potential energy of
the static load and the absolute peak value of
the displacement response for Z=3.95 m/s2.
The abscissa shows the order of peaks of the
displacement response. The ordinate shows the
incremental energy and the absolute peak value
of the displacement response normalized by the
yield strain energy and the yield displacement
respectively. The circles give the values at the
positive peak displacement and the triangles
give the values at the negative one. In this
figure, the first yielding occurs at the third peak.
If the reverse from the plastic zone occurs, the
released strain energy is constant, so the velocity
response nearly holds the constant amplitude.
Therefore, the incremental input energy which
is expressed by the integration of the product
of the sinusoidal excitation and the velocity
response can not exceed a certain degree of value.
The incremental input energy indicates the
initial maximum point at the fourth peak and
gradually decreases after that as shown in Fig.
11. This should be the reason that the natural
period of the system becomes longer owing to
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yielding and that the phase lag between the
external excitation and the wvelocity response
is produced. The incremental input energy
decreases gradually but shows a tendency to
approach a constant value. Although the absolute
value of the peak displacement has a tendency
to decrease as well as the above discussed, the
incremental potential energy of the static load,
which is related to the difference between the
second power of the peak displacement responses,
is supplied from the total energy of the system.
This makes the strain energy and the absolute
value of the peak displacement response decrease.
On the contrary, it is considered that the absolute
peak displacement may exceed the last peak one
successively by the action of the incremental
input energy which is smaller than the energy
caused during the last half cycles. Therefore,
the incremental potential energy of the static
load is supplied to the system and makes the
absolute value of the peak displacement response
increase. The influence which the incremental
potential energy of the static load exerts on the
incremental strain energy becomes gradually
significant as shown in Fig. 11. Tor the column
subjected to the static axial compression force,
the behavior of the dynamic residual displace-
ment which increases only in one direction is
considered to occur in the same reason.

From these considerations described above,
if the system loaded by the small static load is
subjected to the external excitation for a long
time, the dynamic residual displacement is
expected to increase only in one direction.
Because, by the resonance, the amplitude of
the vibration always increases and then the
spring yields finally. However, in the actual
structures, if the external excitation and/or the
static load are relatively small, this resonance
does not always induce the yielding owing to
the effects of the inherent structural damping
even in the elastic range. In this case, the am-
plitude of the vibration will become constant
without the increase of the dynamic residual dis-
placement in one direction.

In Fig. 12, the equilibrium of the moment
caused by the static load, the inertia force and
the resisting moment of the rotary spring in the
previously described single degree-of-freedom
system are shown by the bold solid line, the
fine solid line and the dashed line respectively.
The moment caused by the inertia force is includ-
ing the moment by the external excitation. The
total moment summed up the three moment
components must be zero and the three moments
are balancing at each time. The ordinate shows
the moment normalized by the yield restoring
force Ry and the abscissa shows the elapse time

|
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Fig. 12 Equilibrium of moment (z=-5.1 m/s?)
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Fig. 13 Equilibrium of bending moment at
midheight.

normalized by the natural period of the external
excitation respectively. It will be seen that
the moment caused by the static load increases
rapidly when the moment nearly reaches the
vield restoring force.  Therefore, the critical
displacement which indicates the start of the
divergence of the displacement response may
be given by the following condition

Py>Rv

The Eq. (17) is also the static failure condition
that the moment caused by the static load ex-
ceeds the maximum restoring moment of the
rotary spring. This means that the displace-
ment in the dynamic failure condition is not
different from that in the static one. The equi-
librium relationships between the bending mo-
ment caused by the static axial compression
force, the inertia force and the bending resisting
moment at midheight of the column are shown
in Fig. 13 by the similar manner as used in Fig.
12. This figure shows the case for the statically
compressed column with the parameters A=120,
a=0.5 and Z=7.0 m/s>. The tendency of the
behavior of the column agrees well with that
of the single degree-of-freedom system shown in
Fig. 12. Namely, the deformation of the column
starts to increase quickly when the beanding
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Fig. 14 Static axial load versus lateral dis-
placement at midheight.

moment which expresses the product of the
axial force and the deflection at midheight nearly
reaches the full plastic moment under the axial
force. Consequently, the following expression for
the column can be used in the same manner as
the case of the single degree-of-freedom system

Py>M, .

It indicates that the lateral deflection at mid-
height in Eq. (18) gives the critical value for the
divergence of deflections. Then, Fig. 14 shows
the relationships between the static axial com-
pression force and the lateral deflection of the
column at the time when the lateral deformation
starts to increase rapidly in the dynamic analysis.
The ordinate is the static axial compression force
and the abscissa is the lateral deflection at mid-
height normalized by the yield axial force and
the length of the column respectively. The
crosses, squares and triangles show the results of
the case for A=120 and =0.8, A=120 and a=
0.5, and A=90 and «=0.8 respectively. The
black circles show the critical lateral deflection
which is determined using Eq. (18) for each
slenderness ratio and the static axial compression
force. The critical lateral deflection given by
Eq. (18) agrees well with the deflection when
the deformation starts increasing rapidly in the
dynamic analysis, except for A=120 and «=0.5.
In the latter case, the discrepancy may come
from the dynamic effect of the inertia force.
However, this difference is smaller than about

159%.

(4) Dynamic strength characteristics of columns

By the above discussion, it may be concluded
that the flexural vibration develops and the
column will be brought out to collapse, when
the column is subjected to combined the static
axial compression force and the lateral sinusoidal
acceleration whose circular frequency is equal to
the first natural circular frequency of the column.
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Fig. 15 Dynamic strength characteristics of
columns.

The dynamic strength of the columns in ten
cycles of the sinusoidal acceleration is shown in
Fig. 15. The ordinate shows the input accelera-
tion amplitude as the dynamic strength of the
column and the abscissa shows the slenderness
ratio and slenderness ratio parameter. 1= (m/A)
Vo JE (oy: yield stress and E: Young’s modulus)
The circles and the triangles show the case for
a=0.8 and 0.5. Each symbol applied black
indicates that the column collapses in ten cycles
of the sinusoidal acceleration. For a=0.8 and
A=60, the column collapses when Z is over
9.0 m/s?.  If A=90, relatively smaller input ac-
celeration amplitude leads to the collapse of the
column, comparing to the case for A<60. In the
case where A=90 and Z=3.0m/s? or A=120
and Zx=2.0 m/s?, the column collapses. This
indicates that the dynamic strength of the column
does not change with the slenderness ratio in
the case for A290. In the case where a=0.5,
the column does not collapse, if A<L90 and
Z=10.0 m/s? The column collapses when
A=120, Zz7.0m/s? or A=150, Z=5.0 m/s%.
Therefore, it is found that the dynamic strength
of the column is affected by the static axial com-
pression force and that the smaller the slender-
ness ratio is, the more this effect is significant.

4. CONCLUSIONS

In this paper, the dynamic ultimate strength
of columns with box sections subjected to the
static axial compression force and the lateral
sinusoidal acceleration is investigated using the
numerical in-plane dynamic analysis. The main
conclusions of this analysis is summarized as
follows.

(1) When the column is subjected to com-
bined the static axial force (actually a certain
magnitude of the compression force) and the
large lateral sinusoidal acceleration whose circular
frequency is equal to the first natural circular
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frequency of the column, the cross section in
the vicinity of the midheight yields and the
dynamic residual displacement increases only in
one direction, diminishing the amplitude of the
flexural vibration and the columns are brought
out to collapse.

(2) When the columns subjected to the static
axial compression force and the lateral sinusoidal
acceleration collapse dynamically, the dynamic
critical lateral deflection at midheight agrees
with the static lateral deflection in the ultimate
state.

(3) The columns which are subjected to
ten cycles of the sinusoidal acceleration whose
circular frequencies are equal to the first natural
circular frequencies of the columns have relatively
large dynamic ultimate strength, if the column
has the slenderness ratio of A<60. On the con-
trary, the dynamic strength decreases significant-
ly, if the column is more slender than A=90.
The dynamic ultimate strength does not change
with the slenderness ratio in the case where Az
120.

(4) The dynamic ultimate strength of the
columns decreases more remarkably in the case
where the ratio of the applied static axial com-
pression force to the load carrying capacity is
equal to 0.8, than the case where the ratio is
equal to 0.5. This indicates that the dynamic
ultimate strength of the columns under the lateral
sinusoidal acceleration is affected by the static
axial compression force significantly. The smaller
the slenderness ratio is, the more this effect is
significant.
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