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A TENSOR EXPANSION OF FINITE ROTATION AND MOMENT

By Masahiro Ar* and Fumio NISHINO**

1. INTRODUCTION

In the linear theory of three-dimensional
mechanics, the infinitesimal rotation may be
treated in the linear vector space, similarly to
the treatment of the moment, i.e. the rotation is
usually resolved into components with respect
to a set of three orthogonal axes. However, in
the geometrically nonlinear problem, the three-
dimensional rotation of finite magnitude can not
be treated in the linear vector space, as is
generally known.

This paper intends to analyze the three-dimen-
sional finite rotation in the tensor field, and to
define the general coordinate system of rota-
tion. The expansion of this analysis is in com-
plete correspondence to the tensor analysis of
translation, which yields the curvilinear coordi-
nate system. To indicate the analogy of this
analysis to that of the curvilinear coordinate
system, the Fligge’'s description about the
tensor analysis of translation® will be summarized
in Appendix I.

2. TENSORIZED EXPANSION
TION

OF ROTA-

In the following description, the theoretical
expansion will be developed in the tensorized
form, and the summation convention will be
performed over the indices which mean the
spatial components, unless the contrary is
explicitly stated.

First, consider the usual vector notation of the
moment and infinitesimal rotation. As well-
known, it is only the moment and infinitesimal
rotation which can be offered to this system of
notation, since the finite rotation is not in the
linear vector space. Denoting the spatial com-
ponents of moment by {(Mw}={Mwn, M,
M sy} with respect to a right-handed set of three
orthogonal unit vectors {i}={iw, i, ie)
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under the rule of right-hand screw, the moment
vector is usually written as

M= (iyiiy woreererermsermeemmeneneoensiinies (1-a)

and, similarly, the vector of infinitesimal rotation
is written by

BO=00ciyiciy ++erveererrerrermerscaesneninnnins (1-b)

where {86¢,;} are the components of rotation
around the unit vectors ({iuy} under the same
rule. Here, the notation §( ) indicates an
infinitesimal quantity or differential.

The above expressions for the moment and
infinitesimal rotation mean the moment of

magnitude |M|=(MuMw)Y* and the rota-
tion of magnitude 186]=(06¢:,80¢»)/* around
the axes of direction cosigns
cos aiy= M /| M| }
..................... 2.a,b
cos Bciy=00¢i>/|66) ( )

respectively,

equations;
a(x+yy=ax+oy
(e+p)x=0x-+fx
a(px) = (af)%

lx=x

and satisfy the following four

in which the Gothic letters x and y indicate the
vectors defined by Egqs. (1-a, b), and the Greek
letters o and B, scalars. The set of Egs. (3-a~d)
is the necessary condition to be in the linear
vector space.t? The proof of the above statement
and equations for the moment vectors can be
derived from both the rule of parallelogram of
forces and the theorem of Varignon,® and that
for the infinitesimal rotation vectors, from the
geometrical expansions, respectively.

The dot products and cross products between
the unit vectors {i«)} are, respectively, defined by

iy in=04s }
iy X i =eijuim

where the symbol d:; means the Kronecker
delta, and eijx, the permutation symbol. The
unit vectors {ix;} may be regarded as a set of
the base vectors of the linear vector space. Then,
once the dot and cross products between (i}
are defined, those products of any two vectors
are specified under the rule of linear combination.
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Fig. 1 Space-fixed {I},;} and rotatable {i;))}.

It is evident that the dot products M-M and 6606
indicate the squares of magnitude of M and 69,
respectively, and that the product M-06 means
the infinitesimal work of M through §6.

With the above preliminary, the tensor expan-
sion of the three-dimensional finite rotation may
be developed as follows: Consider the two sets
of three orthogonal unit vectors of a right-hand
system, one of which is fixed in the space and
denoted by {I;;1} = {I13, I, Irs7), and the other is
finitely rotatable from the space-fixed set and
denoted {icy} = {iw, e, iw}. The relativity of
the rotatable {ii)} to the space-fixed (I3} is
completely represented by the orthonormal
matrix [TH7] which acts on the transformation
from {I;;4} to {iy} as

) TH, T8, TH Iml
iy )=|TH, TH, TH | { Iy
o) T(3>, T(aw T<[3)] 1[3][

In the nine elements of [T}}Y], there are the
six normality and orthogonality conditions given
by

TEITH =845, or THITH}=48""--(6-a,Db)

Then, the number of degrees of freedom of the
rotation may be concluded to be three.

Suppose a general system which can specify
the three-dimensional finite rotation by using
three independent parameters (e®}=={e!, ¢ &%},
such as the Eulerian angle system. If the
system can give any orthonormal matrix by
varying the values of the parameters, then let
the independent parameters {e?} be called the
general coordinates of rotation. Throughout
such a procedure, the elements of [7TT37] may
be regarded as functions of {e*}, holding the
constraining conditions (6-a, b).

For independent infinitesimal variation of the
coordinates d{e®} from a finitely rotated state
{es}, the associated change of (i) against
the space-fixed (I;;;} may be derived by
differentiating Eq. (5} as follows:

Sty =T ey =T 1060 T gy evveevveeerennes (7)

where the notation ( ),. indicates the differ-
entiation with respect to ¢*. On the other hand,
supposing the same infinitesimal rotation, which
are resolved into components around the axes
of the rotated unit vectors {i¢;)} in the same
sense to Eq. (1-b), denoted by {86}, the same
changes of {i¢)} may be also written as

Sicirmeikd0einiciy wovererrereireneinninnians (8)

After transforming {I;,;} into {iw)} by the re-
lations I =T{) iy, equating the right-hand
sides of Eqs. (7) and (8), the linear relations
between {06} and d8{e"} are obtained as

100y =TtK L, THE 18ex

The solution of Eqgs.
by
08¢y = B be” }
BE=(1/2)esnw Tt THS?

(9) for {80} is written

Here, expanding the concept of the usual vector
expression of infinitesimal rotation, Eq. (1-b),
the covariant base vectors {g.}=1{g, g2, gs} of
the general coordinate system are now defined
by the expression

00=de°ga

By equating the right-hand sides of Egs. (I-b)
and (11) through the relations (10-a), the covari-
ant base vectors may be explicitly represented in
terms of {i«)}, as follows:

Ga=P0iy wereerrereine e (12)

The physical meaning of the expression (11) may
be intuitively understood as the inbinitesimal rota-
tion resulting from the superposition of the rota-
tions of magnitudes de“lg,! around the respective
unit vectors i,=4¢./lg.] under the rule of right-
hand screw, where not summed, a=1, 2, 3. Here,
the independence of the parameters {¢¢} is equal
to the conditions that any of the base vectors is
not zero vector, and that they are not on a
same plane element in the region of {¢°}; that is,

Gre (G2 X ) 3 0-evvevrvemminii (13)

The contravariant base vectors {g®} are usually

defined by the relations
g°-gp=0%

Representing {g°} in terms of the unit vectors
(i} as

== Bllcy creerereeeseeees s (15)

the transformation coefficients &, can be deter-
mined by the substitution of Eqgs. (12) and (15)
into Eqgs. (14) to yield the relations:
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BEBPZEE e (16)

That is, the coefficient matrix [8§)] is obtained
as the inverse of [8¥].

The other quantities related to the general
coordinate system of rotation, such as the metric
tensor and the permutation tensor, etc., and more
advanced operations, for instance the covariant
differentiation, are defined in the same way
to the usual three-dimensional tenmsor analysis,
such as in the curvilinear coordinate system, see
Appendix I, or Ref. 2).

3. APPLICATION TO EULER ANGLES

The Eulerian angle system is one of the most
usual specifications of the finite rotation. Let
the angle parameters be denoted by {¢*}={¢',
¢%, ¢°) : initially setting the rotatable {i«;} onto
the space-fixed {3}, ¢! is the first angle of
rotation around iuy under the rule of right-
hand screw, and ¢? and ¢* are the second and the
third around i), and iw), respectively, as shown
in Fig. 2. The transformation matrix from {Z;,1}
to {i»} may be written as

[Ty
" cos p?cos¢?, sin ¢! sin ¢ cos ¢?
+cos ¢! sin ¢* )
=| —cos¢?sing® , —sin ¢! sin ¢?sin ¢*
+cos ¢! cos ¢* s
sin ¢? , —sin ¢! cos ¢?
~cos ¢! sin ¢? cos ¢*
+sin ¢! sin ¢?
cos ¢! sin ¢? sin ¢*
+sin ¢! cos ¢?

cos ¢! cos ¢?

When denoting the disturbance of (i} due
to the infinitesimal increments of {p*} by & {iw}
=[00%] {i5}, the elements of [D{] may be
obtained from the relations [8®]=[8T!51]

i3 iz 13

11.i1

[TEET as follows:

[6DE3]

0, sing?pl+8¢d, cose?sinp*do!
—cos p*d¢?

| —sing?p'—d¢*, 0, cosg’cos 0!
- +sin 38
—cos tsin @*dp’  —cos ¢? cos p*dp!

+cos p*8p?, ~—sin ¢38¢?, 0_
.............................. (18+a)

The same matrix [0O] for the infinitesimal
angles of rotation around the current {icir),
{80y} = (86c1y, 00¢ny, 60}, may be written as

0 , 80w, —00w |
[3‘1)5{:3]: —00w , 6 , 00y
00, —60ay, 0 _

Equating the elements of Egs. (18-a) and (18-
b), the coefficient matrix which relates the two
sets of angle disturbances as {80} =[B¥]7d (0"}
is given by

Tcosp?cosg®, —cos@ising?, sing?
B¥]= sing® cosp® 0
_ 0 , 0 s 1
.............................. (19)

This matrix gives also the relation between the
covariant base vectors of the Eulerian angle
system {g,} and the rotatable unit vectors
(i} by {(g9.)=[BP{iw>}. Here, this relation
between &{p“} and {86¢,} was already indicated,
for instance, in the description about the Eulerian
angle system by Washizu®, but with no insight
into the extensibility in the tensor filed. The
matrix of coefficients relating the contra-
variant base vectors to the rotatable unit vectors
as {9%)=[B&]{i»} is obtained by inverting

[BP] as
i3
iz
A
Cy )
iz 2
S~ )

C¢2 12 12

Fig. 2 Eulerian angle system.
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_ . _
zc%% , sing®, —tan ¢?cose®
a = 3 3
[Bev] -——:102 iz , cos¢e®, tane’sing®
.0, o0, 1 }
.............................. (20)

Next, the covariant components of metric
tensor {g.s} are given from the relation [gas]=

BLIAYYT as

-1, 0, sin ¢?
[Gag]= 1, 0 | e @1
_Sym. 1 i
Similarly, the contravariant components are
given by
1, __sing® ©
(cos ¢?)? ’ ’ (cos ¢?)?
[gef]= 1, 0
1
| Sym (cos ¢ _|
e (22)

4. DISCUSSION

When the physical phenomenon, rofation, is
offered to the tensor analysis, at the beginning of
expansion, the phenomenon must be examined on
its extensibility in the tensor field by the condi-
tions that it is measurable and that its differentials
satisfy Eqgs. (3-a~d). The latter is the necessary
condition of being in the linear vector space.
Under these conditions, the tensor field of the
rotation can be supposed, and then the general
coordinate system can be introduced. In the
tensor field with a general coordinate system,
there exist the base vectors, the activity of which
is to connect the phenomenon and the coordinates
in the differential form. The derivation of those
vectors is usually attained by analyzing the
infinitesimal increment of the phenomenon due
to those of the coordinates. When, up to this
stage, the expansion is developed, the phenom-
enon can be said to be extended in the tensor
field.

While the concrete expansion for the phenom-
enon, votation, is given in this paper, the above
process is true of any phenomenon offered to
the tensor analysis; e.g. the same expansion
for the phenomenon, #ranslation, yields the
curvilinear coordinate system. The calculus,
operations and theorems, etc. are common to any
tensor field with three dimensions, where, of
course, the meaning of the base vectors is peculiar
to each phenomenon.

5. CONCLUSION

In the general coordinate system of rotation,
as defined before, where the finite rotation is
specified by the three independent parameters
{e*}, it is spontaneous that any infinitesimal
rotation 00 added to a finitely rotated state
{e?} is represented in terms of the differentials
of the general coordinates &{e®} as given by
Eq. (11), and, on the other hand, the moment
M acting at the rotated state may be resolved
into components with respect to any of the four
reference frames {I;;3}, {iw}, {g.) or {g°}.

As stated before, the dot product of M and 6
gives the infinitesimal work of M through 46,
and, when choosing the covariant components
from the four component expressions, from
the relations g¢,-g°=0f, the work Yz may be
written as

Syrn=M-80=D1 "

Furthermore, suppose the case where the acting
moment is related to the rotation, and where the
components {M,} are functions of {ex}. If the
functions have the symmetric properties Ma,s=
Ms,« in the region of {¢*), thus Eq. (23) is in the
exact differential form, and is integrable regardless
of the path of integration. In this case, the
moment having its potential ¢ r(e®) may be called
conservative.

In the sense of the above statements, the
covariant components {M.} may be regarded
as the only associated components of moment to
the general coordinates {¢°}. From Egs. (5),
(6-a, b), (12), (15), and (16), the covariant com-
ponents are in the relations of transformation
to the other three components {My;y}, {M»}
and {M*}, as follows:

Mo=Mgap=M =M THLP - (24)

APPENDIX I. CURVILINEAR COORDI-
NATES OF TRANSLATION

To aid the tensor analysis of the translation
to be developed, let a cartesian coordinate system
be supposed in the space, the coordinates of which
are denoted by {X[I]} = {X[l], X[g], X[g]} , and
whose unit vectors, by {I;;9} == {Iiy, Ipy, I} In
this system, the point position, which is specified
by connecting the distances X ;; with the direc-
tions of I;;, I=1, 2, 3, from the origin, is
denoted by

Pz Xppqdigg e (A. 1)

It is needless to say that this position vector is
in the three-dimensional linear vector space.
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The dot products and cross products between
the unit vectors {I;;;} are defined as follows:

Iy Iyy=01y }
Iy Iyy=ersxdiny

where the symbol &ry means the Kronecker
delta, and ek, the permutation symbol. Once
those products of the unit vectors are defined,
those of any two position vectors are specified
by the rule of linear combination of vectors.

In general, if, existing a system to determine
the spatial position of a point by means of three
independent parameters {z*}=={x!, 2% x%}, the
spatial position is in the one-to-one corres-
pondence to the three parameters, the system
with {z*} is usually called a curvilinear coordinate
system of translation. The functional relation-
ships between the curvilinear coordinates {x°}
and the cartesian coordinates {X;;} may be
supposed, and let the derivatives of the functions
be denoted by

aX[I] dx?

[ s o
,Ba oxx ﬂ[” aXU]

ee(AL 342, b)
Here, the preceding one-to-one correspondence
between the spatial position and {z*} is equal
to the condition that the sign of the determinant
of the derivative matrix [8L/7], or [8f;4], does not
change in the region of {x*}.

For any infinitesimal increments of {z¢}, the
point position is correspondingly disturbed, and
the disturbance may be obtained from the
differentials of the above functions as ér=r,,0x°,
where the notation ( ),. indicates the differen-
tiation with respect to x*. In the tensor analysis,
the derivatives r,. are usually defined as the
covariant base vectors, denoted by

Then, the disturbance of the position is written as
dr=0zg. (=0X1nli:)

By the substitution of Eq. (A. 3-a) into Eq. (A.
5), the relation dx°g,=pBL110x°I;,, is obtained,
and then the covariant base vectors may be
written as

Gam= LI gy vreeereemmmsnii (A.6)

The contravariant base vectors {g®} are defined
by the relations

From the relations ff;18%/)=44 and Eqgs. (A. 6),
{97} may be explicitly given by

o=y Ty e (A.8)

The covariant, contravariant and mixed com-

ponents of metric tensor of the curvilinear
coordinate system are, respectively, defined by
geb=ge-g#,

Jap=0a"9s, g',’af:y" /]

The substitution of Eqgs. (A. 6) and (A. 8) into the
above definitions yields the explicit expressions
for the metric tensor components, as follows:

Gap=PEIBYY, got=pri 1y, 93=03F
.............................. (A.10-a, b, ¢)

More detailed descriptions about the tensor
analysis of translation, more advanced subjects,
such as the covariant differentiation, and applica-
tions to the continuum mechanics are stated in
Tensor Analysis and Continuum Mechanics by
Fliigge.? In this book, the applications of
the tensor calculus to the solid mechanics are
performed only to the extent of the small dis-
placement theory, but it is of course that the
results of the tensor analysis can be employed in
the analysis of finite displacement problems, if
desired.

NOTATION

The following symbols are used in this paper:
06 =infinitesimal rotation;
M=moment;
r=position vector;
Jiy=Kronecker delta;
eie=permutation symbol;
Yrr=potential of moment;
(I ;1) =space-fixed set of three orthogonal
unit vectors;
{ics») =rotatable set of three orthogonal unit
vectors;
{e*} =general coordinate system of rotation;
{¢*} ==Eulerian angle system;
{#°} =curvilinear coordinate
translation;
{X| 17} =cartesian coordinate system;
[Tt51=orthonormal transformation matrix;
[0O]=matrix denoting disturbance of
{iw};
(B9}, (B, {BYY, {Bfr1) =transformation co-
efficients;
{M;;1} =moment components with respect to
{Irra};
{M,} =moment components with respect to
{iw};
(M o} =covariant components of moment;
{M*} =contravariant components of moment;
{g.} =covariant base vectors;
{g*} =contravariant base vectors; and
{066(»} =components of infinitesimal rotation
around {iq}.

system of
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