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OSCILLATION SAND RIPPLES IN VISCOUS FLUIDS

By Avata KANEKO

1. INTRODUCTION

The sand ripples induced under oscillatory
flow and water waves have been a subject of
practical interest in connection with the sand
transport in a nearshore region. On the basis
of experiments, Bagnold?” classified oscillation
sand ripples into two types of ‘rolling-grain
ripples’ and ‘vortex ripples’, and discussed two
characteristic length-scales of the ripples, the
wavelength L and the waveheight H. Since then
various properties of oscillation sand ripples
have been clarified by using mainly experimental
procedures and dimensional analyses® ™., THow-
ever, no basic mechanism determining the length-
scales of ripples has been elucidated'®. The
oscillatory viscous flow over ripples is charac-
terized by two representative length-scales, the
stroke (twice the amplitude) of fluid oscillation
do and the thickness of the Stokes layer 4. In
contrast to the effect of do on L, the effect of §
has been long overlooked. The clarification of &
dependence secems to be necessary for a better
understanding of the basic mecchanism. Chan
et al.’® observed oscillation sand ripples under
various fluids and bed materials, but the flow
induced over the ripples and the ¢ dependence
of I and H were not examined. Uda & Hino'®
and Sleath!® analysed an oscillatory viscous flow
of small amplitudes over a rigid wavy wall using
a procedure similar to that of Lyne'”. Although
L of ripples with a maximum growth rate was
discussed in the different processes of analysis,
any direct comparisons with observations were
not attempted. In preceding papers of Kaneko
& Honji'®'®, it was reported that a mono-layer
of particles scattered sparsely on a smooth plane
floor grows into the so called ‘particle waves’
under oscillatory flow, and that in a highly
viscous fluid the oscillation sand ripples are
made up inducing steady streamings similar to
those computed by extending Lyne’s theory.
Kaneko & Matsunaga® also estimated numeri-
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cally the wavelength of such ripples which induce
steady streamings.

The main purpose of this study is to clarify
the effect of 8 on ripple formation by varying
the fluid viscosity in a wide range of its value.
The detailed computations on oscillatory flow
over ripples and L of ripples are made using the
previous analytical procedure?, and the com-
puted results are compared with the observed
ones in viscous fluids. The methods of experi-
ments and numerical analysis are described in
§2. and §3., respectively. In §4.(1), the com-
puted streaming patterns are presented and
compared with those observed above real ripples.
A grouping and length-scales of ripples are
discussed in §§ 4.(2) and 4.(3), respectively.

2. EXPERIMENTS

The experiments were made using a closed-
type tunnel and a U-tube, in which a fluid was
oscillated by a piston. Details of the apparatus
are presented in the preceding papers'®»*®. The
cross sections of the test section of the tunnel and
the U-tube were 15x15cm and 12x12cm,
respectively, and the stroke of fluid oscillation in
the both apparatus was about 14 cm. The maxi-
mum frequencies for the tunnel and the tube
were 1.7 Hz and 2.5 Hz, respectively. Tap water
and glycerine-water solutions were used as
working fluids. The oscillation sand ripples and
the particle waves under glycerine-water solu-
tions were observed mainly by using the U-tube.
The kinematic viscosity of the solutions was
varied up to 2.08 cm?s. Spherical glass beads of
specific gravity 2.43 and median diameter 0.006-
0.5 cm were used as bed materials.

3. NUMERICAL ANALYSIS

The oscillatory viscous flow over a rigid wavy
wall is analysed by using a perturbation method
together with a finite difference method. Let us
consider the vorticity equation for two-dimen-
sional oscillatory flow over an infinite wavy wall.
We shall make use of rectangular cartesian co-
ordinates (x, ¥), as sketched in Fig. 1. Let ¢
denote time and ¥ a strecam function. We intro-
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duce the following nondimensional quantities
$=Wjuud  E=z/L  p=y[s
T=wt ¢=do/L B=L[S n=h/d
in which 8(= v2yjw) is the thickness of the
Stokes layer, L the wall wavelength, and v the
kinematic viscosity of a fluid. The quantities
um, & and do are the maximum flow velocity, the
angular frequency, and the oscillation stroke of
a fluid as y—o0, respectively. The basic equa-
tion in a nondimensional form is
C,,a.‘(‘j’z,@
IE )
$,V24)/A(£,m) denotes Jacobian

d A X
QT(VZKM_ :[72([729/)) ......... (2)

in which symbol 9(¢,

and I*=0%/0n*+-1/3%-0%/0£%. A profile of the wall
is given by
YOm0 COS 2TE ++rveevesrernnsmnsasanisanr s (3)

in which a=a/d and « is the amplitude of the
wall. It is seen from Egs. (2) and (3) that flow
structures over the wall depend only on three
nondimensional parameters ¢, « and S. The
boundary conditions for Eq. (2) may be taken as

d=a¢jon=0 on g=n) (4)
0¢jon—cosT 0$jOE—-0 as goco)
According to Kaneko & Honji'®, the steady

streamings induced above the wall under the
condition of €«1 show up double structures in
B£>26 and its value does not depend on a param-
eter a. Attention is focused on the case of a<1
to clarify the effect of increasing ¢ on flow struc-
tures. We expand the solution of Eq. (2) ($) in
a form
G=Wo+ QLY e (5)

Substituting Eq. (3) into (2),
arized equation

d
2 5+ P07 0 (P

—G(, 7)7@2{}:[72([729/,) ..................... (6)

The functions F¥ and G are given by the solution
¥ for a primary flow as follows

EF(n, 1)=0Y/0y
=Ri(1—exp(—(1+i)y})exp(ir)] 1

Gy, 7)=03¥o /07’
=—R[2{exp{—(1+i)y)exp(ir)] J

in which R denotes ‘real part of’.. We further

expand ¢ in a form

Substituting Eg. (8) into (6) and equating like
powcrs of ¢, we obtain the equations

Vzgﬁo V2(V%0) for m=0
2*(!721/fm) 0 (V*rm—1)
or g
al/'m,—l 2/ 724, -~
—-G—% o =12 %Yrm) for m=1
.................................... (9)
We introduce here the vorticity Om as
Pofm=—0mn  for m=0 oo (10)
Substituting Eq. (10) into (9}, we obtain
00m 08m—1 O
2 E g G 3
=%0m 0T M Leeeorreeeiiennninienin (11)

in which the solutions o and £ are determined
from the equations for m=0 in Eqgs. (9) and (10)
as follows
¢0:R{0._1;~;//j {SXP(—‘(T”)
—exp(—2my/f)Yexp(it) cos 2m§]
Qo=~R{(14+3)(c+27/B)

-exp(—on) exp(i7) cos 27E]
.................................... (12)
with o= {(27/8)2+2i}'/*. The initial conditions
are
Ym(E, 7, 0)=0m(E, 5, 0)=0 «ooreeereennnnns (13)

The boundary conditions for % are
ﬂlm*’O n—0

The conditions

Unllo g, ) =Ym(E+1,0,7) )

QnlE, n, 1) =0m(E+1,9,1) )
are imposed since the flow is periodic with respect
to . We define the stream function for steady
streamings (1s) as

= LK 5 i
= L el dr

YsP——fs as pooo
in which p is an integer. The wall shear stress
(s) due to s is given by a relation

A Ts 6%&

T pumvis oyt
in which %5 is a nondimensional wall shear stress.
Integrating 7s over half a wavelength and putting

its value into 7s*, we obtain a relation
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By using the advancing difference schemes for
the time differential and the central difference
schemes for the space differential, Eq. (I1) is
approximated by the equation

opn=|1- {@1777+WJ£F}AT}Q;"}M

- 2(111:7)2 (0 H )
=gy @t O
_ Fizgl( i — 250 g
Gi"jél;(y,,wm_l‘j—yfﬁfz],i_l.»
.................................... (19)

in which (£, 9, 7)= (14§, jAy, ndT). Lattice points
(3,1) correspond to the points at #=0, and (1,7)
and (M, 7) to the points above two neighbouring
crests of the wall. The difference schemes can be
shown to be stable under the following condition

1 1 )
b ATE
(dm ~ (BAE)" )

By using the succesive over relaxation (SOR)
method?®”, Eq. (10) is approximated as

Y =Y AR e
i S (A BAEY (it s
AP L) 2 {1+ (A7 BAE)")
Yt (AP0 ]
in which a relaxation parameter w is taken as
1.8 in the computation. The superscript £ denotes

the number of iterations which are repeated
until

Masx (0 30— )
Max {yri2*)

is satisfied. The vorticity 25, and the wall
shear stress %s:,1 are approximated by the

relations
o o 8P Yty
2(d7)?
g =B eis
ATV P (23)

The computation was made in the region of <<
2B, i.e. y<<2L beyond which the flow disturb-
ances due to the wavy wall were not diffused.
Ay should be less than 1 for sufficient computa-
tional accuracy.

4. RESULTS AND DISCUSSION

(1) Flows over Ripples

The classification of oscillation sand ripples

by Bagnold? was based on whether flow separa-
tion from ripple crests exists or not. The rolling-
grain ripples have been considered as ripples
which do not accompany with flow separation
because of small waveheights. No detailed
observations of the flow. over the ripples have
been made. It was reported based on observa-
tions by Honji et al.?» that steady streamings
have a role similar to~separation vertices in
ripple formation. The computed patterns of the
streamings are discussed-here. The flow patterns
are drawn  over one wavelength ranging from
crest to crest.

Fig. 2 shows the time variation of streaming
patterns computed based on Egs. (19) and (21)
under the conditions €=0.6 and f=15. The
terms up to €* are considered in the computation.
The number of lattice points used in this com-
putation is 11x37. Tt is seen from Figs. 2(c)
and (d) that the streaming patterns become
stationary at 8 cycles of oscillation. Fig. 3 shows
the flow pattern of steady strcamings observed
under the conditions €=0.6, «=0.6 and f==18,
¢ and 8 being roughly equal to those of Fig. 2.
Since the observed pattern is similar to the
computed one, the flow over the real ripples is
almost the same as that over the rigid wavy
wall. The double structure of steady streamings
in Fig. 2 (d) appears at § smaller than its critical
value of 26 determined by Kaneko & Honji'®
when e« 1, and the appearance is due to the effect
of increasing €. Similarly to separation vortices,
a pair of lower recirculations rotates in such a
way that the flow along the slopes of ripples is
from trough to crest and dominates the develop-
ment of ripples.

Fig. 4 shows a series of streaming patterns
computed at f=15, 18 and 21, and at ¢=0.3.
All the streamings show the patterns obtained
at 8 cycles of oscillation. The terms up to €
are considered in all the computations. The
number of lattice points is 11x51 in all cases.
A comparison between Figs 2 and 4 shows that
the double structure appears at a smaller § as
€ Increases.

Total masses of sand transport relating to the
development of ripples may depend mainly on £s*.
The numerical values of #* are shown in Figs.
5(a) and (b). Fig. 5(a) shows the results com-
puted at «=0.1, 0.3 and 0.5, and at e=0.1 based
on the perturbation theory of Kaneko & Honji'®.
All the curves drawn for each value of a show
that the value of #s* increases with § and reaches
the maximum values immediately after the double
structure of steady streamings appears. The
value of a does not affect the critical value of
B for the appearance of the double structure and

(2s5%)max. The result of the present analysis at
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Fig. 5 Calculation of Wall Shear Stresses.

€=0.1 and a«=0.1 is also plotted in Fig. 5(a).
Since the plotted data agree well with the curve
for «=0.1, it is scen that the computational
accuracy is sufficient. The result of the present
analysis for larger € is plotted in Fig. 5(b). The
solid lines are also drawn through the plotted
data. The double structure and (#s*)ma.. appear
at a smaller § as e incrcases. The critical condi-
tion {for the appearance of (#s*)max is well ap-
proximated by a simple relation

L 50.6

A (24)
in which L/do=1Je and do/d=¢f. Equation (24) is
later compared with the wavelength of real
ripples in a highly viscous fluid.
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(2) Grouping of Ripples

The wave patterns in a mono-layer of parti-
cles scattered sparsely on a smooth plane floor
are discussed first as a simple system of rolling-
grain ripples. Fig. 6 (a) shows a typical pattern
of particle waves, and Fig. 6 (b) a wave pattern
formed when a fluid oscillates slowly at large
amplitudes. The wave pattern of Fig. 6 (b) is
composed of clusters of the particles; which may
be called ‘particle spots’. Since the particles in
these waves do not pile-up in contrast to those
in rolling-grain ripples, the waveheight is equal
to the particle diameter.

Consider the motion of particles on a smooth
plane floor. The initiation of the particle motion
in an oscillatory flow may be correlated with
the following independent variables

um, W, v, 9, D, p,
in which ps is the density of particles and p
that of a fluid. D is the particle diameter and ¢
the acceleration due to gravity. Based on the
dimensional analysis, we obtain a relation among
four nondimensional variables

o um (D umD o ps\
e S BCE

in which I stands for a function. Considering

that ps/p is nearly constant in the present ex-

(a) Particle wave

(b) Particle spot

Fig. 6 Two Typical Patterns of Particles.
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Fig. 7 Formation Regions of Particle Patterns.

periments, we retain it only in the left-hand side
of Eq. (26) to obtain

U

n_
-1

D umD >

Viodp )TD:F'<? ;

in which wum/ ¥ (ps/p— 1)gD is the Shields relative
stress criterion modified for oscillatory flow,
D/d the relative roughness of particles and umD/v
the particle Reynolds number. Symbol F’ stands
for a function.

On the basis of Eq. (27) and the results of pre-
sent experiments, the values of um/ «/(ps/,o— 1)ygD
at which the wave patterns formed are plotted
against D/¢ in Fig. 7. The distribution of the
plotted data makes it possible to draw the form-
ation boundaries shown in full lines. The plotted
data also allow to draw the contour lines of unD/v
shown in broken lines. Regions 1 and 2 indicate
the formation regions of particle waves and
particle spots, respectively. The transition from
Region 1 to 2 occurs when the amplitude of fluid
oscillation is increased and its frequency decreas-
ed. The formation region of typical wave patterns
is limited roughly to ! <umD/r<120. Below the
lower limit no particle motions occur, and above
the upper limit all the particles perform the same
motions.

The results of the present experiments for
oscillation sand ripples are plotted in Fig. 8 (a)
with the same coordinates as those of Fig. 7.
The plotted data allow to determine the forma-
tion regions of various ripples. The formation of
rippled beds is restricted to Regions 2, 3 and 4.
In Region 1, the ripples could not form even
when some particles on the bed surface were in
motion. In Region 5, the ripples also disappeared
because of strongly oscillating beds called the
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Fig. 8 Formation Regions of Oscillation Sand Ripples.

Fig. 9 Oscillation Sand Ripple with a Steep Crest.

sheet flow beds. The ripples with regular
forms were observed in Regions 2 and 3. The
crests were equi-spaced in the direction parallel
to fluid oscillation. Fig. 9 shows a typical
form of the ripple observed in Region 2. The

flow over the ripple induced vortices separated
from steep ripple crests. A typical form of ripples
in Region 3 are shown in Fig. 10. In this region,
separation vortices were not induced because of
large fluid viscosity, and the ripple crests were
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Fig. 10 Oscillation Sand Ripple with a Rounded Crest.

(b)

Fig. 11 Two Typical Forms of Brick Pattern Ripples.

rounded. It was reported by Kaneko & Honji'®
that in Region 3 steady streamings are observed
over ripples instead of separation vortices. Ac-
cording to Bagnold’s classification, the ripples in
Regions 2 and 3 seem to correspond to vortex
ripples and rolling-grain ripples, respectively.
The brick pattern ripples of Bagnold®
observed in the region encircled by a broken line
in Region 2. Two typical forms of the ripples
are shown in Figs. 11 (a) and (b). The crests
were equi-spaced in two directions parallel
to fluid oscillation and normal to it making
up oblique patterns. Region 4 is the transi-
tion region from rippled to sheet flow beds,

were

and the ripple forms are irregular. The critical
lines for ripple initiation, transition bed and
sheet flow bed agree roughly with those of Komar
& Miller'® and Dingler & Inman!®. A similar
grouping was also possible when D/§ was replaced
by umD/v. The results of several other workers are
plotted in Fig. 8 (b) to compare with the forma-
tion regions drawn in Fig. 8 (a). The observa-
tions of Carstens et al.® and Lofquist'® in large
U-tube were used as data for oscillatory flow,
and the observations of Horikawa & Watanabe™
in a wave tank and those of Inman® in a sea as
data for water waves. The numerical data for
flows and bed materials are summarized in
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Table 1 Numerical Data for Flows and Bed Materials.

1

- Present Experiment _ Carstens et al. L(?fquist Hvovr;lt(:r\;&;%e& Inman
Particle Wave l S(;sncéllﬁgipopr}e“ (1969) (1978) (1967) (1957)
D (cm) 0.012—0.5 0.006—0.086 0.019—0.059 0.018—0.055 0.054 0.010—0.091
ps (g/em3) 2.43 2.43 2.47—-2.66 2.65 1.21 2.65
o (g/cm?¥) 1.0—1.17 1.0—1.19 1.0 1.0 1.0 1.6
v {(cm2/s) 0.0099—0.98 0.0091—2.08 0.0085—0.0107 0.01 0.0147—0.0164 0.01
do (cm) 1.2—-12.0 1.6—14.0 14.8—89.0 18.2—91.6 2.2—16.4 4.6—274.4
f (Hz) 0.59—2.50 0.59—2.50 0.26—0.30 (.08—0.63 0.45—1.25 0.07—1.43
Table 1. Most of the data except those of In- The values of L/de for the data falling on

man fall on Region 2, and the crest of these
ripples seems steep.

(3) Length-Scales of Ripples

The wavelength and the waveheight of sta-
tionary ripples are considercd here. The exten-
sive studies on the length-scales of ripples were
made by Dingler & Inman'® and Nielsen'® by
paying attention to the transition from rippled
to sheet flow beds. Their results may be avail-
able for practical purposes. However, the effect
of ¢ on ripple length-scales is overlooked in their
analyses. The purpose of this section is to clarify
the § dependence of the length-scales. Attention
is also focused on the particle waves in Region 1
of Fig.7 and the oscillation sand ripples in
Regions 2 and 3 of Fig. 8 (a). The flow struc-
tures above these ripples agree well with those
above rigid wavy walls since displacements of
the particles or the rippled surfaces due to fluid
oscillation are small. This agreement was men-
tioned previously in connection with the ripples
in a highly viscous fluid. On the basis of the same
dimensional analysis as that for oscillatory flow
over a rigid wavy wall, the length-scales of the
ripples may be described as

L do  H

Al < PR )
in which H is equal to D for the particle waves.
Symbol f stands for a function. Equation (28)
is simplified more than the previous rela-
tions®»%»:11:18 haged on the dimensional analyses,
in which the characteristic variables of a bed
material (D and ps) are included. The validity
of Eq. (28) is later confirmed by comparing with
real ripple data. By using the steepness of ripples
(H/L) Eq. (28) is rewritten as

Ho (e By 28y

in which dofé is equivalent to the root of the
Reynolds number for oscillatory flow over a
smooth plane floor and H/§ the relative rough-
ness of ripples. Symbol f stands for a function.

Region 1 of Fig. 7 and Regions 2 and 3 of Fig. 8
(a) are plotted against do/d in Fig. 12 (a). The plot-
ted data are grouped by considering the values of
H[3, and the empirical curves of Eq. (28) are
drawn as the boundaries of regions. The line for
Eq. (24) is also drawn in Fig. 12 (a), and its line
is in good agreement with the wavelength of
real ripples for the region of do/d<12. It should
be noted that at do/6<12 L depends strongly on
¢ and becomes much longer than do. Under the
condition of ¢<1, Uda & Hino'® and Sleath!®
suggested by means of different analytical pro-
cedures that L of ripples with a maximum
growth rate depends only on 8. A comparison
between their results and the present data shows
that quantitative agreement is insufficient. L
of particle waves becomes smaller than that of
oscillation sand ripples at do/0>>12 since particles
in the waves do not pile-up. In Fig. 12 (b), the
results of present experiments for oscillation
sand ripples are incorporated into those of several
other workers referred previously. The previous
results are extended to the region of small dofd
by adding the present ones. The downward
scattering of Inman’s data at large do/d is mainly
due to the data falling on Region 3 of Fig. 8 (b).
The distribution of the plotted data may allow
to divide the horizontal coordinate into three
regions of do/6<12, 12<do/0<80, and do¢/d>80.
The curves which give the best fit for 12 <do/6<
80 and do/d>80 are respectively

L 3.08
d—0= W e ettt taeiieeeaa e, (29)
and
L 0.84
o= Tdajayae (30)

It is seen from Eqs.(29) and (30) that L becomes to
depend on do rather than & in the region of large
do/8. Flow separation over ripples may begin to
occur at dof0=12 and develop fully at do/d=80.
Sleath®™ computed an oscillatory viscous flow
of large amplitudes over a wavy wall by means
of a finite difference method and suggested a
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rclation The diagram based on Eq. (28) is shown in
L 1.04 Fig. 13, in which all the ripple data including

= dajayoeE (31

for the ripple wavelength with a maximum
growth rate. Equation (31) agrees well with the
data of real ripples at do/0>80 although no
separation vortices appeared in the computed
flow patterns.

those of other workers are presented. The value
of H/IL in the region of H/§<$ is much smaller
than that in the region of H/d> 10, and the scat-
tering of data becomes larger as do/d decreases.
The mean value of H/L in H/6>10 is nearly
equal to that for vortex ripples by Homma &
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Fig. 13 Steepness of Ripples.

Horikawa® and Dingler & Inman'. The region
3<H/6<10 corresponds roughly to that of 12<
do/§<80 in Fig. 12 (b). All the data for the par-
ticle waves fall on the region of H/0<3, and the
data for the brick pattern ripples scatter in the
region of 5<H/6<15. Equation (24) is trans-
formed into
0.48
%:0.02%’(%“) for E{;<12 - (24)

The line of Eq. (24)’ for H/0=0.5 is also drawn
in Fig. 13.

5. CONCLUSIONS

The oscillation sand ripples and the particle
waves an oscillatory flow have been
observed over a wide range of fluid viscosity.
The oscillatory viscous flow over a rigid wavy
wall has been analysed numerically and com-
pared with that over real ripples. Agreement
between the analysis and the observation has
been satisfactory. The wavelength of ripples
in a highly viscous fluid has also been determined
by calculating the wall shear stress duc to the
steady streamings. The calculated wavelength
has agreed well with the experimental results
at do/§<12. The dependence of ripple wave-
length on d has thus been clarified.
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