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NUMERICAL ANALYSIS OF VARIATIONAL INEQUALITIES
FOR UNILATERAL PROBLEMS OF A BEAM

By Noboru KIKUCHI*

1. INTRODUCTION

The present study is concerned with a devel-
opment of numerical analysis for unilateral
problems of bending of a linearly elastic beam
governed by the variational inequality which had
been obtained in author’s previous work?. Two
methods; namely the penalty method and the
projectional relaxation method are specially
considered to solve unilateral problems of a
beam.

Rather much consideration is required for
numerical treatments of variational inequalities
related to fourth order differential operations,
whereas the well-known Lagrangian multi-
plier method may be sufficient for variational
inequalities related to the second order differential
operator®. The speed of convergence of the
Lagrangian multiplier method with Uzawa's
algorithm to obtain a saddle point is very slow
for unilateral problems of a beam as shown in
the previous paper”. In order to obtain much
faster algorithms than Uzawa’s iterative method,
we here apply the penalty and projectional
relaxation methods, which are used for plane
unilateral problems of linearly elastic bodies®.
The mixed and reciprocal variational formula-
tions are crucial to apply the relaxation method
for a solver of variational inequalities, although
the primal formulation can be solved effectively
by the penalty method.

Among recent literatures of finite element
methods, the penalty method is widely used to
solve constraint problems such as the problem of
incompressible linearly elastic bodies®.  The
origin of the penalty method is believed to be the
address of Courant® in 1943 for the Direchlet
boundary condition and this technique has been
extensively applied in the field of optimization,
see for example Luenberger®. The penalty meth-
od is recently applied for unilateral problems of
* Member of JSCE, Assistant Professor, The Uni-
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plane elasticity and nonlinear plates® ™. More-
over, equivalence of the penalty method to the
method of the film or bond element® has been
proved for a class of contact problems®.

The projectional relaxation method is developed
by Cea and Glowinski'® in order to solve elliptic
variational inequalities. This is based on the
iterative algorithm such as the S.O.R. (super
over relaxation) method and conjugate gradient
method. The method is, however, not proper to
apply to the problem defined by the fourth order
differential operator. It is necessary for the
relaxation method to obtain faster convergence
that the matrix should be dominated by its
diagonal. If we discretize the beam or plate by
C'-continuous finite elements, the stiffness mat-
rix may not posses the required property for the
relaxation method. To overcome this limitation
we need to reformulate unilateral problems of
a beam by other methods, for example by mixed
and reciprocal method.

In this paper, we first define the unilateral
problem of a beam which is classified as the
signorini problem, following the previous paper®.
Next a penalty formulation of the Signorini
problem is given together with convergence of
the penalized solutions w. to the solution w of
the original variational inequality as the penalty
parameter ¢ goes to zero. Applying techniques
of numerical integration, the discretization of
the penalized problem is obtained, and is solved
by the successive iterative method. We examine
choice of formula of numerical integration,
relationship of the penalty parameter and the
mesh size % of the finite element model, and the
contact pressure by the penalized solution, using
two numerical examples. A discretization of the
mixed variational formulation is given by using
linear finite elements. We here provide an
algorithm of the projectional relaxation method
to solve the system of inequalities as well as the
penalty method. The third formulation of the
Signorini problem is achieved by the reciprocal
method which can be resolved by the relaxation
algorithm. The secking variable is the contact
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pressure instead of the deflection of the beam in
this case. Special discretization is required for
the functional of the contact pressure. Such a
manner can be also applicable for approxima-
tions of integral equations.

The methods described in this paper are
applicable to unilateral problems of not only for
beams but also for plates, elastic bodies, and
others. Main purposes of this paper are an
introductions of the penalty method for inequality
constraints, the mixed variational formulation
with the projectional relaxation method and the
reciprocal formulation with the special discretiza-
tion. This paper is also aimed to be a supple-
mentary article to the previous paper® in view
of numerical analysis.

2. SIGNORINI'S PROBLEM

Suppose that a beam is spanned over a rigid
foundation. Let L and EI be the length and
stiffness of the beam, let f be the applied force,
and let s be the distance between the beam and
foundation. As shown in Kikuchi®, such a
problem can be formulated by the variational
inequality

L L
weK: SO Elw”(v—w)”dngo fo—wydz,
VY € I wovvreeennnimninamoniannineins (1)
where
K={eV: @ts)@=0in (0,L)) -(2)

V={v e H¥0, L): v(0)=v(L)=0} - (3)
and the prime " means the derivative with respect
to . Here H™(0, L), m>0, is the m-th order
Sobolev space!'?’ defined by

H™0, LY={v: v P e L¥0, L), 0<5<m)}

with the inner product and norm:
m L . .
(w, V)m= ZA wPrDdz ,  |lvlim=(v, v)m"/?
j=0J0

where v is the j-th derivative of the function
v in the sence of distribution'V. - The inequality
(1) is the principle of viviual work of the beam
under the constraint due to the rigid foundation,
and is called the primal variational inequality for
unilateral bending problems of the elastic beam.
The constraint

(+5)(E) =0 i (0, L) vrrereeremeeornneannes (5)
physically means that the beam locates over/on
the foundation after deformations. Since w(0)=
w(L)=0,
s(£)=0 on =0 and =L --+--eeerreerrene (6)

is a natural assumption.

If a contact problem for two beams is con-
sidered, a simple transformation of the variables

implies an equivalent Signorini’s problem to the
original two-beam problem. Indeed by the third
variable defined by

WaX) =wi{(F) — oI errverre e (7)

the two-beam contact problem

2 (L
(wi,w2) e K: 2] S ElLw (vi—w:i)"’'dx
i=1 0

L
> 2 go filvi—wi)dx for every (vi, v2) € K

i=1J

can be transferred to the Signorini problem
L (L
(w1, ws) € K : S ElLw!/ (vi—w) " dx
0
L
+ S El(wi—ws) (ni—vs—wi+ws) 'dx
a

L (L
ZSO fl(vl_‘HJ[)dx“l’SO fz(?/[“l}s—‘uh

Yw)dz, (Wi, vs) €K e (9)

Here
K{(vi,v2) € VX V: oi(x)+s(x)=ve(2)} ---(10)
R={(v,vs) € VXV v3(2)+5(2)>0}--(11)

The function s(x) is the distance of two beams
and we assume that both beams are simply
supported in this case. Thus, it suffices to con-
sider details of Signorini’s problem for general
two-beam contact problems.

3. PENALTY METHOD FOR THE PRIMAL
VARIATIONAL INEQUALITY

A method commonly applied to resolve the
constrained problem such as (1) is the Lagrangian
multiplier method combining Uzawa’s interative
algorithm to find a saddle point which satisfies
the Kuhn-Tucker sufficient condition®.  This
method had been applied to solve the variational
inequality (1) in author’s previous work?. How-
ever, the speed of convergence of Uzawa’s itera-
tive method was quite slow because of the
characteristic of the stiffness matrix obtained by
the Hermite interpolation in finite element
analysis. While the Lagrangian multiplier method
with Uzawa’s algorithm is very powerfull for
plane contact problems of linearly elastic bodies®,
it does not provide efficiency to the problem
governed by the fourth order differential equa-
tion. To overcome this, we here applied the
penalty method which is widely used in many
fields of engineering for constrained problems,
recently.

For the unilateral contact condition

(w+s)(x)=0 in (0, L)
the penalty vivtual work is defined by

N O n T — (13)
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with the parameter of penalty e such that ¢—0.
Here

9@y =Max (0., —g(&)) rerrvereenerneanes (14)
for a continuous function ¢ defined on (0, L).
The physical meaning of the penalty virtual work
is that fairly large amount of virtual work is
added to the system when the deflection w
violates the contact constraint on a portion of
(0,L). 1In order to obtain zero penalty, the
constrained condition

(w+s)(x)~=0 i.e., (w+s)(x)=0
must be satisfied on (0, L). The penalty (13) is
called the exterior penalty for the inequality
constraint (12)%.

Adding the penalty to the virtual work prin-
ciple, we can replace the primal variational
inequality (1) by the penalized principle of
virtual work

L L
w.€V: S EIw;"v”dx—e‘lso (we+s)(x)~
0

L
-v(x)dx:& fodx, for every veV --(15)
J0
For simplicity, we set

L L
A(w)(v)zgo Elwv"dz, f(v)=80 fodz

Bw)(w)=— SOL (W) (E) V(L)L --eveeeres a7

Forms A(w), B(w), and f are continuous linear
functionals on the space V, and operators A4
and B map the product space V' X V into R. Then
(15) can be written as

w:€V: A(w)(w)+e ' Blw)(w)=f{v), veV

We shall show that w. converge to the solution
w € K of the variational inequality (1) as e—0.
To this end the following inequalities on R are
usefull:

(—a)a=(—a")* because of a=a*—a~
(~a+b Y a—b)=(a"—b")? l
(—ab<ab I
(—a+b)e<la—bllcl
.............................. (19)
where at=Max(0., a) and a~=Max(0., —a). Ap-

plying (19),
(B(w)—B(@)(w—w)=|(v+s)"—(w-+s)|e

forevery v, w € V. On the other hand, the bilinear
for A(.) (.) satisfies the inequalities

clllUHZZ_<_A<U>(U)SCZ|IUHZ2 ..................... (21)

for proper positive constants ¢ and ¢z, and for
every v e V.

(1) Convergence of w. to w as ¢—0
The sequence w. of the solution of penalized
problem (18) converges to the solution w ¢ K of
the variational inequality (1) as e—0.
(Uniform Boundedness of w.) Applying in-
equalities (20) and (21), for every v € K we have
So—w)=A(w)(v—w.)—1/e(B(w)—B(w:))
(v—w) <A(wH)(v—we)—1fe
ANwets) e Seallwel el lvlle
—cil|wel 22— Vel | (we+-s)71]0® ---(22)
from equation (18). Then
Hwelle<2(ezfer+ 1) |vlle+2 el fllg oo (23)
and
[[(we+s) o< (ol lwe |2l 1912
HHfll2ClotetHwelle)) ooeeremeeeereeees 24)
for any v € K, where ]|f||—2 is the dual norm to
I e
The estimate (23) means that w. is uniformly
bounded in €, and then implies the existence of
a subsequence of w., denoted by w. again, which
converges to an element w weakly in V. More-
over, (22) yields
flo—w)<A(w)v—w.)
<Aw)(v—w.)+(A(w:)—~A(w))(v—w)
Passing to the limit -0, we have
Aw)v—w)= flv—w), YveK,
since linearlity of A4 implies that A(w.) con-
verges to 4(w) weakly. That is, the weak limit
w of w. is a solution of the variational inequality
(1) f we K.
(w € K) From the estimate (24),

[(w+s)~1le<lim gnfll(we+s)"llo=0

since the norm is convex and continuous, i.e.,
weakly lower simi-continuous. Thus

(w+s) =0 i.e. w+s=>0ie wekK.

Therefore the weak limit of w is a solution of
(I). Since the solution of (1) is unique, every
convergent subsequence converges to the unique
limit w € K as ¢>0. In turn, the original sequence
w. converges to the solution w € K.

(Strong Convergence) From (18) and (1),
cillw—w|?<A(w—w)(w—w.)
<(Aw)— fw—w.).
Since w. converges to w weakly in V,
IZTO||w_w£||22=0 ................................. (25)

that is, w must converge to w ¢ K strongly.

Thus we have shown that the solution of the
penalized problem (18) provides an approxima-
tion to the variational inequality (1). We next
consider a discretization of (18) by finite element



138 N. KIiKUCHI

methods.

The first order Hermite interpolation is applied
to keep C'-continuity to the discrete model.
We shall consider the penalized equation (18)
as the summation over all elements;

él (A% we)+e B (w.))(v)= }i]lf"‘(v) VeV

where En is the number of total elements. Using
shape functions

Ne(E)=1-38+28°
No#(§) =328

M) =hE(E—1)
M) =hE(E—1)

the deflection w is interpolated by
2
w()= E‘x WENE(E)FODE(E) wrvvvveeereee (28)

Here 4 is the length of an element, £¢ (0, 1) is
the local coordinate attached to each finite
element, and £=0 and £=1 correspond with
nodal points of the element. Then

AA@))=VTKW and fou)=VTF* -(29)
where
WT={wt, 01, (F)7={f; mj),

t
K22i_1,2j—l=hag EIN#'N#"d§, 1
0

szhS; FNFdE, etc. I

The penalty term B%(w:)(v) is discretized by the
rule of numerical integration such as the trape-
zoidal quadrature rule. Suppose that the rule of
numerical integration

~

1 Ny
\_ Sdn= % 0:f 0

is applied, where Ny is the number of integra-
tion points and ¢ is its weight. Then the penalty
term becomes

Be(w)(0)=h 3 —gulwr+s)(E)u(ED
Ei=(n:+1)/2

Applying the relation

—r=H(—v) with H(v):{l if ”>0}

0 if v<0

we have
Be(w)(w)=h ¥, H(—(w+5)E)
-9i((w+s)(Ew(E:)

i.e., in the vector matrix form,
BAw))=VTKH(W)W+VTS(W) oeon (34)

Substituting (29) and (34) into (26), and summing

2
up clementwise terms (i.e., K=}, K% Kp(W)=
- 2e °

E
Z]l Kp*(W) etc.), we can meet the following global
Pt

form
({(+e“]~('p(W;))WE=F—e”ls(Ws) --------- (35)

since v is arbitrary in (26). The equation (35)
is certainly nonlinear because of the penalty
stiffness Kp(W:) and the penalty load vector

S(W). One of methods to solve (35) is the
following successive itevation scheme

(B +e (W )W = F—e s S(W )
n=1,2,...

(2) Choice of Integration Points

Natural choice of numerical integration is
either the two-point trapezoidal rule (Ng=2,
gi=1, i=1 and 2, n=—1, g2=1) or the four-
point trapezoidal rule (Ng=4, gi==g1=1/3, g:=
0:=2/3, m=—1, 12=—1/3, 9s=1/3, p=1). If
the two-point rule is applied, then the unilateral
constraint w+s>0 is controlled at the nodal
point of the finite element model. For the four-
point rule, we control the condition both inside
and end points of each element. Since the first
order Hermite interpolation is represented by
the cubic polynomial which has four independent
coefficients, w-4-s is zero every-where in the
element if w+s is zero at four different points
in the element. It is also possible to apply
the four-point Gaussian rule instead of the
trapezoidal rule. Numerical experiments show
no essential differences between these choices
as long as deflection is concerned. We will show
this in the following example.

(EXAMPLE 1) ILet a simply supported beam
be spanned over a flat rigid foundation, and let
the distance between the beam and foundation
be s=0.2. Suppose that the stiffness £ and the
length L of the beam arc 1) and 2), respectively.
Using symmetry of the problem, we just con-
sider only the left half portion of beam which is
divided into four finite elements. Suppose that
the uniform load f= —10 is applied on the beam.
Then the left edge of contact is given by

a= Y24ETs[(— f)=0.8324
and the deflection is obtained as
r (fla—xP[ED(—(a—2)/24
+af12)—s if z<a

1 —s if x>a
Moreover, the reaction force at the edge x=a
of contact is given by R=—fa/2.

Numerical results are given in Table 1. While

more than ten iterations are necessary to obtain
convergence of the successive iteration (36) for

w(x)=
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Table 1 Deflection of the Beam (EXAMPLE 1).

2-Point 4-Point 4-Point Exact

x Trapezoid Trapezoid Gaussian  Solution
0.00 0.0000 0.0000 0.0000 0.0000
0.25 —0.1140 ~0.1149 —0.1149 —0.1109
0.50 ~0.1811 —0.1822 —0.1822 —-0.1796
0.75 —0.2000 —~0.1997 —0.1997 -0.1996
1.00 —0.2000 —0.2000 —0.2000 —0.2000

Number of 3 15 17

Iterations

Uniform Load f:—if)
I I O I

TS T IS T ST I JITTS 175 TS IS TT=775 73

the four-point rule, only three iterations are
enough for the two-point rule and its quality of
numerical solution is not bad as long as the
deflection of the beam is concerned. However,
at the point x=:0.75, where contact does not
occur theoretically, the beam contacts the
foundation in the case of the two-point rule,
whereas contact does not occur for the four-
point rule.

(3) Relationship of ¢ and 2

If the problem is well-posed, the penalty
parameter ¢ should not depend on the mesh
size & of the finite element model. The parameter
h affects only on the “‘size’” of the admissible set
of the finite element model which is a subspace of
the Sobolev space H? (0, L). On the other hand
the convergence of the penalty formulation as
¢—0 is dominated by the topology of H? (0, L),
but is not dominated by the ‘‘size’” of the ad-
missible set. However, if we adopt the succes-
sive iteration (36) to solve the nonlinear penalized
equation (35), the penalty parameter e seems
to depend on the mesh size 2. This is observed
when we solve the contact problem described in
EXAMPLE 2 below. If ¢ is small enough, say
e=107%, and if £=0.05, then the numerical solu-
tion obtained by (36) is the one which is locked
on the foundation. If 2=0.25 for ¢=10"%, we
can get a reasonable solution as well as the case
that 2=0.1 for ¢=10"'. It is possible to avoid
this kind of dependence of ¢ upon 4 by changing
the method of solver (36) of (35). Indeed, the
following two-step iteration

(}_g+€"1(t){<p( WiDNWill=F—e{()S(WTy,)

leads independence of € and %. Tteration is taken
by » and £. First, for fixed ¢, we iterate (37) with
respect to » until convergence is obtained, then
(£+1)-th step is performed by taking e(t)—0 as
t—0, for example ¢(f)=10"*. The two-step suc-
cessive iteration thus starts from mild penalty

to severe one gradually as incremental method
for nonlinear equations.

(EXAMPLE 2) Let a cantilever be supported
on the rigid foundation, the shape of which is
given by y=—x% Suppose that the stiffness EI
is 1/12 and the length of the beam is L=1. Let
a point load P=-—0.5 be applied at the end of
beam, and let the beam is divided into ten finite
elements. In this case the length a and force Pe
of contact are given by

a=—PL{(6EI—P) and Pc=6EI—P at =a
The deflection of the cantilever is obtained as
—x% if x<a
(P(BLx2—x%)+ Pe(3a%x —a®))/6ET

In the present example, a=0.5, Pe=1. at x=
0.5, and

w(x)= {

(8)

0.760 -
[
Z
d ( n) ; Number of iteratiens
£ for a fixed &
y
3
&
@
5 0.755
-
o
8
o
&
®
£
=
S
o
g
a
b
e
Q
@
o
0.750
A ” (3) Exact Solution

1073
Penalty Parameter §&

Fig. 1 Convergence of the Two-step Successive
Tteration Method For Penalty Solver.

5A=0-69o9
via

a L P,=0.6379
' : 3,70.6913

.5 < f=pP n/(P,+P,)=0.032
Loz /(2 2)20.00 Fe0.4
« approximation of the contact
6 area is aA:o.uja

+ Exact contact area ap=0.44%

« Penalty Method
£=0.3
Converge at the 9-th iteration

1.0

Fig. 2 Deformed Configuration of the Beam by
Penalty Method for EXAMPLE 2.
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—z% if 2<0.5
w(x)= .

28-32%4-1.520~0.25 if £>0.5
Convergence of the two-step successive iteration
is shown in Fig. 1 by the deflection at the end
of cantilever. The penalty term Be(w:)(v) is
constructed by the four-point trapezoidal rule.
While rather many iterations are necessary to
converge for the larger penalty parameter e,
very few iterations are required for the smaller
e. Deformed configuration of the cantilever is
given in Fig. 2. It is easily seen that the finite
element approximation provides the exact solu-
tion is particular case.

(4) Contact Pressue p.

From the value of the penalty virtual work
(13), an approximation of the contact pressure
p. can be identified as

PeB)= =€ @i S) (L) o (38)
if the analogous manner to the case of plane
elasticity'® is applied. However, this (38) may
not be proper for the present beam contact
problem, since concentrated reaction forces
may exist at edges of contact surfaces. Such
point reactions cannot possess the virtual work
represented by the integral form. In order to
include such point forces, the virtual work due
to the contact pressure P should be given by the
duality pairing p(v) on 1V"xV for peV’ and
v € V. Thatis, p(.) is a continuous linear functional
on V. Thus, from the penalty virtual work (13),
we identify

p(v)= —6‘1\: (wets)(®)v(X)dE - omeeeee (39)
instead of (38). By (32),

p(vy=€e'B(w.)(v),

Bw)()=h 3 ~gsl(aw+)EN0(ED
Setting

PpOtm e i (@A) (Ei) e (40)
yields

Be(w)o)= £ poin(E) = ¥ pi(3Ew)

where §(.) is the Dirac delta function. Then

Ng E . Ny
)= 3 T peiOEN) = 3 p (3(mnw)

ie.
pe= :épiz,;(m) .................................... (42)

Thus p.!, obtained by (40) and (41), is the value
of the contact pressure p. (i.e.,, the equivalent
nodal contact force) associated with the point
x=ux;, where Ny is the number of all integration

Table 2 Convergence of the Contact Forces as e—0.

zr/e 10 1 0.1 0.01 0.001
0.366 7 0.0643 0.0221 0. 0. 0.
0.4 0.0829 0.0677 0. 0. 0.
0.4333 0.1024 0.1277 0.0529 0. 0.
0.4667 0.1203 0.1904 0.258 1 0.0796 0.0010
0.5 0.1337 0.2369 0.4067 0.8741 1.0000
0.5333 0.1393 0.2398 0.2892 0.0492 0.
0.566 7 0.1313 0.1352 0. 0. 0.
0.6 0.1304 0. 0. 0. 0.

pl 1.0516 1.0197 1.0069 1.0030 1.0010

Number of 7 3 1 9 9

Iterations

(*) Exact Solution is P=1. at x=0.5.

points in the model.

We shall show p.7 for EXAMPLE 2 in Table
2. It can be realized from the table that p. at
x=0.5 converges to p rapidly as e—0.

4. MIXED METHOD

We introduce a variational inequality of the
mixed type, which is compatible to both penalty
and relaxation methods, in this section.

Suppose that

in the inequality (1). If M € Ho(0, L), integra-
tion by parts in (1} yields

L L
~§ JW’(v—w)’deS I Y T (44)

0 0

A variational expression to (43) is
L
S MIET—w"Y(N—-M)dz=0
0

for every N € H(0, L). By integration by parts,
we obtain

SOL (MJED(N = M)+w'(N —M)")dz =0

Adding (44) and (45) yields a mixed variational
formulation to the primal variational inequality

(1);
(w, M) e K- KOL (MJEIYN ~M)+w'(N— M)’

<

—M'(v—w))dx> goLf(v—w)dx,

J

for every (v, N) € K oeoeeoieiimniniiinn, (46)
where
K={(w, N)e Ho"(0, L)xH'(0, 1): v+s=0}
.............................. (47)

The space Ho™(0, L) is the completion of C7(0,
L) in the norm of H™(0, L), and C§(0, L) is
the space of all infinitely differentiable functions
with compact support in (0, L)V,
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Difterences of (47) from (2) are that the deflec-
tion w is merely an element of H'(0, L) in (47)
via H*0, L) in (2), and that the moment M is
assumed to be in H! (0, L) while the moment
EIw" in (1) belongs to L?(0, L). The later fact
implies that point moments cannot be applied
on the beam within the framework of the mixed
formulation (46). However, since (46) is defined
on HY0, Lyx H' (0, L), C’elements are applic-
able to discretize the variational inequality (46),
while C'-elements are required for (I).

Let the interval (0, L) be decomposed into

the set {l¢} E of subintervals; [e=(Ze, Tet1) such
e=1

that U [,=[0, L). Let £ be the local coordi-
nate attached to a specific interval /. such
that £=0 and £=1 correspond to x=x. and &=
Tey1, Tespectively. Within an interval ., M
and @ are interpolated by

2

M(g)ziz;,1 Mipi(£) and w(g):él wigi(§) 1

PuE)=1-£ and $o(§)=§ I

Substitution these into (46) yields

2
2 (NT=MOGGM+ ki)

1

i

— (@i —w)hEM > ﬁl W —wh)fy e (49)

where
(1 (1
Ri=h\ G EIE, k=) pi'prdEin 1
1
fr= Sofqﬁjdg I
Here # is the length of the element. Assembling

of (49) all over the intervals {l.}, we arrive at
the global form of the discretization of (46):

oo
(M,w)e Kn: X (N'=MYK,MI+ Kiw))
Jri=1

»
—Wt—w ) KLMIZ> 3 (vi—wh)F:,
i=

for every (N, 0) € Fp cvereemmeeramnenemnenens (51)
where
Kn={(N,v) e RN x RV :
Ni=N¥=pi=yp¥ =0, oi+si20] (52)

Here N=FE+1 is the number of nodal points,
st==s(x:), x: is the coordinate of the i-th nodal
point, and

F E
Kiy= % k% and Ki= X b

(1) Penalty Methods

Since the piecewise linear polynomial is used
for the deflection, the contact constraint

(w+s)(x)=0 in (0, L)
is satisfied if it is satisfied at each nodal point
of the finite element model. That is, provided
with the distance s is given by the piecewise
linear polynomial, K. is a subset of the con-
strained set A, (47). Applying the penalty

—¢t Zv:l (wi+si)‘('vi~wi)

in the formulation (51), we have the penalized
problem

N
¥ K M+ K3Lu/=0 l
t=1

N
— 2 KL MI—¢ Y (witsH) =F; f
i=1

Convergence of (54) to (51) as ¢-0 follows from
the similar arguments in the previous section.
Nonlinear equations (54) is solved by the
successive iteration similar to (36). In this case
we may not need to use the two-step successive
iteration (37), since the matrix K? in (54) is
associated to the Laplace operator. Moreover,
since the penalty term consists of only the
deflection at nodal points. This leads much faster
convergence of the successive interation is expect-
ed than the case (34) of the primal formulation.
As an example of the mixed method, we solve
a similar problem to EXAMPLE 2 with the
applied load P= —0.4 at the free end of the canti-
lever. The beam separates from the foundation
at £=4/9, and the deflection of the end point
is §=0.69 13 in this case. When the beam is
discretized by ten finite elements, the point at
which the beam separate from the foundation,
locates inside of an element. Thus, a super con-
vergent result (i.e., the numerical solution which
is exact at nodal points) might not be obtained,

—_
o
=3

ol

47

. Conv

S5F iteraiion
s . Penalty Faramcier e
- £-0.0001 8075
-5 Piyid
Foundation

3
-6 ® : Con:act Ea
.7 O . Separate

Fig. 3 Numerical Results of EXAMPLE 2 with
P=—0.4 by the Mixed Penalty Method.
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while it has been achieved in EXAMPLE 2.
The numerical solution indicates that nodal
points up to x=-0.5 contact the foundation and
that reacting pressure P; and P: are obtained at
r=0.4 and 0.5 as shown in Fig. 3. Since the
contact force exists only on the point z=a, P
and P: may imply an approximation of the sepa-
rating point of the beam. Since moments should
not be creased by the contact force about the
point where the beam separates from the founda-
ation, we can obtain the approximation

aa=Is+Poh/(Pi+ P2)=0.4+0.032=0.432
via the exact value ag=-4/9. The deflection of
the end of cantilever is §4=:0.690 7 via 05=0.691 3,

i.e., only 0.09%, error involves in the approxima-
tion.

(2) Relaxation Methods

While the penalty method has been applied
to solve (51), the relaxation method is also ap-
plicable to solve the variational inequality (51).
Indeed, since K! is invertible, we have

N
Mi=— ) Z (Al);;Kihwh ..................... (55)
E k=1

from (54):. Substitution of (55) into (5!) reduces
the variational inequality

N
2 (=) (Kiw/—F)=20,
7=

1

vyitsi>0

13

where
N
Kij= 3 KGR oo (57

It is noted that for any positive number p, (56)
is equivalent to

i,

N
1 (wi—wwi—w+ p(Kyw/ —Fi))=0
L

/ N
wi-_—MaxK—si, wi-—p(\ Zlk)ijwj—l:i)\) ---(58)
Jj= i/

The last step is clear from the consideration in R.
For a given f, the problem

azs: (a— Hb—a)=0, b=s
has a unique solution a=Max(s, f}). Thus, we
need to solve the nonlinear equation (58) by
the following projectional relaxation method:
(i) Pick witz—st, 1<i<N

. . . / 7_‘
(ii) whq:Max«E—sL, U=y = % Ko,
i<

N ) ‘ )
— 3 Kuwdt 1«3) / Kapj oo (59)
J=i+l /
(iii) Repeat (ii) until a small tolerance
N N

er— igl llUfH”‘wﬁI/iZ::l lwfﬂ[

is obtained.

Here p=v/Kuin has been applied in (58). The
iteration scheme (59) is called the projectional
super over relaxation (S.0.R.) method and pro-
vides convergence for 0<r<2. Numerical
experiments imply that the optimal factor »
exists in the interval (1.9, 2) for the mixed
formulation (56).

5. RECIPROCAL METHOD

The methods discussed so far control the
deflection of the beam in order to satisty the
unilateral contact condition. We here describe
the method which control the contact pressure
instcad of the deflection of the beam. This
method is certainly not the Lagrangian multi-
plier method which had been applied in the
previous paper” and which could not provide the
accurate contact pressure and fast convergence
of Uzawa’s algorithm to find a saddle point.
The present method is based on the reciprocal
formulation of the unilateral problem which is
written by the contact pressure”. We first re-
call the unilateral contact condition to get the
reciprocal formulation:

=0 it w+s=0 (contact)

p=0 if w+s>0 (separate)
and

WASZO0 N (0, L) vvreeeermmmmeesaniicnnaannns 61)
Here p is the contact pressure. 1t can be casily
proved that the system of inequalities (60) and
(61) is equivalent to

P20 (w+s)(g—p)=0, Yqg=0 «oeeveneee (62)
If the contact pressure is known, the equilibrium

equation of the beam under the applied force f
is written by

(ETw”)'= f4p in (0, L) «-erreeerenenens (63)
and the associated boundary conditions
wW(0) = (L) =0 covermreeniinrrieeas e (64)

The boundary value problem (63) and (64) is
uniquely solvable by the form

W=G(f)FG(P) . wwrrerermmmemmriee (65)
Substituting (63) into (62), we have

p=20: (G(PY+8)g—p)=0, Yg=20--eeeeo (66)
where §=s-1+G(f). We now extend the above
pointwise arguments to the variational one.

Let g be an arbitrary continuous linear func-

tional defined on a closed subspace

V={(ve H¥0, L); v(0)=v(L)=0} ---ee-e: (67)
of the Sobolev space H*(0, L). Let V' be the set
of all continuous linear functionals on V, and be
called the dual space of V. In general V'’ con-

tains point and distributed moments and forces
Let G be the inverse of linear operator A: V-V~
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defined by

L
Alw)(v) = So Elw"v"dx

where (.)(.) is the duality pairing on V'X V.
The variational form to the pointwise relation
(66) is then written by

peEK: (g—pUG(P)+3)=0, geK - (69)
where
K:{qe vV’ qzo} .............................. (70)

The form (69) is called the reciprocal variational
inequalily to the primal one (1).

(1) Approximation of Green’s Operator

If the stiffness E1 of the beam is not constant,
it is difficult to obtain the closed form of Green’s
operation to (63). Such difficulty is overcome by
introducing an approximation of Green’s opera-
tor, constructed by the inverse of stiffness
matrix of the beam.

Suppose that the deflection of the beam is
interpolated by the first order Hermite cubic
polynomial in each finite element as in Section 3.
Iet G is the inverse of the stiffness matrix K
under the simply supported condition w(0)=1w(L)
=0. Then the inverse relation (65) is written by

WmGEHGP oo, (71)

where generalized displacement W7={w?, 0},
generalized load FT={f; m;}, and contact
force PT={f;®, mj?}. The vectors F and P are
equivalent nodal force and moment due to the
applied force f and the unknown contact pres-
sure p, respectively. The vector W is consists of
nodal values of the deflection and its gradient.
Combining (71) and (74) yields an approxima-
tion of Green’s operator:

w(@)=G{ [N x)+G(p)(x)
=N@)TGF+N@E)TGP oovevverenenes (73)

where N(x)T= {Ni(x), Mi(x)¥, is the vector of
shape functions.

We next discretize the contact pressure p,
which merely belongs to the dual space of V7,
(67), in the variational formulation. That is, p
is a linear functional but not a function such as
the deflection w(x). This implies various manners
of discretization of p. We shall show typical
three kind of discretization of p, as shown in
Fig. 4:

a) d-function

For the one dimensional domain, the Dirac
delta function d(z:) associated with the point
i belongs to H™2—¢(0, L), ¢>0, i.e., d{z:)e V"
Then the contact pressure p can be discretized
by

S(xi)

i-1 i i+l
po——y
b= B ny—d
(1) d-function
H{x,)

T

i+1

i
b= By e By —

i1
(2) Step H-function

Pix,)

f’A‘

- .
i1 i 141
bog 4 0y, —

(3) Linear Polynomial Function

Fig. 4 Basis Functions for the Contact Pressure.

p: g:lpLa(xl) ...................................... (74)
SR () ZU(Er) werereremromeesmsmmicammniiainins (75)

The value p* corresponds to the resultant of
contact pressure on the interval (zi— hif2,
i+ hie/2). Moreover, the vector P is formed
by fi?=p/ and m;#=0.

b) H-function

The second way of the discretization of p
uses a kind of the Heaviside step function H.
Let

N

p= .glpiH(xi) .................................... (76)
Hzo)( )—H-“1§1i+lLi+l/2 (#)dz 1

piI= Jxi—hif2 v Tt Tn
Hi=hipi+h)]2 I

The value pi/H: is the average of the contact
pressure on the interval (Zi—hi/2, Ti+hi/2).
The equivalent nodal force and moment of
are

N N
fir= _Z;lpiH(xi)Nj and mP= ;lp"H(xi)Mj

c) Linear Polynomial

The third discretization of p is the one which
is similar to the finite element interpolation.
Here we consider the linear interpolation, but
extension to more sophisticated interpolations
seems to be straightforward. Let

p= e
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.............................. (80)
where
(x—2i-1)/hi if ©e(xi, T4 1
()= (—x+ Ty 1) b H 2 € (X, Tepr)
0 if otherwise J
.............................. 8D

The value of p¢ is the resultant of the contact
pressure on the interval (@i, i) with respect
to the weight function ¢i(x). The equivalent
nodal force and moment are given by

fir= g]lpigb(xi)Nj and mP= gjlpigé(xi)]b’[j

We obtain the form of discretization of the
reciprocal variational inequality (69). To do this,
let

p= é}lpig(xi) .................................... (83)

where B(x:) is onc of &8(r:), H(x:), and ¢(xi).
From (73)
$(x)=s(x) +N(x)IGF
G(pN@)=N(2)TGP

Then we have

)i N
qg(G(p))= ) é‘vj:lqicupj and g(s)= i};lqisi

.............................. (85)
where
Ciy= (B(x:) N&, B(z:) M4
Gor—1,2n1 Gagt,on | { B(xj)Nn )
T (B )
Gok,ont  Garyon IB(xj)Mn

and
Si=B(x)s+ {B(x:)Nj, B(.Z‘i)JWj}gF ------ 87

Therefore, the discretization of the variational
inequality (69) becomes

N
pi20: 2 (g'=pHCiipI+ 5120, vg'z0
i,)=

For the case that B(x:)=4(x:), we have
Cii=Gaimi, 251

The system of inequalities (88) can be solved by
the projectional S.0.R. method described in
(59), since the matrix C is dominated by its
diagonal and is positive definite. The same
problem with EXAMPLE 1 is solved by the
reciprocal method, and its numerical results
are shown in Fig. 5. Total pressure of contact
is pe==5.985 via the exact one is 5.838. Moment
by the contact pressure at the origin is 5.063 8

KT TISI7S TS TSI TSI 77e

Projectional S.0.R. Method
. r=1.9
« Converge at the 91-th
iteration P2:2'76l

Y1:3.28

Fig. 5 Numerical Results of EXAMPLE 1 by
Reciprocal Variational Inequality.

while the exact one is 5.0. These numerical solu-
tions indicate properness of the approximation
of the reciprocal variational inequality.

(2) Direct Discretization of Green’s Operator

If the stifiness EI is constant over the beam,
we can explicitly construct Green's operator for
given boundary conditions. For example, if the
beam is simply supported, we have

G( p)(x)=§fq<x;y) P)dy

(L—x)2L~x)x(y—y*)/6EIL
if z<y
(L=—9)2L~y)y(x—a®)[6EIL

g(x; y)=
l it x>y

If the contact pressure p is given by (84) with
B(x:i)=48(x:), then

Cigm=Q(Lq; Lg)eereeerernermemrroirnrreininiiniaans 91
Thus we can get the similar inequality (88)
for the case that Green'’s operator can be obtained
by the closed form.

6. CONCLUDING REMARKS

Unilateral problems of a beam have been
formulated by the primal, mixed, and reciprocal
variational inequalities, and have been solved
numerically by the penalty and projectional
relaxation methods after the finite element
approximations. In this paper we have observed
(1) the primal variational inequality of the
Signorini problem can be solved by penalty
methods (2) convergence of the penalized solu-
tions to the one of the variational inequality is
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proved as the penalty parameter e tends to zero,
(3) the penalty term is discretized by the rule of
numerical integration, (4) the nodalwise penalty
(i.e., the two-point integration rule} may be
enough for the constraint while the four-point
integration rule of the elementwise penalty
provides much more precise results, (5) the
penalty parameter ¢ does not depend upon the
mesh size A of the finite element model if the
two-step successive iteration method is applied,
(6) the mixed formulation of the Signorini prob-
lem leads the system of inequalities which can
be solved by both penalty and projectional
relaxation methods, (7) quality of numerical
results of the mixed formulation is comparable
to the one of the primal formulation with more
sophisticated finite elements, (8) the contact
pressure is controlled by the projectional relaxa-
tion method is the problem is formulated by the
reciprocal variational inequality, (9) special
discretization is necessary for the contact pres-
sure which is a functional but is not a function,
(10) expression of basis for discretization of
functionals are given by the Dirac delta and
Heaviside functions, (11) the reciprocal formula-
tion is also obtained by the direct discretization
of Green’s function, and (12) quality of numerical
solutions by reciprocal formulations is accept-
able.

It is noted that the discussions in this paper
can be extended to unilateral problems of linear
and nonlinear plates™ and shells without specific
modifications. Furthermore, methodology of the
penalty method, the mixed and reciprocal formu-
lations with the projectional relaxation method
are applicable to almost all unilateral problems
in mechanics®»'®.
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