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PROPOSAL OF A YIELD FUNCTION AND DESCRIPTION
OF PLASTIC BEHAVIOR OF SOFT ROCKS

By Hiroyoshi HIRAI* and Masao SATAKE**

1. INTRODUCTION

So far various criteria on fracture of rocks
have been proposed by many investigators. One
can find the ambiguous usage of terms in differ-
ent contexts in the literature dealing with the
fracture criterion. In order to study the fracture
of rocks on the basis of precise concept, the difini-
tion of terms proposed by Bieniawski® will be
accepted in what follows.

When a rock is subjected to a compressive
stress in the axial direction under low confining
pressure in triaxial compression test, the stress
at strength failure tends to take the value close
to that at yield, namely, brittle fracture occurs.
For this reason, we have often failed to dis-
criminate between the criterion on strength
failure and that on yield strictly when rocks are
subjected to low confining pressure. On the other
hand, when a rock is subjected to a compressive
stress in the axial direction under high confining
pressure, the stress at strength failure shows the
value apparently different from that at yield;
and the behavior of the rock becomes to exhibit
ductile fracture in general. Accordingly, a pre-
cise distinction must be made concerning yield
and fracture criteria in multiaxial stress condi-
tions.

Mohr® introduced a hypothesis for failure of
soils and rocks. Drucker and Prager® generalized
the Mohr’s criterion in terms of invariants of
stress tensor. Griffith®? postulated a fracture
criterion based on the presence of small cracks in
a material. According to studies of failure of
rocks, it has been found that failure criteria ap-
plicable to predicting the strength of materials
may be those by Mohr and Griffith. Hu and
Pae” took the influence of hydrostatic pressure
on the plastic behavior into account to propose
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a yield criterion. However, if these criteria are
applied to the plastic potential in flow rule, it
is found that the equations of plastic strain rate
derived from foregoing criteria do not adequately
describe the plastic deformation of some rocks.
This may be because the above-mentioned cri-
teria are not functions of cap’s type which means
closed form in stress space. Thus, it may be sug-
gested that the four criteria are not relevant to
the yield criterion of rocks.

The objective of the present paper is to deduce
a yield criterion in order to describe the plastic
behavior of soft rocks precisely. For this purpose,
a yield function is proposed on the basis of in-
variants of tensors and experimental evidences.
Particularly the form of work-hardening param-
eter is expressed by taking account of plastic
work divided into two parts related respectively
with the change in volume and with the change
in shape. Furthermore the appropriateness of
the proposed vyield function is investigated
through experimental data®:?.

2. PROPOSAL OF A YIELD FUNCTION OF
SOFT ROCKS

In the theory of plasticity, many assumptions
have been made in order to offer a mathematical
expression of the mechanical behavior of ma-
terials. It may be acceptable assumption that
there exists a scalar function, called a yield func-
tion, and denoted by f(IT¥, Eij, «), in which 7%
are components of stress tensor; E:j are compo-
nents of strain tensor; « represents a work-
hardening parameter which depends on the
plastic deformation history.

If a material is isotropic, a yield function
depends only on invariants of stress and strain,
and variables related to the plastic deformation
history. Further, if the yield function depends on
stress and work-hardening parameter and the
work-hardening is isotropic, the yield function
can be expressed in the form

F=F(T1, Jo, Jo, ) reeemrerreeemmonsiieiiiiinins (1)
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where I is the first invariant of stress defined as
Ii=T and J: and Js: are the second and third
invariants of deviatoric stress 7} defined as
Je=T"iT"/2 and [Js=T"{T"T'¥|3 respectively.

Assuming that s does not appear in the yield
function, Mréz et al.® propounded a yield func-
tion which comprises the terms of the first and
second powers of invariants I; and Ji? in the
mechanical analysis of soils. This yield function
is considered to be appropriate for soft rocks as
well as soils because it has necessary terms of
invariants to represent the plastic behavior of
soft rocks, as may be mentioned later. Arranging
the terms of invariants and the work-hardening
parameter in the yield function given by Mréz et
al, the following yield function may be applied
to soft rocks in the form

f:]2+ajé/2+ﬂ_[§+'y]1—’<:0 ............... (2)

where «,  and 7y are material constants. It is
noted from Eq. (2) that yielding of soft rocks
occurs for hydrostatic pressure which corresponds
to preconsolidation pressure of clays.

Let us consider a form of the work-hardening
parameter k. It may be reasonable to consider
that the work-hardening parameter « is a func-
tion of the internal energy which is a state vari-
able in the thermodynamics®. However, it is
assumed usually that x may be regarded as a
function of the plastic work!®, i.e.,

-
K=K<Soz‘ij5gg>d¢> ................................. (3)

where ¢ denotes time and E® are the plastic
strain rates. The plastic work rate TifE‘ﬁ‘;’ can
be divided into two parts related respectively
with the change in volume and with the change
in shape. Then the plastic work rate per unit
volume is expressed as

TUER=TAEIPIS L THED oo (4)

where the former and the latter of the right-
hand side are concerned with the change in vol-
ume and with the change in shape respectively.

In experimental results of soft rocks®?®, it
has been reported that the plastic volumetric
strain rate E{? does not vanish. This may
imply that the plastic deformation of soft rocks
will depend not only on the plastic work related
with the change in shape, but also on that with
the change in volume. Thus, for the rate of the
work-hardening parameter £, a linear equation
which comprises two variables of the first and
second terms in the right-hand side of Eq. (4)
may be assumed as follows

k=@ TSP (34 goTVED

where ¢ and ¢; are material constants to be
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Fig. 1 Yield loci in the coordinates of principal
stresses.

determined from experimental results. From
Eqgs. (2) and (5) is assumed isotropic hardening
which expands uniformly from the initial yield
surface and the initial and subsequent vyield
functions are illustrated schematically in Fig. 1.

Hence, the yield function of soft rocks pro-
posed here is given by Eqgs. (2) and (5).

3. STRESS-STRAIN RELATIONSHIP DE-
RIVED FROM THE PROPOSED YIELD
FUNCTION

For the stress-strain relationship in the plastic
state, the flow rule proposed by Prager!? is ex-
pressed in the form

. 1 of , d
Eg?j’.—:_.h —_6T—J;7 mn___azfij_ ........................ (6)
where
of of dx of
h=- [‘375@* o OEW ]ﬁk_ """""" (7)

This rule is known as the normality condition by
the reason that Eq. (6) requires the normality
of the plastic strain rate vector to the yield sur-
face in the stress space.

The plastic stress-strain relationship can be
neatly formulated through some assumptions.
If the yield function Eq. (2) and the work-
hardening parameter Eq. (5) are adopted, Eq.
(6) is written as

. fe 4
EE?E[(”@T&

a ’ ..
x| (1 +“27?>Tij+(2/3]1+'y)g”}
JIA L 2811+7) + o JV(2TH 2 +0)] +(8)

where ¢:j are covariant components of the metric
tensor.

Let E{? be components of elastic strain. As
the strain rate is divisible into elastic and plastic
parts in the case of infinitesimal strain, we have

Eyy=EG+EP

)T;nn+(2p’11+y)gmn}fm"

The stress tensor is related to the elastic strain
tensor by the tensor of elastic constant, CU*¢,
of the material. Thus
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TU=CUELEE) wevveninrinreniennninie e (10)
Assuming Eqs. (2) and (5) and using Eqs. (6),
(9¥and (10), we obtain

TG DUELE g cvevvemneeeaeeeae i (11

where

of  of
Com T g O
__af_‘kg.f__FCstuv af i
JEW 91w aT™ o1

Dkl = Cidkl_

Substituting Egs. (2) and (5) and the tensor
C¥*l in Eq. (10) into Eq. (12), we can express
the total stress-strain relationship Eq. (11) in
terms of material constants.

4, DETERMINATION OF MATERIAL CON-
STANTS IN THE PROPOSED YIELD
FUNCTION

To determine the value of material constants
in the proposed yield function given by Egs.
(2) and (5), it is necessary to carry out adequate
experiments. Current methods of testing rocks
have been, as yet, almost always restricted to
the conventional triaxial tests, in particular
triaxial compression tests. Two stress param-
eters used in triaxial compression tests such that
o/ =09’ <oy are the mean principal stress

p=(0V+02+05) /3= (201 +05)[3 +reeenes (13)
and the deviatoric stress
q:g'3’—o'l’ .......................................... (14,)

where ¢ and o2’ are the principal effective radial
stresses, which are called the confining pressures;
o3’ is the principal effective axial stress; the
compressive stresses are taken to be positive.
Considering the condition such that ei=e:2<es
and taking compressive strains as positive, we
shall use two strain parameters, i.e., the vol-
umetric strain

v=e1+es+es=2e1+}es
and the deviatoric strain
A=2[B(03— 1) +reereermereereem e (16)

where ¢: and e are the strains in the radial direc-
tion, and es is the strain in the axial direction.

In triaxial compression tests, the yield func-
tion Eq. (2) is expressed as

f=q2/3+a/3‘/2q+9/3p2—3710—K=0 ......... (17)

It may be suitable for soft rocks to assume that
yielding will occur under the state that »<O.
Therefore, it is postulated that the work-harden-
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Fig. 2 1Initial yield and failure curves and plastic
strain rate vector.

Py P
v/ (68)

ing parameter x in Eq. (17) is nought at the
initial yielding. The yield function given by
Eq. (17) with x=0 is illustrated in Fig. 2.

For soft rocks possessing elastoplastic pro-
perties, assuming the normality condition of
Eq. (6), we get

plg=—0v|d?
where p and ¢ are the rates of stresses and 92 and
d? are the plastic volumetric strain rate and the
plastic deviatoric strain rate respectively. The
stress-strain relationship at the initial yielding
is derived from Egs. (17) and (18) in the follow-
ing form
y2— 18£8y —2718

ngm ........................... (19)
where

r= _Up/d'p .......................................... (20)

YD ceeeeeree e 21

Em=—qt(3U2y) e s 29)

The material constants £ and 8 are determined
from the experimental data plotted in (z, y)
plane by using Eq. (19).

In Fig. 2, #? is drawn parallel to the p-axis and
d» is parallel to the g-axis. If we assume that
the work-hardening up to strength failure is iso-
tropic, the characteristic of the plastic volu-
metric strain which depends on the confining
pressure is classified as follows:

(y When the confining pressure is less than
m, the plastic volume expansion occurs; e.g.,
K-L in Fig. 2.

(ii) When the confining pressure is between
P1 and P the plastic volumetric strain up to
strength failure is small in magnitude; e.g., K'—
L/ in Fig. 2.

(iii) When the confining pressure is greater
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4.0 —— ¢ x=0.5(y-0.76/y) Roscoe
—e— 1 x=y-1.0 et al,
—-— : eq.(19) with eq.(23)
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Fig. 3 Relationships between ¢/p and #2/d? at
initial yielding (from Akai et al. 6)).

than p., the plastic volume contraction occurs:
e.g., K”—L"” in Fig. 2. Following this classifica-
tion, we determine the material constants in
the proposed yield function.

Experimental data of triaxial compression
tests by Akai et al.® on a soft sedimentary rock
(porous tuff) are shown in Figs. 3 to 7. Using
the data as an example, we determine the materi-
al constants here. Fig. 3 shows the relationship
between the ratio of stresses ¢/p and that of
plastic strain rates #?/d® at the initial yielding.
Applying the data in Fig. 3 to Eq. (19), we ob-
tain

£=-0.734, p=0.149

Roscoe and Burland!® investigated constitutive
equations and yield functions for “wet” (ie.,
normally and lightly overconsolidated saturated)
clays. In Fig. 3, the stress-strain curves pro-
vided by Roscoe et al. and the curve given by
Eqgs. (19) and (23) are shown. It is found that
the equations by Roscoe et al. can not sufficient-
ly describe the experimental data, on the other
hand, Eq. (19) with Eq. (23) is able to express
the stress-strain relationship of experimental re-
sults adequately and is much the same as the
experimental equation given by Akai et al.

From the relationship between the deviatoric
stress and the volumetric strain under various
confining pressures concerning the soft rock
tested by Akai et al,, it is found that the plastic
volume expansion occurs when the confining
pressure is less than p=25 kgf/cm? (2.45 MPa)
and the plastic volume contraction tends to oc-
cur when the confining pressure is p=25 kgf/cm?
(2.45 MPa). In Fig. 4, this may imply that p=
7/(6f), which is a half length of the intercept of
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Fig. 4 Initial yield and failure curves for soft
rock (from 6}).

line ¢=0 with the initial curve (see Fig. 2), is
the neighborhood of the initial yield point A
[p=46 kgf/cm® (4.5 MPa)] under the confining

pressure p=25 kgf/cm? (2.45 MPa). Then, it is
assumed approximately that

v/(66)=48.0 kgf/cm? (4.70 MPa) ---eeee (24)
From Eqs. (22) to (24), we obtain

a=54.6 kgf/cm? (5.35 MPa)

£=0.149 b (25)

y=42 9 kgf/cm? (4.20 MPa)

Applying Eq. (8) to triaxial compression tests,
we have the relationship between the deviatoric
stress ¢ and the plastic deviatoric strain d® in
the form

dvjg=(2/3q+/3"2) ((2/3+2)g+a 34
+680—7}/[(28¢142/3p2)¢*
+ (3gu(dBoi—y/3) +age/312q
+3¢:01(6801—7)]

The stress-strain relationships obtained from
experiments of soft rocks depend on the confin-
ing pressure. Then, it was found from Eq. (26)
that the material constants ¢ and ¢: would
rather not take unique values for every state of
stresses p and ¢ in order to describe the experi-
mental results more adequately. For this reason,
it may be convenient to consider the material
constants ¢: and ¢ seperately for two different
ranges where the plastic volume expansion and
contraction occur.

As the experimental data given by Akai et al.
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are almost concerned with the case where the
plastic volume expansion appears, let us consider
the material constants ¢ and ¢: in this case.
By use of Eq. (26), the material constants ¢,
¢2 are obtained from the values of gradients at
two points on a experimental curve between the
plastic deviatoric strain d? and the deviatoric
stress g. Then, for two confining pressures of 5
and 15 kgf/cm? (0.49 and 1.47 MPa), the material
constants ¢1 and ¢: in Eq. (26) may be assumed
to take the following values

¢r=—1.12x 10* kgf/em? (—1.10 x 10° MPa) }
$o= 3.73x 10°kgf/om? ( 3.66 x 10 MPa)

Substituting Egs. (25) and (27) into Eq. (26)
and integrating, we obtain the stress-strain re-
lationship in the plastic range. It may be as-
sumed that the stress-strain relationship in the
elastic state is linear. Therefore, combining the
elastic and plastic strains, we have the relation-
ships between the deviatoric stress and the total
deviatoric strain, as shown in Fig. 5.

From Egs. (6) and (13) to (15), we get the
plastic volumetric strain in the form

0P/¢=3(2pq—y+6B01) ((2/3+2B)q+a/3'/?
+6B01—7}/[(2B$1+2/3¢2)¢"
+ (3¢1(4B01—/3) +ags/342) g
+3¢10‘1(6ﬂ0’1—'7)]

Substituting Eqs. (25) and (27) into Eq. (28)
and integrating, we have the relationship be-
tween the deviatoric stress and the plastic volu-
metric strain. Therefore, combining the elastic
and plastic volumetric strains, we obtain the
relationships between the deviatoric stress and
the total volumetric strain, as shown in Fig. 6.

Hence, it is found from Figs. 5 and 6 that the
stress-strain relationships of Egs. (26) and (28)
with Egs. (25) and (27) can describe the ex-
perimental results of soft rock fairly well.

Griffith’s® criterion may be assumed to be pre-
dominent for fracture criterion of soft rocks.
This criterion under biaxial stresses such that
1< 03 is expressed in the form

(0‘1——0’3)2=85L(0'1+0‘3) ........................ (29)
if

Bo1-F T3>0 ceerererieeeiiiee e (30)
and

GLm= =S¢ erereerreiii e (31)
if

B 03C0 rerrrrrrrr (32)

where S; is the uniaxial tensile strength of a
material. According to Murrel'®, the envelope
to various Mohr’s circles which satisfy Eq. (29)
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Fig. 5 Relationships between deviatoric stress
g and deviatoric strain 4 (from 6)).
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Fig. 6 Relationships between deviatoric stress
¢ and volumetric strain v (from 6)).

is written in (o, 7) plane in the form
72=4S(0+Si)

Fig. 7 shows the Mohr's circles at strength
failure in triaxial compression tests of a soft rock
performed by Akai et al. If Griffith’s criterion is
suitable to the state of strength failure, applying
Eqg. (33) to the results showed in Fig. 7 leads to

Si=6.45 kgf/cm? (0.632 MPa) --reevvvenes (34)

Using the stresses p and ¢ given by Eqs. (13)
and (14), we can express Griffith’s criterion for
the case of triaxial compressive condition from
Egs. (29) to (32) in the form

485:p=¢(3¢—-8S:)
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Fig. 7 Envelope of Mohr’s circles at strength
failure (from 6)).

if
12p<q

The curve at strength failure presented by Egs.
(35) to (38) with Eq. (34) is illustrated in Fig. 4.

5. CONCLUDING REMARKS

On the basis of invariants of tensors and ex-
perimental evidence, a simple possible form of
yield function of soft rocks was proposed. It
was found that the stress-strain relationship
derived from this yield function is able to de-
scribe properly the plastic behavior of a soft
rock in the range where the plastic volume ex-
pansion appears. However, as for the range
where the plastic volume contraction occurs, the
material constants in the proposed yield function
should be newly determined through the ex-
perimental data of the soft rock in this range.
As the proposed yield function is applied to a
soft rock (porous tuff), it is necessary in future to
investigate the usefulness of application of it to
the general problems of soft rocks. The constitu-
tive equation Eq. (11) will be helpful for numeri-
cal calculations by use of finite element methods
etc.

12)

13)
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