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A NEW APPROACH TO PREDICT THE STRENGTH
OF COMPRESSED STEEL PLATES

By Yoshiji NIWA*, Eiichi WATANABE**,
Hidenori ISAMI*** and Yoshio FUKUMOQRI****

1. INTRODUCTION

The stability and the load-carrying capacity
of plates is still a matter of immense diversity
and ever-growing research interest in the field of
civil engineering!»®.

In many cases where slender plate elements
are used, they are known to buckle locally and
the member may fail prematurely before reaching
the yielding point. However, they do not general-
1y fail by the elastic buckling but have significant
reservation of the postbuckling strength. This
is known as one of the major differences between
the plates and the bars.

The early attempts of the elasto-plastic buckl-
ing analysis of plates have been seemingly made
by Bijlaard, Ilyushin, Stowell®, and Bleich®.
They have derived the fundamental differential
equations of the plates, and obtained explicitly
the closed-form solutions under various edge
conditions and various loading conditions. These
classical methods of approach are summarized by
Okumura et al®.

Recently, the prime research interests are
shifting to the evaluation of the elasto-plastic
strengths of imperfect plates with different width-
thickness ratios by means of discretization
methods such as finite differences and finite
element methods and the procedures of solving
sets of nonlinear simultaneous equations®~'%,

In this paper, however, attempts are made to
evaluate the load-carrying capacity of plates in
the elasto-plastic range in a simple manner mak-
ing use of a knowledge of the catastrophe
theory!®.

Here, the above-mentioned nonlinear proce-
dures are not required, but the effects of the
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imperfections and the width-thickness ratios can
be designated explicitly in a closed form expres-
sion.

The great emphasis in the presentation will be
placed on the evaluations of the elasto-plastic
buckling loads, the postbuckling equilibrinm
paths, the plastic unloading curve or the mecha-
nism curve, and the imperfection sensitivity
curve'®,

2. BASIC CONCEPTS

(1) Ideal Elasto-Plastic Buckling Load

The elasto-plastic buckling stress of the initially
flat plates with a proper residual stress distribu-
tion in the cross section is firstly determined.
As a basic model, a rectangular plate with four
edges simply supported under uniaxial com-
pression as shown in Fig. 1 is considered sub-
sequently.

The distribution of the residual stresses of the
simply supported plates is assumed in either
a parabolic, a triangular or a trapezoidal form
uniform in the axial direction as shown in Fig.
1(a)~(c). Let E:, &, and & designate the tangent
modulus, the average axial strain, and the
average axial stress of the plate during the loading,
respectively, then, their relations can be easily
derived as:

=99 5
Ez—dg =kF,
and
G=0y—(3—2k)k0y } for parabolic
g=[or+3(1—k)or—0r]/E residual stress
s=0y—kor for triangular
t=lov—(2k—1)or)/E residual stress
0<kL1
g=0r—hk¥ortor)¥/(4or) } for trapezoidal
i=20r—k{or+ov)/(200)])/E residual stress
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Fig. 1 Distributions of residual stresses.

where E, oy and o refers to the Young’s elastic
modulus, the yielding strength and the magni-
tude of the maximum longitudinal compressive
residual stress, respectively. Moreover, % refers
to the ratio of the elastic portion of the cross sec-
tion to the total section, and implies the global
tangent modulus factor of the plate section.

From the boundary condition, the following
buckling mode and the initial imperfection are
adopted for both the elastic and elasto-plastic
buckling referring to the coordinate system as
shown in Fig. 1:

W=wY(y) sin Z2Z
Wo=woY (y) sin 22 ~(2)
nm all edges
Y (y)=sin 2 simply
b supported

where w, wo, Y(¥), m and = designates the magni-
tude of the total out-of-plane deflection and the
initial deflection of the plate, the mode of the
deflection in y-direction, the number of half
waves in % and ¥ direction, respectively.

There are certainly a number of possible
expressions for the moment-curvature relation-
ship for the elasto-plastic buckling of plates
based on the classical method using partial
differential equations®~®. For example, reference
5) classifies such classical methods into three
groups as shown in Appendix A.

Based on these classical methods of approach,

the basic non-dimensionalized equations of
equilibrium can be written as®:
De(1—0%) ~, LW
o VaW+a Fyo =0,
where
Er ._o P
T I L
2 2 (3)
= 9 (kl 9 kz—a’“>
dx? dx? Jy?
02 02
4 ozay (’“axay>
0 02 02
gt et

in which %;(j=1, ---,4), b, De, P, ¢, and v denotes
some constants, the width, the elastic flexural
rigidity of isotropic plates, the total compressive
load, the thickness, and the Poisson’s ratio,
respectively. Superscript symbol “~"" will be
used hereafter to designate either the non-
dimensionalized stresses or deflections as divided
by the yielding stress or the thickness, respective-
ly, unless otherwise referred to.

Let W, in Eq. (2) be substituted into Eq. (3)
adopting the Galerkin’s method, and let f be
defined by:

b
De(l-—vz)go YYidy

o g KB De
;= b 2 ! = 2
et () vy v
o\ a
where
mm\t. . mm\*d?Y
Yl(y)Eh(‘a—) y—z(kz+2k4)<—a—> o
ary
+ks vt
2
Kam(20 0
na  mb
.................. (4)

furthermore, Kr and or refers to the Euler
buckling coefficient and the corresponding buckl-
ing stress, respectively. Then, the non-dimen-
sionalized equation of equilibrium can be obtain-
ed in the following form:

fosw—ow=0

where
o=l L. p_b [1200—v)ov
=y T RY R—‘ﬂt KgE
.................. (5)
whereas, R refers to the generalized width-

thickness ratio.

In this way, a pseudo-potential, U(w, ) may
be constructed so that the equilibrium equation
is given by Eq. (5), that is,



A New Approach to Predict the Strength of Compressed Steel Plates 25

,_ U
Uz@w

= férw—ow=0

The value of f can be evaluated from Eq. (4)
once the coefficients of elasto-plastic plates are
known. Appendix A provides several possible
classical expressions for f, based on the methods
by Bleich, Chwalla, Stowell, Bijlaard, and Pear-
son. In this paper, numerical examples are
demonstrated using only the Bleich’s method
to evaluate the buckling stress. Since this method
does not explicitly consider the effect of the
residual stress, a modification is made taking
that into account using the tangent modulus
defined by Eq. (1) and through Eq. (4). Then,
it can be shown that the value of f can be deter-
mined by:

Vke n? (V}?fnb na )2
C= £ — ¢ C
fe=1 !ff=r'7cr Ka na + Vhemb
where k¢ refers to the critical value of the ratio,
%, when the elasto-plastic bifurcation occurs.
Upon substitution of Eq. (7) into Eq. (6), the
elasto-plastic buckling stress, der, of the perfect
flat plate, that is, for wo=0 can be obtained by:*
4k -

G =2_T_=7__ = __a__.z 4/—_‘
Gor= o ol gg for =1 and b ke

This relationship implies that the elasto-plastic
buckling stress can be expressed in the form
similar to that of columns.

(2) Postbuckling Path

In general, it is well known that the plate
components possess the significant postbuckling
strength in the elastic range. Such postbuckling
equilibrium path may be obtained from von
Kérmdan's nonlinear equations, which have been
solved by many researchers'”'®.  Thus, for
simply supported plates, the following post-
buckling path can be obtained using the deflec-
tion mode prescribed by Eq. (2):

=0p+Crw®

contE (] |

The rigorous determination of the postbuckling
behavior in the closed form, however, is extremely
difficult in the elasto-plastic range. Therefore,
a modification on the von Kérmdan’s equations
may be accomplished in the subsequent manner:

MW\ W oW
4 — —
Ve “E*Kaway) Fyo ayz}

and
b~
D= || Fiwy()dy

OF? W
9zt dy? Y(y

b 2 2117
=t80 [OF LA

dy? Ox?
0F W
—2 0xdy Oxdy ¥ (y)} 2y

where F is the Airy’s stress function, and Es
designates the secant modulus of the total
plate width defined by Es=3/é. Also, the second
equation of Eq. (10) takes the similar form to
Eq. (3).

The average stress on the postbuckling equli-
brium path in the elasto-plastic range, may be
modified and can be shown to take the form
similar to Eq. (9):

E'=O'c1-+pr2
where
n*m*Es [ /mb\?  [na\?
Cr="{epe [(ml) +(mb”
where oer designates the average elasto-plastic
buclking stress determined by Eq. (8). Upon non-

dimensionalization of Eq. (11) by ov, it is easy
to show that:

Eé:&ﬁémz (curve AC in Fig. 3(a))
where
('-:' — 3(1—V2)Es(1+kc)
T 4EKgR*Vke
IIJEE;‘ n=1 & a/(mb)= ¥k, 1*

(3) Ultimate Strength and Imperfection Sensitiv-
ity

Ultimate strength of the actual plates can not
be determined only from the critical elasto-
plastic buckling stress with the residual stresses
and the elasto-plastic postbuckling path. It is
further affected by the initial lateral deflection,
and by the plastic unloading curve correspond-
ing to the failure mechanism of the plate!»~2%.
Similarly to the case of the columns, the concept
of the ‘“‘equivalent bifurcation point” may also
be introduced here!®.

The equivalent bifurcation point for the plate
can be defined by the intersection of the elasto-

* In case of simply supported plates in the elastic
range, K g=4%, thus, der= VEcig.

* In the elastic range, C, becomes Cg: ks=1.
and Eg=F.
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Fig. 2 Plastic failure mechanisms, post-buckling
path and plastic unloading curve.

plastic postbuckling equilibrium path, Eq. (12),
with the plastic unloading curve as shown in
Fig. 2 (a). The latter curve can be determined
by assuming the fold lines of the failure mechan-
ism of the plate in the subsequent manner.

The failure mechanism of the rectangular
plate under pure compression is shown graphic-
ally in Fig. 2 (b). Detailed discussions on the
plastic unloading curve have been made by Sher-
bourne'®, Murray®, Fujita??, and Davies?,
but here in this study, the following interaction
formula is assumed for simplicity, between the
in-plane axial load and the bending moment:*

a?+m=1
where b, (13)
=2
T My

in which M and My refers to the bending moment
acting perpendicular to the fold line, and the
plastic moment, respectively. Then, the plastic
unloading curve can be obtained approximately
by:

w=A1_i62:
g
_1 1+dcotd
A=y Gy 1o $<1) e (14)
A =L(1+¢cot0) for ¢>1

2
where 6 and ¢ indicates the angle of the yielding

* See Appendix B for the comparison among these
theories in the case of compressed square plates.

fold line and the aspect ratio, a/b, respectively,
as shown in this figure.

Now, let us define the equivalent bifurcation
point as the intersection of Eq. (12) with Eq.
(14), that is, as the solution of the following
quartic polynomial equation:

CpAt3t~5°— (2CpA%—G0r)52+CpA?=0 ---(15)

Let a* and #* designates the real proper root of
this equation and the corresponding deflection,
respectively, then, the equivalent bifurcation
point can be given by point C (&%, 6*) as shown
in Fig. 2 (a).

For evaluation of the ultimate strength of
the imperfect plate, another pseudo-potential,
V, is also assumed to exist near point C in the
form of V=TV(#, iy, 5) similar to Eq. (6). In
which wo refers to the magnitude of the initial
lateral deflection with the same mode as the
buckling mode of Eq. (2). Furthermore, V is
assumed so that the equilibrium equation near
the point C is expressed with referencc to Eq.

(5):
Vlzva_l/_

= [ (i — 00— %) —& (i —i5¥) = 0

T 0w
where

f(w?z‘)Ef”wL%f’fwi:; W% = 1ho — 1 — ¥

f° and f° designates the secant or the tangent
modulus factor of the plate and the coefficient
for the Ist order term of the Taylor expansion of
the secant modulus factor in terms of &%,
respectively, but the both being evaluated at
the equivalent bifurcation point. This equation
defines an equilibrium surface, My, comprising
the following set of points (& —&*, o, 5):

My= (i~ ¥, tb0, 5)| V' (do— ¥, o, 5) =0} CR®
.................. (17)

Fig. 3 illustrates the equibrium surface My in
3-dimensional space (@—d*, iy, 5), and its pro-
jection to three orthogonal planes.

Therefore, the ultimate strength ow of the
imperfect plate can be evaluated in terms of
the bifurcation set through the catastrophe
theory in the manner similar to the case of the
columns.!® The imperfection sensitivity curve
can be defined graphically by the curve asc: in
the @o~é space projecting vertically the singular
fold line AC on the equilibrium surface. It takes
the following form :*

* Considering a mapping from (i — ¥, o) — (3, o),
and let the Jacobian vanish, then it can be shown
that 96/(0w—w*)=0. This may be identical to
say that V"’=0. Furthermore, V'""’=f;gz+0.
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e I +a* w()——«/,?oc*zf)o<1 +7a*m)

where

Since fi° is quite difficult to be determined, an
attempt is made to approximate it by the slope
of the plastic unloading curve at point C (0, 0, %)
as in the case of the columns, that is,

1 do &%

Hm = %0 -

T8 dw 6= A(1+5%)

On the other hand, the standard form of the

bifurcation set of “FOLD CATASTROPHE”

according to the catastrophe theory,'™ can be
given by

............ (19)

2V, V5 _
Om_ ]=~1— _x01_1_~1_w0:1_ v 2a*bo
o* o* Ve
where
. oV’
Vis=—— | L =—qy
0o =5, 6=5%, 90=0
r7
o _ov” —
= a_ D N P :
o \w=w*,o6=0% we=0

It is obvious that Egs. (18) and (20) are identical
provided that a*@o< 1.

(4) Modification for Imperfection

The deflection at the point of the maximum
load can be obtained using Eq. (16) and its
further differentiation. Hence, it will be quite
easy to show that

dh= ik 4 4 | 200 G e @21)

Now, if the initial deflection @, is to be non-
dimensionalized through the width & of the plate,
then Eq. (21) can be rewritten as follows using
slenderness R:

w_ w* \/ 2
b b + a*nR

12(1 —-v¥)oy _@g+<ﬂ>2
KeE b b

Let us consider a particular case of very stocky
plate, that is, the case of R=0, then it can be
easily shown that #*—0 & o*%0 in view of
Eqgs. (14) and (19). However, deflection w/b
remains indefinite since the first term in the
square root of Eq. (25) tends to become singular
as R—0. Now, it may be quite natural and
reasonable in engineering sense to expect that
extremely stocky plate will fail plastically with-
out any significant increase of deflection w from
the value of wo. In order to take this expection
into account, it will be necessary to pose the
limit: w—wo as R—0. Consequently, the equi-
valent imperfection, wf/b, may be introduced
through some function:

Wi
b
where

WR) =ﬂ0<_7§;>ﬁ

and Rp refers to the value of R at which the
buckling point changes from -elasto-plastic to
purely elastic. Here u(R) must be determined
so that the following limit holds as R—0:

Wo

MR)=

Besides, taking into account the numerical results
by Crisfield, Little, Harding, Dawson and Horne
et al., the form of (R) can be finally approximat-
ed by

1 R
pe=g £=2(1-%)

The determination of the form of f reflects
another observation that the effect of the im-
perfection will diminish as the plates become
more slender in the elastic region.

Finally, the imperfection sensitivity can be
obtained by Eq. (18); however, with the equi-
valent imperfection of Eq. (23).

3. NUMERICAL EXAMPLES AND DISCUS-
SIONS

Now, as the numerical illustration, let us
examine the simply supported plates under
uniaxial compression. The type of the distribu-
tion of the residual stress considered herein is
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either of a parabola, a triangle, or a
trapezoidal as shown in Fig. 1 (a)~
(c), respectively. The magnitude of
the maximum compressive residual
stress is restricted for practical reason
to 0.40y for all types. Also, the mag-
nitude of the initial deflections of the
plates considered herein is taken to be
either 5/200 or 5/150, considering the
tolerance of b/150 as allowed by
the JRA Specifications for highway
bridges®, where b represents the width
of the loaded edge of the plate.

The numerical results of plates are
illustrated in Fig. 4 (a)~(c) for the
residual stress distribution of the par-
abola, the triangle, and the trapezo-
idal, respectively. The abscissa indi-
cates the generalized width-thickness
ratio, R, and the ordinate indicates
the non-dimensionalized  ultimate
strength with respect to the yield
stress.

The proposed bifurcation sets are
compared with six ultimate strength
curves herein: by von Kérmdn, Cris-
field’s finite element large deflection
elasto-plastic buckling analysis'¥, Lit-
tle’s energy minimization!®, Harding’s
finite difference analysis with a dy-
namic relaxation®, Dawson’s simplifi-
ed elastic large deflection perturbation
analysis'™, and by Horne's effective
width approach!®. These strength
curves were drawn for simply sup-
ported rectangular plates with ¢=0.7
~1, wi/b=1/200 and the rectangular
band width at 3¢ of the residual yield
tensile stress.

Fig. 4 Ultimate strength curves
for compressed rectangular
plates with trapezoidal re-
sidual stress.
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The ultimate strength curves in the elastic
range for the slender plates are throughout the
same regardless of the residual stress types.
But, in the elasto-plastic range for intermediate
values of R, the ultimate strengths in the case
of the trapezoidal distribution are found to be
the lowest, and those of the triangular distribu-
tion are the highest, independent of the magni-
tude of the imperfections.

Furthermore, it must be mentioned that all
of the bifurcation sets for the rectangular plates
are obtained for such aspect ratio, ¢, that the
least buckling coefficients are obtained both in
the elastic and in the elasto-plastic range, that
is, for =1 and ¢/m= Vk,.

4. CONCLUSIONS

The main conclusions are summarized as
follows:

(1) The inelastic strength of the plates may
be explicitly evaluated in terms of the imperfec-
tion sensitivity characterized by the 1/2-power
of the imperfection.

(2) The imperfection sensitivity can be defin-
ed explicitly in a closed form near the equivalent
bifurcation point being the intersection of the
elasto-plastic postbuckling path with a plastic
unloading curve of the failure mechanism of the
plate.

(3) The actual imperfections are modified
and replaced by the equivalent imperfections so
that the strength curves are in good correlation
with those by many previous researchers.

(4) The validity of the assumption of the
pseudo-potential is investigated from the view-
point of the singularity mapping in the cata-
strophe theory, and it is found reasonable.

(5) The general philosophy adopted herein
may also be applicable to other types of engineer-
ing structures including columns, beams, and
shells.
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The authors would like to express appreciation
to Professors T. Kitada, N. Nishimura, and I.
Mikami, of Osaka City University, Osaka Uni-
versity, and Kansai University, respectively,
for their valuable criticisms and discussions on
the general philosophy and concepts discussed
herein.

5. APPENDIX

A) BUCKLING COEFFICIENT OF ELASTO-
PLASTIC PLATES

The buckling coefficient evaluated through

the so-called classical methods in the case of

simply supported plates can be tabulated in
Table A-1:

Table A-1 Buckling Coefficient

Buckling Coecient: K
Type Theory K=fK5 Comments
Elastic Hooke 4
Bleich 4T * analogous
Chwalla PR to elastic
Plastic | Stowell | deo(++1 [L 34"
astic towe Sl T oA 2 T Deforma-
tion
Theory
Bijlaard 2(1—v2)( Yhiks+ko+2ke)¥**
R Flow
Pearson 2 I:H— 5 VI+3e ] . Theory

* t=FEi/F: tangent modulus factor
** r,=FEs/E: secant modulus factor
#f by=[1+3(1+e)c)/d, ka=[2—(2-4v)7l/d, ks=4/d,
ki=1/d'; d=5—4v—(1—2v)2¢+3e, d'=2+2v+3e,
e=1/rs—1, v: Poisson’s ratio
e romge/(14 4/ 7)2: reduced modulus factor

B) COMPARISON OF UNLOADING CURVES

Several theories have been proposed so far
regarding the plastic failure mechanisms of
compressed rectangular plates by different re-
searchers'®-?»  From the comparison among
these theories, nevertheless, it can be seen that
there exists no truly exact solution and one

a/oy

Present Analysis, Eq.(16)
19)

——————— Sherbourne & Korel
e Davies, Kemp, & Walker2Z)

e Walker & Murray??)

e Fujita et a1?D)

I 1 1
Q.5 1.0 1.5

A=W/t
Fig. B Load-deflection curves in plastic failure
Compressed square plates:

mechanism.
¢=1; §=45°
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theory differes from another considerably. Thus,
an example is given in Fig. B to show the load-
deflection curves obtained by using different
theories associated with the plastic failure mecha-
nism of simply supported compressed square
plates.
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