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RECTANGULAR THICK PLATES ON LINEAR
VISCOELASTIC FOUNDATIONS*

By Harutoshi KOBAY ASHI** and Ketichivo SONODA***

1. INTRODUCTION

Most of the previous works on the quasistatic
analysis of elastic plates resting on linear visco-
elastic foundations have been confined within the
scope of thin plate theory?~?. Only a few works
based on thick plate theory can be found in
literature.  Pister® investigated the axisym-
metric bending of a viscoelastic infinite plate on
the basis of Reissner’s thick plate theory,® using
the Fourier-Bessel integral of zero order. The
authors'® presented the general solution of
elastic circular plates with various boundary con-
ditions on the basis of Mindlin’s thick plate
theory!®, using the method of eigenfunction
expansions. In the both works, the correspond-
ence principle!®:!® was utilized as an elastic-
viscoelastic analogy.

Among the various thick plate theories avail-
able at present, Mindlin theory and Reissner
theory seem to be most familiar. But both the
theories are not so much different. If in Reissner
theory the effect of transverse normal stress is
neglected and in Mindlin theory the shear co-
efficient is taken equal to 5/6, both the theories
coincide with each other.

The present paper is concerned with the quasi-
static bending of rectangular Mindlin plates
resting on linear viscoelastic foundations obeying
the Winkler’s hypothesis. The plates are as-
sumed to be simply supported on two opposite
edges and subjected to arbitrary surface loads.
Double series solutions are derived by means of
eigenfunction expansions and by utilizing the
correspondence principle, and the numerical
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results are compared with those by a thin plate
theory for the viscoelastic foundations of the
Kelvin (Voigt), Maxwell, and Standard linear
solid types.

2. BASIC EQUATIONS FOR ELASTIC FOUN-
DATION PROBLEM

Mindlin's original equilibrium equations for a
thick plate include both the effects of shear
deformation and rotatory inertia. In the present
quasistatic analysis the latter effect can be
deleted, and then the governing equation of a
rectangular thick plate on the Winkler-type
elastic foundation becomes

%{(1—1})[72%:—1-(1-{-1))3—2}

+KGh<g—Z;)_¢z>=o ..................... (1-a)
2lu-nrpraengt]
+KGh<g—Z)—¢1,>=() ..................... (1-b)

KGh(PPw—¢@)=hw—q
with
_OY= , Oy
¢ = oz "oy
Here, w(x,y) is the deflection at the plate middle
surface; z(z, ¥) and yYy(x, ¥) are the angular
rotations of the normal to the middle surface in
the z- and y-coordinates directions, respectively;
D is the flexural rigidity given by D=Eh3/12
(1—1®); E is Young's modulus; G is the shear
modulus; v is Poisson’s ratio; % is the plate
thickness; « is the shear coefficient taken equal
to 5/6; k is the elastic modulus of the foundation;
g(x, y) is the surface load intensity; and P*(=
0%/0*x+0%/0y?) is the Laplace operator.
Stress couples and resultants can be related to
the displacement components as

Mz=—D<al‘h+v%%> ]

ox
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Fig. 1 Geometry and coordinate system of
rectangular thick plate.

M1/=—D<%? V%l‘ix> ............ (2-a)
.

and
Q":KGh<g%_?/fx> ..................... (2-b)

Geometry and coordinates of the plate con-
sidered are shown in Fig. 1. The plate is simply
supported on two opposite edges (x=0, a) and
the other two edges (y==b/2) are restrained in
any manner such as simply supported, clamped
or ifree. Boundary conditions are written as

(I) Along x=0, a:

Mz‘:wy:w:()
for a simply supported edge -+ (3)
(2) Along y=14-06/2:
Mw=¢x=w=0
for a simply supported edge -+ (4-a)
Ya=iry=w=0

for a clamped edge «ooreereeeeenien (4-b)
My=Mazy=Qy=0
for a free edge ........................ (4..0)

3. SERIES SOLUTIONS FOR ELASTIC FOUN-
DATION PROBLEM

The governing equations (1) can be separated
into two partial differential equations on the
deflection w and the stress function ¥ (=8y=/dy —
Yry/0x), respectively, one of which is of fourth
order, and the other of second order!®. There-
fore, the solutions of Eq. (1) may be derived
from direct integration of these equations under
consideration of the prescribed boundary con-
ditions. However, the solutions obtained in such
a way are not appropriate for the application
of correspondence principle between elastic solu-

tion and viscoelastic solution because they are
composed of hyperbolic and trigonometric func-
tions including the elastic modulus of the found-
ation in their arguments whose inverse Laplace
transforms must be rely on a numerical me-
thod. Thus, to avoid the difficulties of numerical
inverse Laplace transforms the elastic solutions
are given in the form of eigenfunction expan-
sions, which is successfully used in the previous
paper on circular plate problem?!®,

Then the solution of Eq. (1) are taken in the
forms

w(x, y) o o Wonn (-Z‘, ?j)
{:W(x» y)} =Y X Zmn [Wz,mn(-’f, y)J

v, T W, 9)

where Zmn is the unknown coefficient and the
symbols Wun(, ¥), Yema(x, ¥), and Yry,mn(s, ¥),
respectively, represent the m,#-th normal modes
(eigenfunctions) in free vibrations of the same
Mindlin plate without any foundation neglecting
the effect of rotatory inertia.

Such eigenfunctions satisfy the following set of
equations (note that subscripts m, », and argu-
ments #, ¥ are omitted):

D 0P
5[(1—11)[725”;'1'(14-11)0—“‘}
ow
+KGh<_6x_—gj’>=0 .................. (6-2)
D o0
E—[(I—V)V“Py+(l+v)5y—]
ow
_!_KGh(W_g'ly)_O .................. (6+Db)
KGR(PW —~@)+CW =0 rrevreenreeninnns (6-¢)
with
_O0¥, 0¥, . e, .
O= 95 T P C=D(Amn/a) (6-d)

where Amz is eigenvalue to be determined from
boundary conditions. Mindlin!*» showed that
Egs. (6-a) to (6-c) could be uncoupled by introduc-
ing three potentials w1, ws, and ws satisfying the
equations

(724 (01/a)?Twr=0 } ........ -
[V2~—(8:/a)]wi=0, i=2,3
and
V(s 4)=(1=0) G+ (1) Gt G
7]
Wmnn(, v) =wi+ws
.............................. (8)

The dimensionless symbols introduced in Egs. (7)
and (8) are put as
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0%, 03 = ALl =S+ (S*+4A50) Y]

1

2
i=2/[S1-»1 bl (9)
0'1,0'2=S<3§, —8%7)
S=D/kGha?

Considering the simply supported condition of

Eq. (3), solutions of Eq. (7) can be taken in the
forms:
(1) Symmetric mode about z-axis,
wi=A1cosh (my/b) sin (mrx/a), for Sr<mm
=Aicos (1:y/b) sin (mnx/a), for Si>mnm
wz2=Az cosh (729 /b) sin (mnx/a),

ws=Assinh (7sy/b) cos (mmx/a)

(2) Antisymmetric mode about z-axis,

wi=Aisinh (q1y/b) sin (mmx/a), for d1<mm
=Ausin (my/b) sin (max/a), for si>mm
we=Azsinh (7:9/0) sin (mnx/a),

ws=Ascosh (43y/b) cos (mnz/a)

.............................. (11)
where
m=Em*n*—=8YY2,  for d1<mm
=05 —mPa)¥2,  for &i>wmmwr ) oo (12)
ni=§(03+mPr)¥2, =2, 3

and £(=b/a) is the plate aspect ratio.

The prescribed boundary conditions along the
edges y==+b/2 given by Eq. (4) lead to the homo-
geneous equations on the integration constants
A:(i=1,2,3). Then only relative ratios of the
integration constants are determined and the
characteristic equation determining the eigen-
values is obtained by setting the determinant of
coefficient matrix in these equations equal to zero.
The explicit forms of the integration constants
and the characteristic equations for symmetric
modes are given in Appendix.

The eigenfunctions possess the orthogonality
properties,

b/2 (a
S \\ W@, v)Wis(x, v) dz dy
—b/240

=0, ixm or jxn ~(13)

=Nmn,
Hence, the surface load ¢(x,¥) is expanded into
a double series of the eigenfunctions

i=m and j=n

CH y):m2=1 nZ=1 GrnWnn (B, Y)  +oreeeeemeee (14)
where
o V w, dxd
Jmn ="y 5—17/2‘0 q(x, V) Wmn(x, y)dxdy

governing equations (1) and taking into ac-
count Eq. (6), we obtain

= I
Zmn= D mafa) i F (16)
and thus the expressions for displacement com-
ponents and the bending moments are determined

as follows:

w(z, y) t e . Wann(2, v)
[b’fx(x, y):l =%m§1 Ex_—-—/\‘miﬂj:lﬁ l:'ffx,mn(x, y)
Po(z, ) Pyma(, Y)
.............................. (17-a)
Mx(x',y) _ S Gmn Mz,mn($,?/)
[Mm,y)} =L L NLAK {My,mn(x,y)}
........................... (17-b)

where the dimensionless parameter K is defined
by

K={(ka*/D)/*
and the symbols Mzma(®, ¥) and Myms(Z, ¥)
mean

]Wx,mn(l‘, y)=6¥’x,m/ax+v0'ﬂ,m/6y

My,mn(2, ¥)=0Vy,mn)0Y +v0Pr,mn/0x }

The foundation reaction p(x,¥) is obtained from
the relation p=4iw as

4. SOLUTION FOR VISCOELASTIC FOUN-
DATION PROBLEM

Three types of viscoelastic models used here
are presented in Fig. 2.

The application of the correspondence principle
to the elastic solutions given by Egs. (17) and (20)
yields the Laplace transforms of the solutions of
viscoelastic foundation problem with regard to
time ¢. For brevity only the Laplace transforms
for the deflection, W, and the reactive force, P,
are described. Then,

7, i . qmn(g_)
Wz, ¥, s)=a mszl 7,}‘_‘:1 Dt l()a® Wonn(%,¥)
5 i o qmn(S)IE_(S)
Pl ys)=a L 5 B hsyat )
.............................. (21)
2y JJ r
w3 3 k
] 1
KON MAXWELL  |neeh soun

Fig. 2 Viscoelastic models.
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Table 1 Viscoelastic operator %(s) and time functions T;(¢) and Ty(t).

Kelvin Maxwell Standard linear solid
- 7S i 1+7es
kis) k(1 +7es) k( I+7rs | k( 1+7rs )
RN _ _ (K Ama)t
Tu(2) () (1m) [T -1 T RSy TN
Amn)t _ _(Ki/K)t
Ta(t) (%) 1 (0 -1 i TO
_ Amn 4]_{_} {_ 1 ) 7_t_} {__ (Ko/K)4+ (Kao/2mn)t L}
7 e"p{ [”( #) | exp [1+<K/xmn)4] o exp [ 1+ (Ka/dmn)t ]rc
Remarks 7 denotes the retardation rr denotes the relaxation zc denotes the retardation time.
time. time. =r denotes the relaxation time,
=7 ge=ket =7, gk =1+ 8V, = e kAt
re=g Ki=p = K5 =it e v K=
4
| k=B Ki= KK

where a bar over the symbols means the Laplace
transform as follows:

F(s)= S:F(t) exp (—st) di ;

F(it)=—5— F(s)exp (st)ds

1 v+t
2 S

y—1ioo
Note that %(s) represents a viscoelastic operator'®
generally expressed by a rational function of the
transformed variable, s. The explicit forms of
E(s) for Kelvin, Maxwell, and Standard linear
solid-type models are given in Table 1.

Now we assume a surface load ¢(,v, {) expres-
sed by the unit step function H(¢) as

q{z,y,t) =gz, YYH(£)  woeeereremsmvmneneienns (23)
The Laplace transform of it becomes

4z, v, t)=q(x,

‘f( v 8)=q(= 9)/s } ........................ (24)

Gmn(s) =gmn/s

Substituting mn(s) of Eq. (24) and k(s) given in
Table 1 into Eq. (21) and taking the inverse
Laplace transforms of the resulting equations,
we obtain the deflection and the foundation re-
action for the viscoelastic foundation problems
as follows:

Wiz, y,t)

at & gmaT1{t)
=w(n,9) = B8 e g Wl v)
P(x,y,t)
© 5 Ta(¢
:p(x, y)+K4mZ=)l EI%WQ;W”(W, 'y)
........................... (25-a)

where w(®,y) and p(x,y) are the elastic solutions
given by Egs. (17-a) and (20) respectively; Ti(¢)
and T:(t) are functions of time ¢ alone, which are
listed in Table 1 for each viscoelastic foundation.

Finally, the bending moments are also obtained
through the same procedure as

[

= 2 gmaTy(t) {Mx,mn(x, y)}

4 PRt A
ta mZ=:1 nZ::l Aant+ K My, mn(, y)

where Mz(®, ¥v) and My(x, y) are the elastic

solutions given by Eq. (17-b).

5. CONVERGENCE OF SERIES SOLUTIONS

Let the method developed in the preceding
sections be applied to a square plate with the
edges x=0, ¢ simply supported and the other
two iree, which is subjected to a uniformly distri-
buted load g over the square area in the middle
of plate as shown in Fig. 3. The eigenvalues Amn
which are the roots of the characteristic equa-
tions (A-6) and (A-8) are calculated by the
Regula-Falsi method. From consideration of
symmetry with respect to the axis x=a/2, only
odd numbers 1, 3, 5,--- are taken in the term ‘w’
of series solutions.

For numerical calculations, the series expres-
sions (17) can be transformed to more rapidly
convergent forms!®:» as follows:

w(z, y)=w*(z, ¥)

it (el ]
1 m=1 A‘},nn(A‘}mn‘*‘K‘) ]Wy,mn(x, y)

In the above, w*(z, ¥) is the deflection of the plate
with the same geometry and surface load but
without elastic foundation, and M%(», ¥) and
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Table 2 Comparison of convergence of the series expressions (17) and (26) for maximum
deflection and maximum bending moments at the center of plate (v=1/6, bla=

1, ¢Ja=1/5, hja=0.15, and K=3).

w M My
", n Using Using Using Using Using Using
Eq. (17) Eq. (26) Eq. (17) Eq. (26) Eq. (17) Eq. (26)
1, 2 0.532 68 0.587 03 0.526 33 0.81519 0.31554 0.563 60
3,3 0.57390 0,586 63 0.71561 0.813 20 0.48235 0.562 35
5, 4 0.584 54 0.586 61 0.793 89 0.81302 0.55095 0.562 21
7,5 0.587 65 0.586 60 0.82230 0.81299 0.573 86 0.562 19
9, 6 0.588 06 - 0.827 42 - 0.576 16 0.562 19
11, 7 0.587 59 — 0.82349 - 0.57123 0.562 20
19, 11 0.586 38 - 0.81060 — 0.559 89 —
39, 21 0.586 57 — 0.81264 — 0.561 86 —
59, 31 0.586 59 — H 0.81288 — 0.562 09 —
79, 41 0.586 60 — 0.81295 — 0.562 15 —
99, 51 — - 0.81297 — 0.562 17 —
Maltiplier 10-3 gat/D 10-2 ga? 10-2 ga?

Table 3 Deflection and bending moments at the center and at the middle point of free
edge of plate for different values of thickness to side ratio 4fa (v=1/6, bla=

1, ¢Ja=1/5, and K=3).

at z=a/2, y=0 at x=a/2, y=xb/2
hia
w Mo My w \ Mz

0.0 0.53452 0.82442 0.56032 0.34878 0.34882

0.05 0.5407 0.8236 0.5615 0.3464 0.3552

0.10 0.5581 0.8198 0.5621 0.3443 0.3593

0.15 0.5366 0.8130 0.5622 0.3425 0.3613

0.20 0.6258 0.8037 0.5618 0.3409 0.3610
Multiplier 10-3 gat/D } 10-2 ga? 10-% gat/D 10-2 ga?

2 The values are obtained from thin plate theory.

M3(x, ) also are the bending moments in the
same plate. Following the approach proposed by
Marguerre and Woernle,' we can obtain them
in the form of Levy-type single series with a rapid
convergency.

In order to compare the convergence of the
series (26) with that of the series (17), the numeri-
cal results for maximum deflection and maximum
bending moments are shown in Table 2 for a
square plate (b/a==1) with the following param-
eters:

v=1/6, c¢/a=1]5, }
hla=0.15 and K=3

It is found from this table that all the values
calculated from the series (26) are very rapidy
convergent and a sufficient accuracy within
three significant figures can be obtained when
both m and #» are taken up to three terms, while
in the series (17) 39 terms for m and 21 terms for
# are required to obtain the same accuracy.

Table 3 shows values of the deflections and the
bending moments at the center and at the middle
point of free edge for the plates with different
values of Aja. It is observed from the table that
w and My at the center and M. at the middle
point of free edge increase as k/a increases, while
w at the middle point of free edge and Mz at the

T

Ry

N7 | —
' kN7, !
mmL-— a 5

1

Fig. 3 Partially loaded square plate with the
edges (z=0 and a) simply supported
and the other two free.
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Fig. 4 (a) Center deflection, (b) Center bend-
ing moment M, and (c) Center founda-
tion reaction versus time (solid line=
thick plate; dotted line=thin plate;
bla=1; cla=1/5; kla=0.15; v=1/6;
and K=3).

center decrease as //a increases. However, the
effect of shear deformation on the bending mo-
ments is not appreciable in comparison with the
deflection.

6. NUMERICAL EXAMPLES

Numerical calculations for viscoelastic founda-
tion problems are carried out using the param-
eters given in Eq. (27) and £2:=24. In Fig. 4, the
time histories of deflection W, bending moment
Mz and foundation reaction P at the center of
the plate are shown in terms of the non-dimen-~
sional time #/7 (1=%/k). The results from a thin
plate theory are also plotted by the dotted lines
for comparison.

The initial states of the plates on the Kelvin,
Maxwell, and Standard linear solid-type founda-
tions are the states of plates on the perfectly
rigid foundation and on the elastic foundation
with the moduli of the foundation being %2 and
3k (= ki+ &), respectively. The deflections,
bending moments, and foundation reactions for
the Kelvin and Standard linear solid-type founda-
tions asymptotically approach to those for the
elastic foundation with the modulus of the found-
ation being £. A state attained after about 107
elapses becomes almost constant and therefore
it may be regarded as the final state from practical
view point. On the other hand the final state of
the plate on the Maxwell type foundation is the
state of plate without an elastic foundation,
because the foundation reaction vanishes (Fig. 4
(c)). The time for reaching to a state almost
regarded as the final state is about 207.

7. CONCLUDING REMARKS

The general solutions of the quasistatic bending
problems of rectangular Mindlin plates with two
opposite edges simply supported on linear visco-
elastic foundations are given in the form of a
double series of the eigenfunctions derived from
the free vibration problems of the plates with the
same geometry but without any foundation
neglecting the effect of rotatory inertia. Although
only the three elementary models of viscoelastic
foundation are used in this study, the method
of solution developed herein has the applicability
to wide range of linear viscoelastic foundation
models.

APPENDIX

The integration constants 4: (¢=1,2,3) in
Eq. (10) and the characteristic equations for a
symmetric mode about z-axis are given in the
following cases as:

(1) Simply supported edges along y==%b/2;

For é1<mm

there exists no eigenvalue problem.
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For di>mm
Ai=1, A:=As=0
cos (91/2)=0

3, -, 0.
(2) Clamped edges along y=%+b/2;
For 61 <mm
there exists no eigenvalue problem.
For 61>mm
Ai=1/cos (31/2), A2=—1/cosh (32/2),
As=(o1—o2)mm§/[nscosh (53/2)] }

(1—o1)yims tan (9:/2) + (1 —o2)p27s tanh (772/2)
—(g1—02) (mmE)* tanh (93/2) =0 - (A-4)
Equation (A-4) yields infinite number of roots
corresponding to n=1, 2, 3, .-+, o for each ‘m’.
(3) Free edges along y==+5b/2;
For 8 <mm
Ai1=1/sinh (1/2)
mini—v(imng)?
TR~ v(mn€)Tsink (7:72)
(1-v)(o1—0o2)mmnt
[9i—v(mmg)*] sinh (95/2)
(1=o1) eyl —v(mmf)?]? coth (5./2)
—(1=a2)pini—v(mm&)?? coth (12/2)
+ (1 —=v)¥(o1—0o2) pmays(mmé)? coth (1s/2)
T ceeeerereeenenrene i eee e eaeaaaa e na e (A-6)

Equation (A-6) has only one root corresponding
to n=1 for each ‘m’.

For &1>mm
Ai=1/sin (5:/2)
_ by —v(mmf)’]
nelyi+v(mmg)*] sinh (y2/2)
As= (1= {o1—o2)pumn§

(3 F v(mag)FIsinh (75]2)
(1=o)nedni+v(mm)? cot (11/2)
+ (1 —o2)mlni—v(mn§)* coth (72/2)

—(1-p)¥(o1—0o2)ppens(mmE)? coth (7s/2)

Az=—

-(A-5)

As=

Ao=

(A7)

S eeeeeeecertenereeieeeeinenieaeeeennenas (A-8)
Equation (A-8) yields infinite number of roots
corresponding to n=2, 3, 4, ---, o for each ‘m’.
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