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FINITE ELEMENT APPROXIMATIONS OF SMOOTH
CONTACT-IMPACT PROBLEMS

By Katsumi KAMEMURA* and June K. LEE**

ABSTRACT

This study is concerned with finite element
models and solution algorithms for a class of
contact-impact problems which are formulated
within the frame-work of the modern theory of
variational inequalities. Discussions are limited
to smooth contact-impact of a linearly elastic
body to a rigid support.

A brief review on two distinct variational
formulations and associated algorithms is first
given and then a new algorithm based on recipro-
cal formulation is proposed. According to present-
ed numerical experiments, the new algorithm
converges rather rapidly and is easy to use.
Numerous examples including classical contact,
rigid punch, and transient analyses of impact
problems are presented and discussed. Possible
extensions of the current study are also discus-
sed.

1. INTRODUCTION

The classical contact-impact problems involv-
ing simple geometrical shapes are well document-
ed in the book by Goldsmith®. Although the
contributions made by the finite element method
in many areas of analysis are paramount, very
few capabilities are available to handle contact-
impact cffects largely due to difficulties in handl-
ing contact conditions. A fast and general algo-
rithm based on a sound formulation capable of
treating contact impact condition is in need.

This study is concerned with finite element
models and solution algorithms for a class of
smooth elastic contact-impact problems based
on the variational inequality formulation. A
rigorous mathematical discription of contact con-
dition in connection with variational inequalitics
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was given by Signorini® and Fichera®. Lions and
Stampacchia® extended the theory of varia-
tional inequalities. Use of inequality constraints
and variational formulation are well documented
in the book by Duvaut and Lions®. Having
inequality constraints on displacement and
stress on contact surface, variational inequality
formulations seem very natural and attractive
to finite element models.

Engineering type of approach ranges from
typical trial and error method (see, for example,®)
to quite elaborate scheme proposed by Hughes,
et al.”. Reported numerical examples look im-
pressive but variational formulations are mostly
of ad-hoc characters. A bit more mathematically
oriented work involves, most of the time, a varia-
tional formulation suitable to use a particular
type of optimization technique.

Kalker and Van Randen® solved non-Hertzian
half space problems by applying minimum energy
principle and a quadratic programing method.
Similar approach was also reported by Conry and
Seireg®. Kalker summarized variational princi-
ples used up to 1976 later in 10).

Woodword and Paul'V developed a numerical
technique of solving singular integral equations,
which can be applied to Hertzian and non-
Hertzian problems. However, the geometry of
boundary plays a critical role in the formulation
of integral equation and study was limited to
spherical shapes.

Panagiotopoulos'® discussed potential and
complementary energy principles suitable for
an optimization technique to solve elastic contact
to inelastic foundation. It was noted in 12) that
the convergence cannot be guaranteed when
a trial and error approach is used.

Fremond!'® treated the potential cnergy
principle with inequality constraint using the
Lagrange multiplier, which is briefly reviewed in
section 2.(2).

Kikuchi'® introduced reciprocal formulation
by wusing Green’s function.  Beauty of this
method is that inequalities appear only on the
possible contact boundary in terms of the contact
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pressure P and the system of inequalities become
smaller compared to one given by Fremond.

This study starts from the formulation given
by Kikuchi. A new solution algorithm for the
resulting finite element reciprocal inequalities
is proposed in section 2.(4) and evaluated via
numerical experiments in section 2.(5).

In chapter 3, the basic concepts of treating
contact condition is extended to solve impact
problems. Release condition is found to be as
important as the contact condition in this case.
When a time stepping method is used, one must
check contact and release condition for each
time step. For this reason, rapidly converging
algorithm and relatively small number of in-
equalities are desirable. The proposed algorithm
together with the reciprocal formulation seems
to fit here very well. Numerical examples include
impact of an elastic bar and sphere.

2. SMOOTH CONTACT OF ELASTO STATICS

(1) Contact Condition

Consider a regular and bounded elastic body
£ making a smooth contact against a rigid surface
as shown in Fig. 1. The boundary I" will be
assumed to be smooth and consists of displace-
ment boundary I'p, traction boundary Iy, and
possible contact surface of the undeformed body
I';, so that

I‘:I’Dul"Tul"c ................................. (2'])
I'nnIry=¢, I'rnle=¢, I'enIp=¢
.............................. (2.2)
and
wi=U, On Iy roveeerrmeeeniiiiiiiceieae 2.3)
Tigng=T1 0n Ip oeveereoriieeiriieieennann, 2.4
where
¢ : null set
ui : displacement vector
U={U:}: prescribed displacement vector
oij: component of stress tensor
n;: component of outer unit normal
vector on I”
T'={T:}: prescribed surface traction

L
I

Fig. 1 A contact problem under consideration.

Henceforth the usual summation convention is
enployed over the repeated indicies.

On the possible contact boundary I, we
introduce ¢"(x), the normal distance between
the rigid surface and Iy, and let ¢” and " be
the normal stress and displacement on I';. Then
the displacement and the normal stress must
satisfy

un_¢n<0 ....................................... (2.5)
and

o"=0 if u"—¢"<0

o"=P*<0 if w'—¢"=0

where P* is unknown normal component of con-
tact stress. For a smooth contact,

o"=P"=0
where o7 is the tangential stress on I'; and PT
is the tangential component of surface traction

due to the friction. Contact conditions (2.5)~
(2.7), can be written in a more convenient form:

o (ut—¢")=0, o"<0,

u"—~g"<0 on I
The smooth contact problem of elasto statics is
to find the displacement field u and stress o,

which satisfy the inequalities (2.9) and the fol-
lowing basic equations of elastic continuum:

equilibrium equation:

Cig it frm=0  eorererem s (2.10)
constitutive equation:

Tis=Eifli€i +oroveeessrrrreerirneneiiiinnienns (2.11)
strain displacement relation:

€ij=‘%‘(ui,j+uj,i) ........................... (2.12)

where
fi: component of body force
Eir: elasticity tensor
€ij. component of strain tensor

Kalker and Van Randen® presented two
variational principles for this problem. They are:
(i) minimize potential energy U subjected to
the constraint
ut—¢*<0
(i) minimize “contact enthalpy” H subjected
to the constraint
o"<0

where H is defined as

H:S 0”(u”—¢n)dT_U ............ (213)
I'c

As shown in the following sections, Primal
Method by Fremond belongs to (i) and the reci-
procal (or Dual) method studied by Kikuchi can
be derived from (ii). A proper optimization
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technique can be used to minimize the functional
subjected to inequality constraints.

When the usual finite element method (c.i.
16) or 17)) is applied, we have, using the index
notations,

K aipo U= fai,  weoreeermsmmessememennenies 2.14)
where
Koipr = SgNa,jEijldNﬁ,LdQ ------------ (2.15)
fur= S Neuf, dQ2— S NuTidD oveeone (2.16)
2 'y

In these equations, lower case Greek letters (a,
B, ...) and lower case Latin letters (¢, 7, k, . . .}
represent the node number and the direction of
reference frame, respectively. For example, usk
is the xx direction displacement at B-th node.
N, is a proper interpolation function associated
with «-th node so that

Ui(Z) 2 N a(Z)hai wveveerevereereaesnenananes 2.17

For a notational convenience the same symbols
are used for both exact and approximate quan-
tities.

The discrete boundary and contact conditions
can be written as

ug=U i on Iy wroveesvicinnnenes 2.18)
Pilui—¢:)=0, Pi<0,

( ¢a)=0, Pi<0,) (2.19)
uﬁ—ﬂbzso on TC

where P? is unknwon contact force at node a.

(2) Primal Method

Following Fremond!® or according to (i) of
section 2.(1), the discretized contact condition
in terms of the primal variable # can be written
as

Mﬁpm,si—sﬁZSO

where MG, is a transformation matrix such
that

Mg =u

Then the discretized variational problem is

. 1
inf {E‘%aiKﬂiﬁku,ﬁk"fai Wat| M7 5 ;up

—¢zso}

Since the matrix M%,; is not positive definite in
general, difficulties arise in the application of
minimization method. In order to avoid these
difficulties, the Lagrange multiplier . is intro-
duced and the condition (2.20) is re-written into
an equivalent form:

txMZ' Aand 2 =
2112%{/‘( pittp— @)} =0

Then the problem (2.22) is equivalent to

. 1
inf sup {—*uaiKaiplcuﬂk_faiMai
% pa=0 (2

"|‘/I/a(MZﬁiM13i—‘¢z)}
or Y e (224.)

. 1
sup inf {'—MaiKaiﬂltuﬁlc—faiuai
#a>0 u (2

)
+/I»n(MZﬁiuﬁi"¢g);

This can be solved by Uzawa’s iterative method
(UIM) (c.f. 15)), consisting of the following steps:

Step 1: choose any u$’=>0
Step 2: find 4% by solving

) 1
inf {—MaiKaiﬂchﬁk'—fai Ui

2
+,u'<a")(M;Lﬁiuﬂi—¢g)}
= Kaigt= fai— WP M%as oo (2.25)
Step 3:
set pP=sup(0, u+OME 4 uly —Pa)}

Step 2 and 3 are repeated until #${} converges
within a certain tolerance. For the convergency
of the algorithm, the positive parameter 6 must
be in the region (o, 24/B?), where 4 and B are
the smallest and largest eigen values of a matrix
which depends on M3 ,; and Kaipr.

As shown in (2.25), in this algorithm the
entire system of equations must be solved for
each iteration. Moreover, convergence depends
heavily on the choice of the iteration parameter
0 in (2.26). When iteration converges, the multi-
plier g. turns out to be the nodal contact force.
For a practical application of this method, a
realistically computable bound on the parameter
0 need to be made.

(3) Reciprocal Formulation and Pointwise Re-
laxation Method

For a linear elastic problem, by making use of
the method of superposition and the Green’s
function, one can write

u=0+G(P)

where #=G{f, T) is the displacement due to the
applied body force and prescribed surface trac-
tion without considering contact condition, G is
the Green’s operator, and G(P) is the additional
displacement due to the contact force P. Then
the contact condition takes the form,

P{G(Py*—$m} =0

P<0, G(Py"—¢»<0 on I's) 2.28)
where
PR=GR— T e, (2.29)
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with ¢# being the original normal distance
between two bodies (c.f. Fig. 1). From condition
(2.28), the following variational problem can be
derived!®¥; namely find P<0 such that

S pp (GE =" (Q—P)ar=0

Q<0

It can be shown that (2.30) is equivalent to (2.28)
by taking Q=0 and Q=2P.

Introducing a finite element approximation,

the Green’s operator can be approximated by the

inverse of the stiffness matrix. Then the discrete

form corresponding to the problem (2.30) is to
find.

PreK: Sr (CusPi—$2) (g2 —P) AT =0 }
c

Ygre K

K={q2e¢R™: ¢q»<0}

where m is the total degree of freedom on I
and Cap is m xm matrix defined by

Cap=1" K aip™ 0’

where #{* and %} are the component of the
outer unit normal vector at a-th and -th nodes,
respectively. It should be noted that the vari-
ational inequality (2.31) is defined only on the
possible contact surface I';. The solution P of

(2.31) satisfies the following discrete contact
condition.

Py(CapP—$1)=0, CupP3—¢2<0, )

P;<0

Kikuchi'¥ proposed to use the projectional
pointwise relaxation method (PPRM) consisting
of following steps;

Step 1: solve Kaipridpr= fas

Step 2: compute ¢r=¢2—4" and form Cap as
in (2.33)

Step 3: put Pz(0)=0

Step 4: calculate P(¢-+1) by

PZ;(H—%) =(1 —w)Pz(z)—m{:z;::caﬂPz(er 1))

m A
. caﬁpg(n—qsz}/c,m
B=a+1
Pi(t+1)=min {P;‘<z+%), o]

Step 5: if |[Pi(#41)— P2(¢)|<e go to Step 6

if [P3(t4-1)—P2(#)|>€ go to Step 4
Step 6: calculate the additional displacement

wpe="Tgk+ K ;51 Prai®

This iteration algorithm will converge with the
iteration factor w:0<w<2, if the matrix Cap is

positive definite. Numerical experiments show
relatively good convergence, requiring 20~30
iterations. For a detail, see 14) and 18) for vari-
ous variational formulations and solution tech-
niques.

(4) Elimination Method

A new and fast converging solution algorithm
for the discrete contact condition (2.34) is propos-
ed here. Referring to inequality (2.34), suppose
that I'c is the true contact boundary, then we
must have

CapPr—$2=0 and )
1=C7h $r<0

This means, if ¢2 is applied to the true contact
boundary, the resultant P7 is true contact
force. In the case that I'; is not the true contact
boundary including the true one, applied &
yields some false contact forces, i.e. positive value
of P} on the false contact boundary. Thus we
eliminate this part from the possible contact
boundary and solve (2.36) for the eliminated
boundary. This procedure is repeated until (2.36)
is satisfied. The algorithm based on elimination
process can be summarized in the following steps;

on I¢

Step 1: solve Kaipiftpr= fao:

Step 2: compute ¢2=g¢*—42 and form Cas

Step 3: solve P3=C,, ¢

Step 4: if P3<0 for each 8 go to Step 5
if P3>0 for some f eliminate corres-
ponding rows and columns of C.s and
go to Step 3

Step 5: calculate the correct displacement by

wpe= 18 s+ K i 4 Prni®

As long as the possible contact boundary I
contains the true contact boundary, this alogo-
rithm is very effective and converges rapidly.
For an excessively large system with a large
contact surface, this algorithm may be too
expensive. Further developments are needed.

(5) Numerical Examples

In order to compare discussed solution algo-
rithms, simple examples including a Hertzian
contact problem and rigid punch problems are
solved. Computations are done on AMDAHL
470 using double precision.

Finite element mesh, boundary conditions and
material properties for a Hertzian contact prob-
lem are shown in Fig. 2. Fig. 3 shows the
distribution of contact pressure calculated from
the difinition of the nodal contact force. The
number of iteration and the c.p.u. time of three
solution algroithms are compared (when F:
contact force F=240) in Table 1 which shows
the proposed elimination method requires the
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Uniform Load

b

il
777 7ITTR 7 777 I TT T
Young's modulus E =1000.0
Poisson’s ratio y= 03
Radius of cylinder R= 80
Fig. 2 Tinite clement mesh for Hertz's contact
problem.
200 — Hertz's solution
o F.E.M.
150
hid
3 F=810
g
~100
[s)
b=}
5
o
50

1 L 1 L
05 10 15 20 25
Contact Radius

Fig. 3 Contact pressure distribution.

least computational effort. As expected, when
converged, all three method give the same result.
All units are in non-dimension.

Rigid punch problem can be solved by the same
formulation as shown in 14) if the plane of
indentation is known. The contact condition
takes the form

u"—a"—qS”sO
o"=0 if u"<a"—¢*
o"<0 if w'=a"—g¢"

where a” is the given normal displacement, i.e.
the depth of indentation. The same algorithms

Table 1 Comparison of convergency (Contact prob-

lem).
; Iteration ] c.p.u. (sec)
inverse of 92xX92 matrix 3.23
calculation of contact force
iy P-UIM
(c.f. section 2.(2) and 13))
6= 5 100 (not converged) 2.80
8= 10 100 (not converged) 2.86
g= 50 78 2.18
#=100 100 (oscillation) 2.81
6=300 100 (osciliation) 2.83
ii) R-PPRM
(c.f. section 2.(3) and 14))
@=0,5 35 0.09
w=0.75 26 0.07
w=].0 22 0.07
w=1.2 25 0.07
w=1.75 92 0.16
iii) Elimination method
(c.f. section 2.(4)) 4 0.02

Cylindrical Punch

Conical Punch

AN

Young's modulus E =1000.0
Poisson’s ratio L = 0.3
0 5 10 15 20 25
|0 O I O O
BN
5 |
10

Fig. 4 Finite element mesh for rigid punch prob-
lem.

discussed before can be applied to solve rigid
punch problems.

Selected shapes of indentors along with a
portion of mesh consisting of 78 four-node elem-
ents and 98 nodal points are shown in Fig, 4.

Fig. 5 shows the surface displacement near the
punch. For the cases of cylindrical and conical
punch, numerical results are compared with
analytical solutions (see 19) and 20)), which show
very good agreements. The punching force for
conical and cylindrical punch problems is shown
in Table 2. Numerical solutions are larger than
analytical solutions for every case. This is
because of the coarse mesh, the element singular-
ity at the axis of symmetry and the finite reiong
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Distance
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-04 — Exact
o F.E.M.

Fig. 5 Surface displacement for rigid punch
problem.

Table 2 Punching force.

Max Disp FEM EXACT | Error (%)

(1) Conical punch (semivertical angle a=n/4)

1.0 758.9 699.6 8.5
2.0 3303.7 2798.3 18.1
3.0 7098.2 6296.3 12.7

(2) Conical punch (semivertical angle a=1.107)

1.0 1651.8 1399.2 18.1
2.0 6284.3 5596.7 12.3
3.0 15020.7 12592.5 19.3

(3) Cylindrical punch

0.2 1636.3 1318.7 24.1

Table 3 Comparison of convergency (Rigid punch

problem).
Iteration c.p.u. (sec)
inverse of 196X196 matrix 31.02
calculation of punching force
) P.UIM
(c.f. section 2.(2) and 13))
6= 50 100 (not converged)
0= 300 100 (not converged)
6=1 000 100 (not converged)
6=2000 100 (not converged)
ii) R-PPRM
(c.f. section 2.(3) and 14))
w=1.5 5 0.15
iii) Elimination method 3
(c.f. section 2.(4)) 0.01

which should be infinite.
The c.p.u. time of three solution algorithms

are compared in Table 3 for the conmical punch
problem.

According to the presented numerical results,

it is evident that

(i) The primal method requires a far more
number of iteration due to implicit range
of iteration factor 6 and more computing
time than others.

(ii) The proposed elimination method with
the reciprocal formulation is very effective
and converges very rapidly, which makes
it very attractive to apply to transient
analysis,

3. TRANSIENT ANALYSIS OF SMOOTH IM-
PACT PROBLEMS

(1) Impact and Release Condition

A smooth impact problem of linear elastic
materials can be derived simply by adding an
inertia term and initial conditions to an elasto
static problem discussed in Section 2. (1). Thus
the problem is to find the displacement u(z, ?)
satisfying

equilibrium equation:

Ple=015,5-F fi e (3.1
constitutive equation:
Gis=Eiji € vvveerereesseriereniinnieiiiis (3.2)

strain displacement relation:

1
6‘ij=—2‘(7/ti,j+'l/tj,i) .............................. (3.3)
where (') indicates the differentiation with
respect to time, subjected to

initial conditions:
u(z, 0)=uo(x)

i Qymiinl) | T (3.4
boundary conditions:

wi=Us  on Ipx (0, T) coeveeveereerneenn (3.5)

cigug=Ti  on Ipx(0,T) -eereereen (3.6)
contact conditions:

oT7=0 (no friction)

Piyr—¢")=0, P"<0,

W <0 on Tox(0,T) E ......... (8.7

The associated discrete problem can be stated
as ; find us such that

Mg ﬁﬂi“'Kaiﬁkuﬁk:fm; .................. (38)
subjected to
Piuz—¢n=0, Pr<0,

wi—g1<0 e (3.9)
where
Map= SQN“pNﬁd”Q ..................... (3.10)

In addition, since u:=¢? at the contact, we
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also have impact condition:

wy=tiz=0 (31D

if a-th node is in contact

Release condition also must be considered. Sup-
pose that a«-th node is released at time ¢+ A¢,
then we have

Pri+AD)=0, #1(-+41)=x0
At the previous time ¢, we have the contacl con-
dition:

Pr)=0, ar)=0, dg)=0 e (3.13)
1f the Newmark’s formula is used for temporal
discretization, we have

ar(t+ Aty =ar@)+(1—y)Atant)

+y Atz (t+At)
I’yAtiiZ(H-At) .................. (3.14)
If the Newton’s law is held at this node during 47,
it gives
l;iﬁ(t+1jt):PZ(t)/WLa ........................ 13.15)
Substitution of (3.15) into (3.14) yields
war(t+ A=y AL PL{t)[ma o (3.16)

Generally we set y=1/2 and if m. is lumped
mass, we have

Ma=PAAUL oo (3.17)
where A is a tributary area such that Pi—o"4
and Al is the element length. Substitution of
(3.17) into (3.16) yields

i V,g;jg),ét
wi(t+At)= oA i

Equations (3.15) and (3.18) are the release con-
dition for discrete problem. If we choose Ai=
AIC, i.e. elastic wave travels A7 during A¢, we
have

ﬂﬁf(l—}—dt):PZ(l)/pCA ..................... (3.19)

where C is the velocity of an appropriate elastic
wave. This expression is same as the one used
by Hughes et al.”.

(3.18)

(2) Temporal Discretization and Solution Al-
gorithm

The matrix equation of motion (3.8) is discretiz-

ed in time using the Newmark method as follows.

Rt st="Frpde  veemmemmmmmmmemeen (3.20)
where effective stiffiness matrix:
1
K= ST I e (g ¢
K+ﬁAt2M 3.20H
effective load vector:
Fovas= fryae+M { U+~ l'ﬂn _2[3”
par 28 )
.......................... (3.22)

The displacement u(f+A4f) must satisfy the
boundary condition (3.3), the contact condition

(3.7) and the impact condition (3.13), and the
release conditions (3.15) and (3.18) when release
is noted, for each time step.

Since the cffective stiffness matrix K is linear
and positive definite, we can write, as in section
2.(3),

Usrae= K [y

..................... (3.23)

= a0+ K Peya

where #i:rse is the displacement due to known
external load and inertia force, and K Puia
is the displacement due to unknown contact
pressure Peyge. Since (3.9) is the same form as
(2.28), a smooth impact problem can be solved by
any one of the algorithms discussed in section
2 for each time step. For an obvious reason (c.i.
section 2-(5)), the proposed elimination method
is applied here in. The solution algorithm for
a smooth impact can be summarized in the follow-
ing steps:

Step 1: initialization

Step 2: form effective stiffness matrix K

Step 3: compute K~ and form Cu;

Step 4: compute effective load vector fira

Step 5: solve @ya= K_lfu—dz

Step 6: compute b1 =¢n—42 and if contact,
compute contact force Prpar as dis-
cussed in section 2-(4).

Step 70 Merar="diy st KPP

Step 8: calculate %44 and disae

if contact, sct #esm=dira=0

if release, set

uL;JL:’PZ’(t) AJ*
' pA AL

Continue steps 4~8 till desired time.

Prt)

Uy 4=
WMo

(3) Longitudinal Impact of an Elastic Bar

Main objectives here are to see if the contact-
impact-release conditions are adequate to describe
smooth impacts and to assess computational
efficiency of the proposed algorithm when com-
bined with the Newmark time stepping method.
The bilinear isoparametric elements are used
throughout.

Longitudinal impact of an elastic bar to a
smooth rigid wall is first solved. Fig. 6 shows
the finite element mesh and material constants.
Newmark data for this problem are (c.f. 16))

£==0.001001, »=0.502
v=0.5
v=15

Central explicit:
Average acceleration: $=0.25,
Backward: p=1.0,

and the time step A¢ is taken as
41
At= C =0.01

Contact force, displacement, and velocity of
free end calculated using lumped mass are shown
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[P =2 I
initial velocity v Vo= 1.0
Young's modulus E =1000.0
Poisson's ratio = 0.0
density p = 0.1
area A= 1.0
Time step at = 0.01

Fig. 6 Finite element mesh for impact of an elastic

bar.
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Fig. 7 Impact of an elastic bar, contact force vs.
time.
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Fig. 8 Impact of an elastic bar, free end displace-
ment vs. time.

in Fig. 7~9. In spite of coarse mesh, the results
show good agreement with the exact solution.
The accuracy of the central explicit scheme
should be noted and it is also found that if the

1.0 =

L Coh
0.5 AR I’ Exact
e | O Central explicit
> i o Average acc.
5 Y {0 Backward
2 ) ——
2 4 “»
005 ¢ | 0.1
=t v Time
o \L
@ Tt
@ \
I \ ]

1
©
w
T
-

Fig. 9 Impact of an elastic bar, free end velocity

vs. time.

p= 001

™ €= 1000
v= 03
R= 5
At= 0.01
B= 025
y= 05

et N N
al

[~

Coarse Mesh

&

Fine Mesh

Fig. 10 Finite element mesh for impact of an elastic
sphere.

consistent mass is used in the analysis, the central
explicit scheme gives unstable solutions while
the others give stable results.

(4) Impact of an Elastic Sphere against a
Rigid Plane

Fig. 10 shows the finite element mesh and other
data used. The coarse mesh consists of 52
elements and 70 nodes, and the fine mesh con-
sists of 72 elements and 95 nodse. Fig. 11
shows the change of contact force with respect to
time. The fine mesh was used. It is observed
that numerically obtained maximum contact
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Fig. 11 TImpact of an elastic sphere, coutact

force vs. time.

forces are larger than that of the quasi-static
Hertz’s solution {c.f. 1)). Calculated duration
of impact is shorter than one of the Hertz’s
solution (Fig. 11). Moreover the curve represent-
ing contact force and time is different from the
sine-curve. These disagreements seem to suggest
inadequacy of the quasi-static solution. For
further evaluation, the maximum contact forces
for various values of density and initial velocity
vo are plotted in Fig. 12 which shows effects of
density and velocity on contact force despite
the possible error due to the coarse mesh used.
Fig. 13 shows the distribution of contact
pressure, which is calculated by dividing nodal
contact force by tributary area. The numerical
result shows a good agreement with the quasi-
static Hertz’s solution except near the axis of
symmetry, where the nodal force consists of
delta functions. Contact stress computed by
stress on the element boundary gives the better

o F.E.M. (fine mesh)
1 O F.E.M. (coarse mesh)
— Hertz's solution

0 p=0.1

1000

500

100

50

Maximum Contact Force

01 020305 1. 2 3 5.

Initial Velocity

Fig. 12 Tmpact of an elastic sphere maximum
contact force vs. Intial velocity.

2004 o FEM.

— Hertz's solution

Contact Pressure

05
Contact Radius

Fig. 13 Impact of an elastic sphere, contact pres-
sure distribution at instant of maximum,
contact force.

result as opposed to stress computed from the
nodal contact force, which agrees with the observ-
ation made in 7).

4. CONCLUDING REMARKS

The numerical results of this study show that
a smooth contact and impact problem of linear
elastic body can be solved successfully using the
finite element approximation based on the vari-
ational inequalities.  The proposed solution
algorithm for the resulting system of finite
element inequalities works very effectively and
this encourages us to solve various static and
dynamic problems with inequality constraints,
which can be found readily in various engineer-
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ing fields.
ties.

A complete mathematical study of the proposed
elirnination method needs to be done. A very
good convergency of elimination method is shown
using some numerical examples but these exam-
ples are relatively simple and the degree of free-
dom of a possible contact surface is small. In
order to apply the elimination method to more
general and complicated problem, its algorithm
and convergency must be studied in detail.

Since elimination method is based on the
reciprocal formulation, it is necessary to inverse
the stiffness matrix explicitly, which will present
a problem if the total degree of freedom of the
system becomes excessively large. Direct genera-
tion of local Green’s function and application of
boundary elements could be worthwhile to study
in the future.
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