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AN ELASTIC-PLASTIC CONSTITUTIVE MODEL OF SOILS
AND ROCKS AND ITS APPLICATION TO
THE FINITE ELEMENT ANALYSIS

By Hivoyosht HIRAI*, Eiji YANAGISAW A**
and Masao SAT AKE***

1. INTRODUCTION

Yield and failure criteria and stress-strain
relationships for plastic behavior of soils and
rocks have been studied. The members of Cam-
bridge research group (Roscoe, Burland, Thuray-
rajah, Poorooshasb, Schofield, Wroth etc.P™%)
developed the elastic-plastic constitutive models
of soils on the basis of the associated flow rule.
In order to establish the constitutive equation
in general stress and strain conditions, the theo-
ries proposed by the Cambridge group were
extended by many researchers (e.g., Adachi et
al.®).

Rowe? proposed a stress-dilatancy theory for
an assembly of particles, considering the correc-
tion for energy due to expansion. Poorooshasb
et al.?% and Lade et al.'» investigated the stress-
strain relationship of sand based on the non-
associated flow rule. Mréz et al.' propounded
an anisotropic hardening model, taking account
of the anisotropic effect induced by the deforma-
tion process. Tatsuoka et al.!® examined ex-
perimentally the yield locus of sand under vari-
ous stress paths to suggest the appropriateness
of the non-associated flow rule. The experimental
investigation of anisotropic deformation of sand
and an assembly of particles was performed by
Miyamori!®, Yamada et al.'¥® and Haruyama'®.
Lade!®, Vermeer!”, Nishi et al.’® and Molen-
kamp!® proposed the double hardening models
to describe the deformation characteristics of
sand properly.

From the viewpoint of microscopic mechanical
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behavior, Matsuoka et al.?® proposed a failure
criterion based on a spatial mobilized plane.
An extension of Mohr's criterion was made by
Satake? to take account of the influence of
intermediate stress in failure state.

Akai et al?®? investigated the mechanical
characteristics of a soft rock synthetically to
propose yield functions and constitutive equa-
tions. Hirai et al.?#»2® propounded yield func-
tions of soft rocks on the basis of the invariants
of tensors and experimental evidences.

Among techniques for analysis of mechanical
behavior of soils and rocks, the method of the
Finite Element (FE) has been used as an effective
procedure. A number of the FE approaches
based on nonlinear elastic and elastic-plastic
models have been proposed (e.g., Zienkiewicz?®
and Desai et al.?”). Yamada et al.®® studied an
elastic-plastic program to be applied to metals.

The first objective in the present paper is to
deduce a constitutive equation in order to de-
scribe the plastic behavior of soils and rocks
adequately. The second is to apply the con-
stitutive model proposed here to FE analysis.
TFor the above purpose, the yield function of soft
rocks propounded by Hirai et al.?® is modified
to that of soils and rocks partly. For an ap-
plication of the proposed constitutive model to
practical problems, the numerical calculation by
the FE method is carried out for a foundation
subjected to vertical loads on its surface.

2. AN ELASTIC-PLASTIC CONSTITUTIVE
EQUATION OF SOILS AND ROCKS

Making modification of the yield function
proposed by Mroz et al.', Hirai et al.*» pro-
pounded a yield function which is able to ex-
press the plastic behavior of soft rocks in the
following form:

F=Jeta] 2 4Bl 4climd=0 ooroeennes (1)
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where f is a yield function, j:is the second invari-
ant of the deviatoric stress 17; defined as J:=
T4;T4;/2, Tt is the first invariant of stress Tij
defined as I1=Tw, a, b and ¢ are material con-
stants and 4 is a work-hardening parameter.

The material constants in the proposed yield
function Eq. (1) are used in the range of low
confining pressure where the plastic volume ex-
pansion of soft rocks occurs. It was suggested
that the material constants in Eq. (1) should be
newly determined under high confining pressure
where the plastic volume contraction takes place.
This means that the material constants in the
proposed yield function Eq. (1) do not take
unique values independent of the magnitude of
confining pressure in order to describe the
dilatancy characteristics. Since it is considered
that the form of the yield function Eq. (1) is
not relevant to represent the dilatancy charac-
teristics under all range of confining pressure,
a revised form of the yield function Eq. (1) will
be assumed as

f=Jeta Y2+ BI+y[i=0

where o and 7y are work-hardening parameters
related by a=my, m and [ are material con-
stants and the material constant m is introduced
so that Eq. (2) possesses same form as Eq. (1)
at the initial yielding. Hirai et al.?® proposed the
rate of the work-hardening parameter in the form

?:¢1TiiE§§’/3+¢zT§jE§§) ..................... (3)

where ¢ and ¢: are material constants and £
are plastic strain rates. The yield function of
Eq. (2) with Eq. (3) is considered to be applicable
to soils and rocks whose plastic behavior depends
on hydrostatic pressure, because Eq. (2) with
Eq. (3) possesses necessary terms of invariants of
stress and strain tensors to describe the plastic
behavior of soils as well as rocks adequately.
Hence, the yield function of soils and rocks
proposed here is given by Egs. (2) and (3}.

Postulating that the plastic potential is identi-
cal with the yield function, Prager®® propounded
an associated flow rule in the form

- 1 of » 2
E%):ETT{”—,,T“"?T%
where
]z=—[ af | of oy jl af
OEE 0y OE® 10Twn
Substituting Eqs. (2) and (3) into Eq. (4), we have
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where d;; are called the Kronecker delta and
A= {1—m(]z—l—ﬂl%)/(2]5”(I1+m]5/2))}fz
(281~ (Jo+BID T +m Y)Y 1

No=—(L1+m i) AL 2811~ (J2+ BI3)
J(T1+m ]V} 420 [ {1 —m( [+ B17)
1@ (Lm ]}
The constitutive equation in the elastic range is
expressed as
Ti5=CimEH
where Cim are components of the tensor of
elastic constant and E$¢ are components of
elastic strain. As the strain rate is divisible into
elastic and plastic parts in the case of infinitesimal
strain, it follows that
Eg=ESH+ED v (10)
Assuming Egs. (2) and (3) and using Egs. (4),
(9) and (10), we get
Ti5=DigEw

where
Dijir=Cujrg— Mijis w-eerrrerereesrrseeriienrieens (12)
a é)
Mij=Cijpq bTLm ¥ Tj;n Cmnki

[ 27 Xy W]
[L 9y GE® 3Tw 0T 0T us

.............................. (13)

Substituting Eqgs. (2), (3) and Cum in Eq. (9)
into Eq. (13), we can express the total stress-
strain relationship Eq. (11) in terms of material
constants.

3. SOIL TESTED AND DETERMINATION
OF MATERIAL CONSTANTS

A remolded soil was sampled at the site where
the slope was damaged to slide down in Shiroishi
city when the 1978 Miyagiken-oki earthquake hit
the north-eastern part of Japan. The soil was
classified as a sandy clay loam, as shown in Fig. 1,
and the physical properties are presented in
Table 1. The soil was sieved by a 2 000 gm size
sieve and transferred to oven-drying at 110°C.
The soil was thoroughly mixed with distilled
water at the water-content of 21.89, over the
optimum one 20.6%, to increase the degree of
saturation when the sample for tests was obtained
by means of compaction. A test specimen which
consists of ten layers was prepared by compacting
with tamper in a mold and it was found from
the isotropically consolidated compression test
that the pressure applied to the sample is equal
to 74.2 kPa. Then the sample was fixed such that
the dry density pe=1.56 t/m? the bulk density
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Table 1 Physical properties of the soil.

Liquid limit wi=37.3%
Plastic limit wp=20.2%
Plastic index Ip=16.6%
Specific gravity Gs=2.56
Clay fraction (<2 gm) =12.5%
100,
= 80
<
e’
o
£ 60
=
T
@ 40
<4
5 L
o
20
0
0007 001 _ 01 10 0 56

Grain size(mm)

Fig. 1 Grain size distribution of the soil.

p=1.90t/m® and the degree of saturation Sr=
86.0%,. The sample, which is in the form of a
cylinder of 12.5 cm in length by 5 cm in diameter,
was set in triaxial cell and the circulation of
distilled water was performed to elevate the
degree of saturation in the sample. The sample
was consolidated isotropically and the consolida-
tion duration was specified to be 3 days. It was
expected that the degree of saturation for sam-
ples retains over 909, at the beginning of shear
tests and the back pressure of 98 kPa was applied
to all specimens.

In the case where the effective axial stress
o1 and the effective radial stresses g:==03 are
supplied, the effective mean principal stress
p=(0:1+203)/3 and the axial difference stress
g==|01—os| are used. For strains in the triaxial
condition, the volumetric strain v==e14-2¢s and
the deviatoric strain d==2|e:—esl/3 are adopted,
where e; is the strain in the axial direction and es
is that in the radial direction. The compressive
stresses and strains are taken to be positive.
Fig. 2 shows the initial and subsequent yield
loci given by Eq. (2) in (, ¢) plane. Fig. 3 shows
the relationship between the stress ¢ and the
strain d for the stress path ABCDE. The sample
is isotropically consolidated to p=98 kPa at
point A and the curve OFA corresponds to the
initial yield surface. The axial stress ¢ increases
up to point B and decreases up to point C under
the constant radial stresses o:=o03. Then the
isotropical consolidation p=137 kPa is subjected
to the sample at point D and the axial stress is
increased up to point E under the constant radial
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Fig. 2 Initial and subsequent yield loci.
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Fig. 3 Relationship between ¢ and 4 for a
stress path.

stresses. It is found from Fig. 3 that yielding
occurs in the neighborhood of =40 kPa between
points D and E. This implies that yielding may
take place at point H which corresponds to the
intersection of the stress path DE and the sub-
sequent yield surface OGB. The elastic shear
modulus G is determined from the experimental
result in the elastic range between points B and
C as follows:

G=49 MPa

This elastic modulus will be used to divide the
plastic strain from the total strain.

The relationship between the ratio of plastic
strain rates #2/d? and the ratio of stresses ¢/p in
the triaxial condition can be determined by use
of Eq. (6). Applying Eq. (6) to triaxial condi-
tions, we have

¥*+6.3V2mBy —27p

—g 912
= AT 6 3y T2 TmB

where = —o?/d?, y=gq/p, v? and d? are the
volumetric and deviatoric plastic strains. The
material constants # and § are determined from
experimental data plotted in (x,¥) plane. Fig. 4
shows relationships between x and y for triaxial
compression tests A and B and triaxial extension
tests C and D under the constant-p condition.
Applying the data in Fig. 4 to Eq. (15), we get

m=—1.66, $=0.0302
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a: eq(15) with eq.(16)
- b:eq.(15) with eq.(17)
c:eq{18) with eq.(19)
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Fig. 4 Relationships between ¢/p and #?/d» for
triaxial compression and extension tests.

The curve a in Fig. 4 represents Eq. (15) with
Eq. (16). Consider the case where the material
constant m is neglected in the stress-strain
relationship given by Eq. (15). In this case,
applying the data in Fig. 4 to Eq. (15), we obtain

m=0, £=0.052

where the material constant 8 is treated as a
constant value in the present paper though the
parameter B is considered to depend on the b-
value which will be mentioned in Eq. (27). The
curve b in Fig. 4 corresponds to Eq. (15) with
Eq. (17), which is the same form as the relation-
ship proposed by Burland®.

The curve c in Fig. 4 represents the constitutive
relation proposed by Roscoe et al.?? in the follow-
ing form:

r=y—M
where M is a material constant and is determined
from the data in Fig. 4 as

M=1.18

and where M is treated as a constant value in
the present paper, though it may be dependent
on the b-value. The stress-strain relationship
Eq. (18) is derived from the plastic potential

g=JV4Ii—M[(3.3Y%) In | I1/To}=0 -+ (20)

where Io is a work-hardening parameter. The
curve c in Fig. 4 describes the experimental data
better than the other ones a and b in the range
where the plastic volume contraction occurs. It
is found, however, that the curve a predicts the
experimental results of the soil best in the three
curves in the range where the plastic volume
expansion appears. The stress-strain relation-
ship given by Eq. (15) was employed for soft
rocks in order to describe the dilatancy charac-
teristic under low confining pressure.  Sub-
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Fig. 5 Relationships between g¢/p and d® for
triaxial compression and extension tests.
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Fig. 6 Relationships between ¢/p and v? for
triaxial compression and extension tests.

sequently, it is considered that Eq. (15) can be
adopted as an adequate stress-strain relationship
of soils and rocks in the range where the plastic
volume expansion occurs. Furthermore, it is
suggested that the relation of Eq. (18) predicts
the behavior in the range where the plastic volume
contraction is observed.

Let us consider the material constants ¢ and
¢: in the work-hardening parameter y given by
Eq. (3). In the triaxial constant-p test, the
following equations are obtained from Eq. (6).

vy =4y*[[941 {27+ (2n—1)y?}] oreee @1)
#7)y=2(278—y*y/[9¢1 {278+ (2n—1)¥%]

where #=¢/¢:. Fig. 5 shows relationships
between the deviatoric plastic strain d? and the
ratio of stresses g/p for four stress paths of A, B,
C and D in Fig. 4. For the triaxial compression
tests of A and B, applying the data shown in
Fig. 5 to Eq. (21), we have

$1=25.1,

On the other hand, the behavior in triaxial exten-
sion tests of C and D is somewhat different from
that in triaxial compression ones of A and B.
For the triaxial extension tests, applying the

72=20.834 crereernercranerinracnnrens (23)
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data of stress paths of C and D shown in Fig. 5
to Eq. (21), we have

P1=17.1, n=0.170 -rererrermrmrerrinias (24)

The theoretical curve of Eq. (21) with Eq. (23)
for triaxial compression tests and that of Eq. (21)
with Eq. (24) for triaxial extension ones are
represented in Fig. 5. Fig. 6 shows relationships
between the volumetric plastic strain v? and the
ratio of stresses g/p for four stress paths of A,
B, C and D in Fig. 4. One curve drawn in Fig. 6
corresponds to Eq. (22) with Eq. (23) for triaxial
compression tests and the other is Eq. (22) with
Eq. (24) for triaxial extension ones. It is seen
from Figs. 5 and 6 that the theoretical equations
of Egs. (21) and (22) can describe the experimental
data for triaxial compression and extension tests
adequately.

In view of data given by Miyamori'®, Yamada
et al.' and Haruyamal!®, it may be suggested
that the parameters » and ¢: for triaxial com-
pression tests take maximum values and those
for triaxial extension ones have minimum values
in genuine triaxial tests. Subsequently, for the
parameters » and ¢: in the general stress con-
dition, it may be assumed simply that

= (He—Ma)bFHg weoeereeeee e (25)

¢1:(¢16_¢m)})+¢w ........................... (26)
where

b:(o'g—g'3)/(g'1-—o-3) ........................... (27)

3Y2tan O:M:Qb_l ............ (28)

O1—03

where o4, 02 and o3 are the major, intermediate
and minor principal stresses respectively, the
anti-clockwise direction @ is measured from the
£-axis perpendicular to o:’-axis, as shown in
Fig. 7, nc and ¢ are material constants » and
¢ for triaxial compression tests, #. and ¢ are
those for triaxial extension ones and they are
given by Eqs. (23) and (24) respectively. Fig. 7
shows a stress state in three principal stresses
01, 02 and o5 and the stress state can be designat-
ed by invariants 1, J: and the angle # in #-plane

o]
00=1F 2
oP=/ZJz

Fig. 7 Stress state in stress space and on n-
plane.

(Ir=const.), where o/, oy and ¢ are the deviatoric
stresses. Eqs. (25) and (26) mean that the param-
eters » and ¢ are functions of b-value, which
designates the stress state on the #-plane.

Let us calculate the stress-strain relationships
for various b-values on the basis of the constitu-
tive equation of Eq. (6) by using Eqs. (25) and
(26). The equivalent plastic strain rate &P is
defined as follows®®:

2 .y
EP= {EEQSP)E%?)}

where E;?’ are the deviatoric plastic strain
rates. The equivalent stress o= is expressed by
the second invariant of the deviatoric stress in
the form3®

o= (3 ]2}/

By use of Egs. (6), (29) and (30), the relationship
between the equivalent plastic strain and the
ratio of the equivalent stress to the first invariant
of stress is written in the following form for the
constant-1, test.

e9=47%[3¢. {38+ (2n—1)23}]

where z=0/If and If=01+ 02+ 0.
Eq. (31) with respect to z leads to

Integrating

e":WI—*MP\/ Stz
><ln< V3B + «/1?‘27z> 4 }

VB —Vi-2nz)"3°

Substituting Eqgs. (17), (25) and (26) into Eq. (32),
we obtain the equivalent stress-strain relation-
ship for various #-values. Fig. 8 shows the stress-
strain relationships drawn on the plane (e?, o/If)
on the basis of the theoretical equation (32).

From Egs. (6) and (30), the relationship be-
tween the volumetric plastic strain v?, and the
ratio of the equivalent stress to the first invariant
of stress, o/If, is represented in the following
form for the constant-I; test.

02 =2(38—2%2Z[[$1 {38+ (2n—1)z%}] «---- (33)
Integration of Eq. (33) with respect to z leads to

o 6n8 . (38—(1—2m)z*) .
”””@(1—2@[1—2%1“1 35 }J’Z]

Substituting Egs. (17), (25) and (26) into Eq. (34),
we obtain the relationship between the volumet-
ric plastic strain and the ratio of stresses for
various b-values. Fig. 9 represents the stress-
strain relationships drawn on the plane (v?, o/IF)
by use of the theoretical equation (34). As the
b-value increases from zero to one, the slope of
the stress-strain curve for each b-value becomes
gentle in the range of small strain and the failure
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Fig. 8 Relationships between ¢/IFf and e? for
b-values.
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Fig. 9 Relationships between o/I¥ and v? for
b-values.

stress decreases gradually, as shown in Figs. 8
and 9. This trend is same as the experimental
data given by Miyamori'®®, Yamada et all®
and Haruyama'®. Subsequently, it is considered
that the theoretical equations (32) and (34) may
predict the stress-strain relationship for various
b-values adequately.

The failure criterion may be expressed by
three invariants of stress Ii, J: and Js, where
Js=T};T5T%/3 is the third invariant of deviato-
ric stress. Matsuoka et al.?® propounded a failure
criterion on the basis of a spatial mobilized plane
as follows:

I [Ii=k

where I: and Is are second and third invariants
of stress respectively and % is a constant. This
criterion explains the experimental results in
different three principal stresses fairly well. It
would be reasonable to express the failure criterion
by use of two parameters in order to describe two
failure states of triaxial compression and exten-
sion tests accurately. Then Ogawa et al.’® pro-
posed a failure criterion of soils in the form

F=Js+{Joli+913=0

where { and # are material constants. The failure
curve in (p, g) plane in triaxial compression tests
performed here is given by

Mises
_/ rMohr-Coulomb
Eq.(36)

q/p=1.98

The failure curve in triaxial extension tests is
expressed by

q/p=146

Substitution of Eqgs. (37) and (38) into Eq. (36)
leads to

=-0.439
£ } ................................. (39)
7=0.0432

The f{failure surface given by Eq. (36) with

Eq. (39) on m-plane of I'¥=3 is shown in Fig. 10.
The failure criteria proposed by Mises and Mohr-
Coulomb are together represented in Fig. 10 and
the Mohr-Coulomb’s criterion corresponds to
the case where the angle of internal friction is
¢=28°. The failure criterion expressed by Eq.
(36) with Eq. (39) forms almost same curve as
that proposed by Matsuoka et al.2®

4. ANALYTICAL PROCEDURE BY THE
FINITE ELEMENT METHOD

The total stress-strain relationship of Eq. (11)
is represented in matrix form, i.e.,

{AT)=[D{AE}

where {AT} is the matrix of stress-increments,
the elastic-plastic stress-strain matrix [D] is
symmetric and {4E} is the matrix of strain-
increments. For the two dimensional plane strain
problem in rectangular Cartesian coordinates,
Eq. (40) is expressed in the explicit form as

AT Dy Dz Dis | (4AEn

AT s D12 Dze Das
= AEzz ) oo (41)
ATz Dz Dz Dss

ATss Dy Diz Dy |

A’)/xz

where Ay =24FE:. denotes

strain and

the engineering
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Du=A4+2G—{2GT1+(3A+2G)
X (BIr—Jo/1)}?/ 4
Di=A— (2GT+ (3A+2G) (BL1— Jo/I1)}
X 2G T+ (3A+2G) (81— J2/11)} /A
Du=—22GT1+(BA+2G)(BI— J:/11)}
xGT2f/A
Doe=A+2G— {2GT 5%+ (3A+2G)
X (ﬂ]l"]z/.ﬁ)}z A
Dos=—2{2GT%+(BA+2G)(BI1— J2/1:)}
xGT /A4
Dau=G—4(GT1)*/4
Du=2A—2GT 4+ (BA+2G)(BI1— J2/11)}
X {2GT1+(3A2G) (BI— Jo/11)} /A
—{2GT5%+ (3A+2G) (81— J2/11)}
X 2G T+ (3A+2G) (811~ Jo/11)} /4
Dep=—22GT1+ (3A+2G) (81— [+/11)}
X GT /A
A=—T (I (BT~ Jo/ 1) +2¢2 ]2}
+4G Jo+3(B1i— J2/11)*(3A+2G)

Dgp=2A

where A is Lamé’s constant.

The strain-increments {4E} at any point can
be determined with the displacement-increments
{4A4} known at all points within the element in
the form

{4E} =[B[{4u}

where the matrix [B] is defined in Zienkiewicz’s
book®, The stiffness matrix of the element is
represented by

[R]=[BI"[D'][B]:2

where [D’] is the elastic-plastic stress-strain
matrix [D] except for Du, De and D in Eq. (41),
t is the thickness of the element and £ is the
area of the tfriangle. The stiffness matrices of
elements, {%], are assembled to form the matrix
of the whole region, [K]. The overall matrix [K]
relates the nodal load-increment {AL} to the

nodal displacement-increment {A#} in the form
{AL} =[K]{4u}

Yamada et al.® proposed an approach for
elastic-plastic analysis by means of the finite
element method. This technique is used for
materials such as metals obeying the equation
of Prandtl-Reuss on the basis of the von Mises’
yield criterion. Although the program given
by Yamada et al. is not relevant to soils and
rocks whose plastic behavior depends on hydro-
static pressure, the thought in this program is
considered to be helpful to the procedure of
elastic-plastic analysis of soils and rocks.

q PQ= saTf’

Fig. 11 Determination of a yield element.

Some details of the analytical procedure of
the problem for soils and rocks are represented
briefly in what follows.

1. Calculate elastic displacements at the
nodes, and then elastic strains, stresses at each
element for the body force of soils or rocks. The
stress obtained here is employed as the initial
value denoted by T} in the problem.

2. Solve the stifiness equation of Eq. (45)
for a test load-increment {AL®} and obtain

the nodal displacement-increment {A#®}. Then
calculate stress-increment ATY and strain-
increment AEY) at each element. Obtain the

elastic solution in the first cycle in the program
and the elastic-plastic solution after the second
cycle. One cycle corresponds to the load-incre-
ment process to reduce an element to yield.

3. Scale up or down the stress-increment A7/
for all elastic elements in order to find an initial
yield element in the first cycle. As shown in
Fig. 11, the following equation may be satisfied
to reduce an element to first vield in all elastic
elements.

FTG+5ATE, )=
where f=f(Tuj, ) is given by Eq. (2) with Eq.
(17), s is a scale factor and vy, is the value of y at
initial yielding. Solving Eq. (46) with respect to
s leads to

s=[—(Q+2BSV 4y V) +(Q+2BSV +7,V)?

—4(R+BVH(P+ S +v,5)} /7]

[{2(RHBVY} e (47)
where
P=TPTE2
Q=TPATY
R=ATPATSI2 Y s (48)
S=T%%
=ATY,

The scale factor which brings an element to first
yield is designated by the minimum value among
scale factors of Eq. (47) calculated for all elastic
elements. An appropriate test load-increment
(AL} to reduce the elastic element of the
minimum scale factor sp;, to yield is specified by
(AL} =5, {AL®}. The element having s,
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is treated as a plastic element from now on, the
remainder being left in the elastic state for the
first cycle and in the elastic or plastic state after
the second cycle. After the second cycle in the
program, the stress T{ in Eq. (46) is replaced by
the stored stress in step 4 and scale up or down
the stress-increment ATY due to test load-
increment {AL®} in order to find a subsequent
yield element.

4. Calculate the nodal displacement, stress
and strain-increments for the load-increment
{(AL®} and add to the present displacement,
stress and strain. Store the results.

5. Check whether the work-hardening param-
eter y=—(J:+BI%)/I, at the present cycle is
greater than that at the previous cycle for all
elements. If greater, the work-hardening con-
tinues. If smaller, the elastic state remains or
unloading occurs. Return to step 2.

Let us consider a foundation subjected to
uniform loads p of 2a in width in the two dimen-
sional plane strain problem. According to Zien-
kiewicz et al.?®, the finite element mesh is divided
as shown in Fig. 12 and the {foundation is
assumed to be made of the soil experimented in
section 3. It is assumed that Poisson’s ratio v=
0.45 and the density p=1.9 t/m3. Tf the founda-
tion is made of the soil isotropically consolidated
with the effective mean principal stress of 196 kPa,
the work-hardening parameter of Eq. (3) at
initial yielding is assumed to be v,=30.6 kPa.
The constitutive equation of Eq. (6) describes
fully the plastic behavior of soils. Although the
parameters # and ¢:1 in the work-hardening
parameter ¥ of Eq. (3), represented by Egs. (25)
and (26) respectively, are dependent on the state
of stress or b-value, the value given by Eq. (23)
will be adopted simply as constant parameters
in the present analysis in order to investigate
the effectiveness of computational procedure to

-a—

7a

Fig. 12 Finite element mesh and settlement
curves.

apply the proposed constitutive model to the
finite element method.

The two curves in Fig. 12 show the settlement
on the surface of foundation for two loads stages,
p=225%kPa and p»=325%kPa. The maximum
value of settlement v, at the point x=0 is
calculated as follows: vgax=3.26x10"%a for
p=225kPa and ¥m.z=9.25x10"%a for »p=325
kPa.

Fig. 13 shows the load-settlement curves for
three nodes £=0, 0.5a2 and a on the surface of
foundation. Since the soil which constitutes the
foundation is initially isotropically consolidated
to 196 kPa, it is suggested that the initial yield-
ing of elements under loaded area will occur at
the vertical load near p=196 kPa. It is noticed
from Fig. 13 that the initial yielding for curves of
z=0 and £=0.5a takes place at the vertical loads
p=208 kPa and p=227 kPa respectively, and set-
tlement proceeds rapidly after yielding occurs.

Fig. 14 shows yield elements for two load
stages, p=225 kPa and p=325kPa. It is seen
that plastic elements appear on the surface of
foundation because the mean principal stress is
very small and the state of stresses is near the
original point in stress space. The plastic parts
spread downward circularly due to large stresses
under the loaded position. It is of interest that
elements possessing the state beyond the failure
curve increase as the vertical load increases.
The sequence of these failure elements may
develop into the sliding surface.

In what follows, the figures of stresses are
depicted for the case of external load p=325 kPa.
Fig. 15 shows the distribution of normalized
stress in the horizontal direction x, ox. The
contour line of stress ¢z spreads diagonally from
the top left-hand corner to the bottom right-
hand corner. Fig. 16 represents the distribution
of normalized stress in the vertical direction y,
oy. Since the gravitational force is taken into
account in the present analysis, the magnitude

Load(10ZkPa), p

0 1 2f 3 l.I
gﬁz x=a
&
3
3|6 0.5a
W
Zs

0
10+

Fig. 13 Load-settlement curves on the surface
of foundation.
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(a) p=225kPa

Fig. 14 Yield and failure elements.

(b) p=325kPa

[ Oyip J Oy/P
~0.85 0.2
0.6 - 0.1

£~03 % ~0.05
(~0.15 ~0.03
-0 .

1
520

f
111 ’

N

Fig. 16 Distribution of stress

oy. Ogy.

of oy is somewhat different from that of neglecting
the gravitational force. Fig. 17 shows the
normalized shear stress ozy and the contour line
of ozy expands downward circularly from the
edge of loaded area. Fig. 18 shows the normalized
stress o, in the direction vertical to the x—y
plane. It is found that the gradient of stress o,
is steeper than those of other stresses. Although
the distribution of stresses in linear elastic
problems is independent of the degree of external
loads, the solution of elastic-plastic problems
depends on the magnitude of external forces.

5. CONCLUDING REMARKS

A new simple form of yield function of soils and
rocks was proposed by modifying an old yield
function propounded for soft rocks. Since the
new yield function as well as the old one is con-
sidered to be useful to rocks, attention was
focussed on the effectiveness of the new yield
function to describe the plastic behavior of soils
in the present paper. The accuracy of the con-
stitutive equation derived from the proposed
vield function was evaluated by comparing
predicted and measured plastic strains for tri-
axial tests performed for a soil.

Fig. 17 Distribution of stress

Fig. 18 Distribution of stress
0.

On the basis of the proposed constitutive
model, the problem of a foundation subjected to
uniform loads was analyzed by the finite element
method. Tt was found that the analytical pro-
cedure follows yield regions adequately with the
increase of external load. It was suggested that
the computational procedure by the constitutive
equation propounded in the present paper is
very applicable to the finite element analysis.
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18  BEMHOEBUBRETILE
ARERBITNOIEH

(CEHEAE,HERER,ERIER

EFn 58 411 A

REEED LT HEEMBRWREDORESITLY,
LAV EY Y —FEREL - TW5, 20X D )%
P& BT 5 72 DI DAETIRE S W BRI IRED
FNCIS L CHT CHEZHLERDD, WEREOKRE X
CERELEVH—DBERF L TV o7z, £2TLD
X5 hEEERRT 55T, TLWEOHRREEISE
B EOEEMEICR L TIREIhTWA. TOREX
N B REIEOI SR KR IR LB 2 B EME
OHRELTHEMBICH LT ERARbID L 2 b h
3. FREE, ST OBERE 2T 5D,
BHF VYR EOTRF VY LB L TLERRERE
HLTWS2LTHS., AR TIRLIHE, BEMEHZ
L CIREXRABRBEED Sk SN BERNIT 2V T
B 2iT5. MEREOBEMRIT OV T, PAETRE
SRR L BRVIREO RN » b LT, &4
VR Y Y — R ETICRE LSS RS ERERE SR T
WHBRROBRME VLS. L LEEEF oL
S ETREEREERREBEZELTVWEDT, KAX
TRBEEINLFH LW BRERKO LEM I~ 0@ BT
EEBET LR TS,

P REMECH U T8, SRRz T,
RIRYEMEO T BB 5 & REEEO T 585 D e ds X 00
EENEFEEEHOLRF N PhEELT5 2]/
STEME, TONERERERTALDIURESRE
BRI 2V TR ETY, TohiRgEn5 2004
HEROBRICOWTEEERToTV5, ZOES1D
OMEEHR % & Burland I X » TIRE I RN
IR LESS, 2 o20MBEREAVSZLTE-T
IV ETICERERPER LB EBATIN TV S,

& 7o BEIic it Burland oRXBEHAENE S 2 E 2D
t, ERLTRISTELAF A -2 —REEN SR
EHOBEIRIC OV TREZED T { o, Burland ©
RAEHEHOEBMBILOLDITHRABL TV 5S.

Bt A — 2 —OhiEEh5 2 2O FERICE
LT, LoZMEREZwsERROERERCHTS
FNEROEERBTWS., T OBAREINHERR
BHEMPOERERETCERE LB LBTRER
TV, 1 oOMEERONERERC OV TRREER
B2 L ZE4ERAS (phase-transformation state) 12 B4 5 1%
E i BE X TERL, MRTEOBKRICOVWTLR
BXhTWS., ERM0 120 MEER I EH-0F%
oI LEFR ST LRER C EBTER TS,

RCEHEHBTRCERLBEOMEOERERE
BEITLT, BT A- 2 —ohitEdEh i ek
REkiEE EbT (7 A -4 —Tibb b {EOHELK
LLTEZLNELLEBTIRTVS., HLOERT
EbilERDd b UigEshEs 0T, ek —
CHERhLCLRAED. ZOXSRBAKELT, =
B RESS X ORERBR X VB b ERERIE—fEO b
[E=—sERIC 351 5 2 S OMRKEBIES L, bER
B2 B AOEN-0F X EGR R REShIBRRE H
WCHHXhTWS, ZOBLRKEN-0-T 4 BRKN
bR RS BAOREORREREY BN ERLE
5L ERFBINTNS.

BpiRExhigRRicESuve, FREREREZH
Wi B, BEMHOBTREREMREREShTY S, RR
BELOYFI OV TEREBMEIZ oW TILEMER L2
Ty, AT, BREMSENECEELES L
g, EEHHCLCERAL TS, JEAflE LTiE—
AR E S T LR ARERIC oW TRIT 2T T
W5, ZZTREE-ILT R oW CHMER 2 5 TN
Wi E RSO ARELL LTREATWS. £
THAMEER, BEERC OV THERMCES LT H0
AR DREES B E T WS, [EIPREBI DV T
BRI OIS, NREOREIRELTL DS
RELLBLZ EHBRIRTVD.,






