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PROPOSED DESIGN EQUATION FOR SHEAR STRENGTH
OF REINFORCED CONCRETE BEAMS
WITHOUT WEB REINFORCEMENT

By Hajime OKAMURA* and Takeshi HIGAT*™

ABSTRACT

A design equation for shear strength is proposed
upon investigation of published test results on
shear strengths of reinforced concrete beams with-
out web reinforcement. The proposed equation is
deduced based on experiments of beams failing
in a diagonal tension mode and subjected to no
axial force, and basically, this is also the range of
application of the equation.

The equation has enough simplicity expressed
by concrete strength, reinforcement ratio and
effective depth in a cumulative form. The ac-
curacy of the equation is acceptable since it is
better than that of any other equations.

1. INTRODUCTION

Many experimental research works have been
reported” in regard to shear strength of re-
inforced concrete members. Regretably, how-
ever, a generally acceptable theory has not yet
been established. After the development of
flexural cracks shear force acting on a cracked
section is carried by concrete in the compression
zone, interlocking action of aggregates, and dowel
action of longitudinal bars. The proportions
shared by these actions have been clarified to
a certain extent by experimental and analytical
studies recently conducted®:®, but these results
are not yet such as to be applicable to design use.

Nominal shear stress is generally used at
present in design of reinforced concrete members
without web reinforcement. Many test results
have shown that the nominal shear stress at a
critical diagonal cracking is principally dependent
on concrete strength, reinforcement ratio, effec-
tive depth of cross section, shear span-depth ratio,
and applied axial force. And a part or all of these
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factors are included in design codes in some way.
However, the effects of these factors are different
according to the code or investigator.

Based on investigations of published test
results, the authors have deduced a simple design
equation for reinforced concrete members with-
out web reinforcement. This equation includes
the effects of all of the factors mentioned above,
is supported by many test results, and is simple
enough for ordinary design work.

2. FACTORS USED IN THE PROPOSED EQU-
ATION AND THEIR FUNCTIONAL EX-
PRESSIONS

(1) Study on the principal factors

The magnitude of axial force and shear span-
depth ratio are also the principal factors influenc-
ing shear strength of reinforced concrete mem-
bers, and it is well-recognized that shear strength
increases considerably when the axial compressive
force is applied or the shear span-depth ratio is
small. However, this paper deals only with
normal cases, that is, cases of shear span-depth
ratios greater than about 3 and without axial
forces at the first step.

The failure mode of a test beam without web
reinforcement is mainly related to the shear span-
depth ratio, and when the ratio is larger than
about 3, which is dealt with in this paper, the
failure mode is usually so-called diagonal tension
failure; a flexural crack in the middle of the
shear span suddenly develops into a critical
diagonal crack and shear failure occurs almost
simultaneously with the development of this
critical crack. The principal factors resisting
development of the critical diagnoal crack are
(1) tensile stress of concrete in the web, (2) inter-
locking action of aggregates across flexural
cracks, (3) dowel action of longitudinal bars,
and (4) shear stress of concrete in the compres-
sion zone. These factors are related to the
strengths of the materials used and the cross-
sectional dimensions of the member.

a) Strength of concrete
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It is quite natural for diagonal cracking
strength to be closely related to the principal
tensile stress of concrete in the web and then to
the tensile strength of concrete, and the shear
strength without web reinforcement specified in
the various codes is considered to be approxi-
mately proportional to the tensile strength of
concrete. However, shear strength is usually
expressed as a function of compressive strength
of the concrete since it is not proper to use the
tensile strength directly. Fig. 1 shows the rela-
tionships between shear strengths and com-
pressive strengths in recent codes.®~®  The
compressive strengths in the figure are cylinder
strengths with cub strength used in BSI CP110
multiplied by 0.85.

The tensile strength of concrete is often con-
sidered to be proportional to the square root of
the compressive strength. However, it is more
proper to assume it to be proportional to the two
thirds power of the compressive strength. The
following equation was obtained from the results
of tests carried out by the Cement Association of
Japan.?”

£,=027£%5  (f, and f. in MPa)

Fig. 2 is derived from Fig. 1 by using Eq. (I).
This figure appears to show that in these codes
shear strength is approximately proportional to
tensile strength. Although tensile strength of
concrete prominently affects shear strength, this
does not always mean that the tensile strength
should be directly used in the equation for cal-
culation of the shear strength. This is due to the
fact that interlocking action of aggregates, dowel
action of longitudinal bars, and shear resistance
of concrete in the compression zone are closely
related to the properties of concrete as described
below. In fact, statistical studies®s® shows that
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Fig. 1 The relationships between shear strengths
J: and compressive strengths f,” of concrete
in recent codes®~6),

shear strength is proportional to 1/2-1/3 power of
compressive strength.

b) Interlocking action of aggregates

It has already been clarified that in the case of
a beam without web reinforcement the shear force
carried by the interlocking action of aggregates
across flexural cracks is large enough that it
cannot be neglected. According to Fenwick and
Paulay,® the interlocking action becomes larger
as crack width is smaller or concrete strength is
higher. The ratio of stress of tension reinforce-
ment to the nominal shear stress is approximately
constant if the position of applied load and the
section of the beam are given, and this ratio is
considered to be approximately inversely propor-
tional to the reinforcement ratio. As the flexural
crack width is approximately proportional to
the stress of tension reinforcement, the crack
width at the same stress level becomes smaller
as the reinforcement ratio is increased. Moreover,
it is known that crack width becomes smaller
at the same stress level of reinforcement when
the amount of tension reinforcement is relatively
large compared with the area of concrete in the
tension zone. These facts indicate that the inter-
locking action will increase when the reinforce-
ment ratio is large. And it is naturally expected
that the interlocking action will increase when
the strength of the mortar, which supports the
coarse aggregates, is high.

The above discussion is based on the assump-
tion that the ratio between the dimension of
aggregates and those of the cross section is fixed.
The relative relation between the maximum size
of aggregates and the dimensions of the cross
section affects the contribution of the inter-
locking action. Taylor'® has shown based on
his experiments in which depths of beams and
the sizes of aggregates were changed that the
main reason for high shear strength of a small
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Fig. 2 The relationships between shear strengths
/. and tensile strengths f, of concrete in re-
cent codes derived from Fig. I.
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specimen is the relatively large aggregate size
for the depth of the beam and the consequently
large interlocking action in the small specimen,
and that the strength of the small specimen
would not be very different from that of a large
specimen if the aggregate size were to be scaled
down properly. Since in ordinary reinforced
concrete members the maximum size of aggregates
is usually not changed much even when the dimen-
sions of the members differs markedly, the shear
strengths of members with large depths might
be reduced, and this effect should be taken into
consideration in design.

c) Dowel action of longitudinal bars

A part of the shear force can be transfered by
the dowel action of longitudinal bars. The main
factors influencing this action are flexural
rigidities of the bars, and strength and rigidity of
the surrounding concrete. In more concrete
terms, area, diameter, number and arrangement
of the bars, spacing of flexural cracks, and tensile
strength and elastic modulus of concrete are
considered to be the main factors. However,
the contribution of each of these factors has not
yet been separately expressed. Moreover, it is
not practical to include all these factors in the
design equation. Under present circumstances
it is more realistic to judge the magnitude of
dowel action by using the reinforcement ratio
and tensile strength or compressive strength of
concrete as the main factors.

d) Shear resistance of concrete in the com-

pression zone

After the development of flexural cracks, a part
of shear is carried by the concrete in the com-
pression zone, and this is closely related to the
area of compression zone. As the position of
the neutral axis after flexural cracking depends
mainly upon the elastic modulus of concrete and
the reinforcement ratio, shear carried by the
concrete in the compression zone is considered
to be defined by the reinforcement ratio and the
strength of concrete since the elastic modulus is
to be the function of concrete strength.

(2) Functional expression of the principal
factors

As discussed in section 2.(1), it is considered
that (1) aggregate interlocking action is affected
by compressive strength of concrete, reinforce-
ment ratio, effective depth of cross section, and
ratio of moment to shear, (2) dowel action is
affected by concrete strength, reinforcement
ratio, and ratio of moment to shear, and (3)
shear resistance of concrete in the compression
zone is affected by concrete strength and reinforce-
ment ratio.

Fig. 3 shows recent test results®»®»!0:12 ¢on-
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Fig. 3 The relationships between shear strengths
f, and reinforcement ratio p,, in recent invest-
igations®.9,10,12),

Ratio of f.
T

Q d, m

0 0.3 1.0 15

Fig. 4 The relationships between shear strengths
f, and effective depth d in recent investiga-
tions®1,

cerning the relationship between shear strength
and reinforcement ratio. The simple expression
may be Kani’s one in which shear strength is
proportional to the square root of the reinforce-
ment ratio.

As the effect of the absolute value of effective
depth on shear strength is considerably great
as shown in Fig. 42,19, this should be taken into
account. The most simple expression is the one
proposed by Kani, that is, shear strength is
proportional to one-fourth power of effective
depth, and this is considered to be appropriate.

The effect of concrete strength is rather com-
plicated. If the effect of tensile strength is con-
sidered to be dominant, shear strength may be
proportional to two-thirds power of the com-
pressive strength of concrete. On the other hand,
one-third power may be usable if the effect of
concrete strength on the interlocking action of
aggregates is emphasized as proposed by Placas
and Regan'®.
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3. PROPOSED EQUATION AND ITS EVALU-
ATION

(1) Expression of the proposed equation

Many of the equations proposed for estimating
shear strength have been as products of main
factors such as concrete strength and reinforce-
ment ratio. However, product form equations
will give extreme values of shear strength if
more than two variables werc to take extreme
values. The authors believe that such tendencies
are not found in real cases. Therefore, it was
decided to use a sum form in principle. According
to the discussions in section 2, reinforcement ratio
p, effective depth d and compressive strength of
concrete f,” are used as the variables in the
proposed equation to estimate the nominal
shear strength f, of reinforced concrete members
without web reinforcement.

Sl fi=Bo(T4- ot Ba) wrevrereererennninnanns (2)
fo=Vp,—1 (D 1L Of) wverevmmmmersnnenn (3)
lgd:l/g/"d”’_l (d in ) weeeemmmerereennns (4)

Bo: constant

f»: nominal shear strength of beam without
web reinforcement
= Veo/(bwd), MPa

f.u tensile strength of concrete = 0.27 f,’2/3,
MPa

P,: reinforcement ratio= 100 As/(bwd), %

d: effective depth, m
b,: width of web
Ve: shear force at failure of beam

Table 1 Outline of data used;
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f.': compressive strength of concrete, MPa

As: area of tension reinforcement

The reasons why ratio of moment to shear or
shear span-depth ratio is not included as a vari-
able are that the effect is not great in the range
treated in this paper, and it is not always appro-
priate to use the ratio in the practical design
equations.!®

(2) Determination of 8,

In order to determine the constant 3, in Eq. (2),
the authors used the published test data listed in
Table 1112:15~29  These data were selected con-
sidering the following:

(1) More than five data with shear span-depth
ratio greater than 3 or showing failure in the
diagonal tension mode are to be included.

(2) More than two factors among reinforce-
ment ratio, effective depth, shear span-depth
ratio and compressive strength of concrete are
more or less constant.

The investigation based on these data indicated
that the values of calculated by Eq. (5) was
nearly constant for the wide range of p, and 4.

Bo=(FlfOI(1+Br+Ba)

However, a clear trend was recognized con-
cerning the compressive strength of concrete.
The calculated values of S, for small f,’ were
obviously larger compared with those for large
[ if By is treated as constant. This was con-
sidered to be due to the fact that tensile strength,
which was applied to take into account the effect
of concrete, could not properly cover the total
contribution of concrete strength. Therefore, in

range (and average) of parameters.

Number (Mfcp/” (”2) (i) ald
Kanilt> 31 25-31 (27.0) 2.6-2.9 (2.73) 0.13-1.10 (0.44 2.6-8.0 (4.71)
Morrow!s> 11 15-46 (29.9) 1.2-3.8 (2.26) 0.34-0.36 (0.35) 3.8-7.9 (4.70)
Mathey16> 7 24-31 (26.2) 0.5-0.9 (0.75) 0.403 2.8-3.8 (3.3N)
Kanit?> 13 18-35 (27.1) 0.5-0.8 (0.71) 0.27-0.27 (0.27) 3.0-5.1 (3.51)
Rajagopalant$> 10 25-37 (29.8) 0.3-1.7 (0.75) 0.26-0.27 (0.27) 3.9-4.3 (4.14)
Diaz de Cossiol®> 22 14-29 (23.8) 1.9-2.9 (2.18) 0.08-0.17 (0.11) 4.00
Krefeld20> 53 12-39 (24.6) 1.1-4.5 (3.06) 0.21-0.48 (0.26) 3.6-8.5 (5.28)
Moody?1> 24 12-41 (26.0) 0.8-2.4 (1.90) 0.26-0.27 (0.273 2.9-3.4 (3.26)
Chang??> 12 31-39 (33.00 1.9-2.9 (2.38) 0.137 3.72
Mattock!12? 6 16-47 (24.3) 1.0 3.1 (2.2 0.254 3.0-5.4 (4.200
Van den Berg?® 34 15-66 (34.5) 1.35 0.359 3.54.9 (3.78)
Leonhardi24> 6 30-3t (30.6> 2.0-2.1 (2.04) 0.27-0.28 (0.28) 3.0-5.9 (4.76)
Leohnardt?s 12 35-39 (37.9) 1.3-1.7 (1.5%) 0.07-0.60 (0.21) 3.00
Taylorzé 23 19-37 (26.3) 0.9-2.3 (1.70) 0.222 4.11
Taylore? 12 24-32 (27.3 1.2-1.9 (1.43) 0.22-0.22 (0.22) 3.8-3.8 (3.78)
Aster28> 5 28-28 (27.9) 0.4-0.9 (0.62) 0.50-0.75 (0.45) 3.70
Higai?® | 7 31-37 (32.9) 2.39 ! 0.160 3.5-6.5 (4.36)
Total 288 ‘ 12-66 0.3-4.5 0.07-1.10 2.6-8.5
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Fig. 5 The relationships between 8o calculated by Eq. (5) and each parameter
(8o, fo'» Pw, @ and a]d are averages in Table 1).

the next step Eq. (6) was used to express the
contribution of concrete strength, and an in-
vestigation based on Eq. (7) was carried out.

fo=f/4 (foand f. in MPa)-ooor (6)
fv/fozﬂu(l+ﬂp+ﬁd) ........................... (7)

Where, f, is not any kind of strength of con-
crete, but an interpretation of all the contribu-
tions by the quality of concrete, which includes
tensile strength and influences of aggregate inter-
locking and dowel action.

The coefficient of variation of f3, calculated by
Eq. (7) concerning the data in Table 1 is 12.5%
with an average of 0.216. This means that the
coefficient of variation for the ratios of the shear
strengths tested to that calculated with f, of
0.216 is also 12.5% and the accuracy of this
equation may be considered to be satisfactory.

Detailed discussions on the influences of the
individual variables are as follows. The ranges of
the variables in each data group are shown in
Table 1 together with the averages. Fig. 5 shows
the relationship between the averages of the
individual variable within each group and the
calculated average S, for each group. No special
trend of average is seen about f,” or d, and p,
unless P, is larger than 39,. Some of the groups
with p, larger than 39, show tendencies for
smaller B,. Concerning shear span-depth ratio,
Fig. 5 (d) shows that the larger the ratio the
smaller the 3, value. Therefore, p, is limited to
under 39 in the first place, and the authors

recalculated 8, by using p,=39% if p, was
larger than 39%,. The coefficient of variation of 8,
was 11.39% and this was about 1%, less than that
without limitation of »,. This limitation of p,
was considered effective.

In the next place, data with wide range of
shear span-depth ratios such as Kani’, Mor-
row'®, Krefeld®, Mattock!®, Leonhardt®»?
and Higai?® were investigated. The effect of
the ratio in these data was recognized to have two
different treads. One was the trend seen in the
data by Morrow, Krefeld, Mattock, and a part of
the data by Kani, and f, is clearly reduced as
the ratio is increased as shown in Fig. 6 (a)
which gives a part of Kani's data. On the other
hand, test data obtained by Leonhardt and
Higai, and a part of the data by Kani show that
Bo is nearly constant for the wide range of shear
span-depth ratio as indicated in Fig. 6 (b). Since
the reason for these differences was not clarified,
it is rather difficult to obtain a modified equation
which gives a better result for all the data.
Therefore, for the time being, the relation be-
tween f3, and shear span-depth ratio was assumed
to be expressed by the following cquation.

po=A-+B(dla)
a: shear span
4, B: constant

The constant 4 and B were determined by
applying the method of least squares to the data
above. A4 was 0.157 and B was 0.257 with a
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coefficient of correlation of 0.721 and the num-
ber of data of 114. Considering these results and
the average value of 5, for all of the data used,
Bo was finally determined to be expressed by the
following equation.

B0=0.20(0.75+1.4d/a)

When the shear strength was calculated for

all of the data (#=288) applying Eq. (9), the
average of the ratios of shear strengths tested to
that calculated was 1.00 and the coefficient of
variation was 9.29,. This variation is equi-
valent to that of compressive strength or tensile
strength of concrete. And this modification has
not shown poorer applicability to any group of
data as indicated in Table 2. The average ratios
regarding the data within each paper are between
0.92 and 1.10, and moreover in 15 papers out of
17 the ratios are between 0.97 and 1.03. After
these considerations, the authors proposed Eq.
(10) to calculate shear strengths of reinforced
concrete members without web reinforcement.

fo=fu(0.754+ 1.4d/a)(1+ fp+fa) --ooveee (10)
Ju=0.20£."1% (f,, and f." in MPa)

Bo= VD, —1: p,<3% (P, in %)
Ba=d™t—1: d<1.1m (d in m)

where, f,, has a dimension of strength, and is
defined as the shear strength of the beam with
afd of 5.6, p, of 19 and d of 1 m.

(3) Evaluation of the proposed equation

Many equations for calculating shear strengths
of reinforced concrete members have been
proposed, and they may be classified into three
categories:

(1) so-called theoretical equations introduced
by assuming the failure mechanism,

(2) so-called empirical equations introduced
by finding the main factors from test results

Table 2 Averages and coefficients of variation within each paper of the ratios of shear
strengths tested to those calculated by the various equations.

Average (coefficients of variation, %)
Data form i <o e

Eq. (10) Eq. (1D Eq. (12) Eq. (13) ! Eq. (14)
Kanitl> 0.98 ( 8) 1.03 (15) .12 ( 8 1.04 (1D 1.06 (10)
Morrowi3> 1.00 ( 5 0.99 ( 4 1.06 ( 7 0.93 (1) 1.06 ( 8)
Mathey16> 0.99 ( 5 0.90 ( 4 0.90 ( 5) 0.97 (6 1.17 ( 6
Kanil?> 0.92 (10) 0.93 (100 0.83 (12> 0.91 21 1.07 (13
Rajagopalani8» 0.97 (14) 0.99 (141 0.85 (1) 0.82 (12 1.05 (14)
Diaz de Cossiol® 1.01 (15) 1.30 (18) 0.99 (12) 1.03 (15 112 (14)
Krefeid20? 1.01 ( 6 1.06 ¢ 7) 1.09 ( 6) 0.99 (12) £.05 (11
Moody2h 0.98 ¢ 9 1.03 (9 103 C9 0.98 (1) f.16 (1)
Chang?® Lo (8 132 (D 109 (7D 1.08 (1o 1.24 (D
Mattock!?» 1.02 ( 6) [ Y] Lo3 (7 1.05 (14) L4 (s
Van den Berg?® L3 (6 0.94 ( 6) LiH(H» Liz ¢n 116 ¢ &)
Lennhardt24> 1.03 (o) 1.09 (10) Lo6 (9 1.8 (B } 1.09 ( 4)
Leonhardt?® 1.03 (D L5 (49 0.98 ( 6) 1.04 (11 ‘ 1.25 ¢ 7)
Taylor2e> 0.99 ( 8) 1.07 ( 8 0.98 ( 7) 0.91 (D | 1.08 (18
Taylor2? i.02 (13 1.10 (12 0.99 (1D 0.96 (15) E 1.14 (I3
Aster?8) 0.98 ( 6 0.87 (D 0.84 (7 0.88 ( 5) ] 1.10 ( 6
Higai?$> 1.0t C7) 1.20 ¢ 7) 1.02 (D 0.94 (7 ! 1.10 ¢ 6)
Total i 1.00 (9.2) ] 1.06 (15.5) 1.03 (11.4) 0.99 (13.7) ’ 1.11 (11.3)
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Fig. 7 The relationship between the ratio of shear strength tested to that
calculated by Eq. (10) and the value of each variable.

and determining the format of the equation and
the constants in the equation from the test
results, and

(8) equations introduced by statistical analy-
ses of many published test data.

If the failure mechanism and the properties
of materials are well-understood, Category (1)
is to be applied for the widest range. How-
ever, it is considered that this type of equa-
tion is not yet applicable to test data with
sufficient accuracy. Equation in Category (2)
will naturally agree with test results which
comprise the basis of the equation, but they do
not agree so well with other test data where the
range of variables are different. This is one of the
reasons why many empirical equations have
been proposed. Therefore, in introducing this
kind of equation, selection of the test data to be
used is quite important. In Category (3) a statisti-
cal method such as multi-regression analysis is
applied to analyze the experimental data, and
it agrees relatively well with the test results if
the format of the equation and the data used
are appropriate. However, the meanings of the
variables in the equation usually are not clear.

The equation proposed by the authors is consider-
ed to belong to Category (2). Therefore, careful
selection of data was carried out considering that
the variables should cover entire range used in
ordinary structures as mentioned in section 3.(2).
Finally, 288 data, which cover a sufficient range
of parameters such as concrete strength, re-
inforcement ratio, and shear span-depths ratio
were obtained, although the range of depths is
not sufficient. The relationship between the
ratio of shear strength tested to that calculated
by Eq. (10) and the value of each variable used
are shown in Fig. 7. Compressive strengths of
concrete f.” are in the range from 12 MPa to
66 MPa, and in most data they are between
20 MPa and 40 MPa. No special relation is
seen in Fig. 7 (a) between the ratio and com-
pressive strength of concrete. The reinforcement
ratios are between 0.259%, and 4.5%. And no
special relation is seen within this range. The
effective depth of sections range from 0.07 m to
. m, and in most of the data the effective
depths are less than 0.35 m. Although the data
for large depths is insufficient to show the
tendency of the ratio when the effective depth is
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Table 3 Average and coefficient -of variation
of the ratios of shear strengths tested to
those calculated by Eq. (10).

Number Average C.v.*
fe'<20 MPa 40 0.96 10.1
20< £’ <35 190 1.01 9.2
Je'=35 MPa 58 1.03 7.4
p<1.5% ‘ 59 1.00 10.7
1.5<p<3.0 | 163 1.00 9.6
»=23.0% ’ 66 1.03 6.1
— . I T
d<0.2m 53 ‘ 1.03 11.7
0.2<d<0.4 07 | 1.00 8.5
d=04m 28 0.97 6.2
— S b — —
a/d<3.5 61 ; 0.98 8.7
3.5<a/d<5.5 190 1.01 .7
a/d=5.5 i 37 | 1.00 6.6

* Coeflicient of variation

changed, no special trend is recognized in the
data used. The range of shear span-depth ratios
is between 3 and 8.5, and no significant trend is
seen concerning the average and the variation
in this range. However, the variation of the
ratios are obviously different according to the
values of f.”, pw or 4 as indicated in Table 3.
The variations become larger when the concrete
strength, reinforcement ratio or effective depth
becomes smaller, although the average ratios are
more or less same. This result is to be expected
when the applicability of Eq. (10} is good. These
discussions show that the proposed equation
may be considered to be appropriate in the selec-
tion of the principal factors and in expression of
these factors.

The authors have proposed an equation in
consideration of obtaining an equation of suffici-
ent simplicity and applicability for the experi-
mental results available, and this purpose is
considered to have been well-achieved. How-
ever, there are many equations already proposed
and it is thought necessary for comparisons to
be made with these equations. From among the
equations in Category (3), the well-known Zsut-
ty’s equation® and Kennedy’s equation® deduced
by multiple regression analysis, and Hedman-
Losberg’s equation®”, which is the basis of the
equation in the CEB/FIP Model Code, were
selected for comparison.

Zsutty:
fo=0.476 (f.’ p.dja)/?

Kennedy:
y M/ Vd>*0.244

- "0.426 —0.282 7
£,=0.312f,/ 04284 <1+0~25p

Hedman-Losberg:
£,=0.09(1.75—1.25d)(1 +50p,) V7. - (13)
1.75-1.25d>1.0
0,<0.02

These equations are also expressed in terms of
SI units. Eq. (11) or Eq. (13) is the same as
that proposed by Zsutty or Hedman-Losberg
while Eq. (12) is that for beams without com-
pression reinforcement as proposed by Kennedy.

The ratio of all test values of shear strength in
Table 1 to those calculated by Zsutty’s, Kennedy’s
or Hedman-Losberg’s equation are as shown in
Table 2. The average ratios of shear strengths
tested to that calculated are 1.06, 1.03 and 0.99,
and the coefficients of variation are 15.5%, 11.4%,
and 13.79%,, respectively. The equation proposed
by the authors with coefficient of variation 9.2%,
is considered to be better than these equations
with respect to accuracy and simplicity. Data
used in Zsutty’s analysis have small range of
depth, while he has neglected the effect, which
is now known to be one of the main factors.
Therefore, his equation estimates the strength
to be higher when depth is larger. The relatively
high coefficient of variation by Kennedy’s
equation is due to the fact that the variation in
the average for each data group is somewhat
large. It may be one of the reason why the
coefficient of variation by Hedman’s equation is
relatively larger that the equation neglects the
effect of shear span-depth ratio. However, the
coefficient is still larger than that obtained by
Eq. (14), which is derived from Eq. (10) by
neglecting the effect of shear span-depth ratio.

These discussions are based on the data collect-
ed by the authors. Therefore, comparisons based
on the data used in original analyses are also
made. The data used in Zsutty’s work are from
the experiments by Diaz de Cossio, Moody,
Morrow, Van den Berg and Kani. According to
Zsutty’s paper, the coefficient of variation of
the ratios of shear strengths to the calculated
one was 8.6%, for the 86 beams with shear span-
depth ratios larger than 2.5. The authors,
however, obtained 94 data from the reports.
As it was not clear which data Zsutty excluded,
these 94 data were used in comparisons. The
average of the ratios of shear strengths tested to
that calculated is 1.00 with the coefficient of
variation 13.2% by Zsutty’s equation, while
the average is 0.99 and the coefficient of varia-
tion 10.0% by the authors’ proposed equation.
With regard to these data Eq. (10) is again con-
sidered to be better than Zsutty’s equation.
In the data collected by Kennedy, simply sup-
ported beams with shear span-depth ratios
larger than 3 were those from Diaz de Cossio,
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Moody, Chang, Hanson, Maclarnon, Gaston,
Krefeld, and Bresler. Regarding the above 107
data, the ratio of shear strength tested to that
calculated is 1.06 by Kennedy’s equation and
1.00 by Eq. (10), and the coefficients of variation
are 12.39, and 10.09%, respectively. Hedman &
Losberg have deduced their equation based on
255 data obtained from 15 papers, and the co-
efficient of variation of the ratio of shear strengths
tested to those calculated is 16%. The authors
could collect 157 data among them. The coeffici-
ents of variation about these 157 data are 13.89,
by Hedman’s equation and 10.19% by Eq. (10).
These comparisons show the same trend as the
results given in Table 2, and it is substantiated
that Eq. (10) even better fits the data which are
the bases of other typical equations.

4. DESIGN EQUATION AND ITS APPLICA-
TION

(1) Design equation

It is desirable for a design equation to be as
simple as possible so long as it maintains ac-
ceptable accuracy. And it should not be one
which gives the average strength such as Eq. (10),
but should be a more conservative one which
takes into account variations. Eq. (10) is relative-
ly simple, but it is difficult to define shear span-
depth ratios properly for such as which sustain
distributed loads or moving loads, or for statically
indeterminate structures such as continuous
beams. Shear strength is markedly affected by
shear span-depth ratio only under a certain
loading condition that the load is acting on the
top surface and the reaction is from the bottom
surface, and then the vertical compressive stress
is developed in the web concrete. Under this
condition the shear strength increases significantly
if the shear span-depth ratio becomes lower than
three. Therefore, a rational design method for
such conditions should be developed separately
since the authors’ proposed euqation does not
Except for such conditions the effect of
the shear span-depth ratio can be neglected for
the design equation without significant loss of
accuracy. With these considerations, the authors
propose here a design equation for shear strength
of reinforced concrete beams without web re-
inforcement.

f‘l):_f’ll(](l +/J)p+ﬁd)

Eq. (14) is given by substituting 5.6 for a/d in
Eq. (10). Therefore, this equation gives a more
conservative value in case of a/d smaller than
5.6. Actually, the average of the ratios of shear
strengths with a/d smaller than 5.6 to that cal-
culated by Eq. (14) is 1.13 with coefficient of

cover.
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Fig. 8 Accumulative frequencies of the ratio of
shear strength tested to that calculated by

Eq. (10).
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Fig. 9 The relationships between the ratio of
shear strength tested to that calculated by

2q. (14).

variation 10.4%,. Although it will give a slightly
dangerous value in case a/d were to be larger
than 5.6, the effect of a/d will be very smaller
in this range, since the average ratios for this
range is 0.97 with coefficient of variation 7.5%.
Furthermore, in such a slender beam there will
be very little possibility of failure in shear. Con-
sequently, it is considered that Eq. (14) can
safely be used in design. Fig. 8 shows the ac-
cumulative frequencies of ratios of shear strengths
tested to that calculated by Eq. (10) on a normal
probability paper. It may well be assumed that
the distribution of the ratios is normal. If the
characteristic shear strength is defined as the
one with 959% reliability, 85% of f, or f, in
Eq. (14) is to be used for f,. or f.s, since the



140 H. OxkamuraA and T. Hricar

coefficient of variation of the ratios of shear
strengths tested to that calculated by Egq. (10)
is 9.29, with the average of 1.00. Actually,
among 288 data listed in Table 1, there are only
16 cases (=5.6%) in which the shear strengths
tested are less than 85 9, of the calculated one.
Fig. 9 shows that only 5 cases out of 288 are
below the characteristic strength f,, calculated
by Eq. (153) even when the actual concrete
strengths are used instead of the characteristic

strengths. Therefore, the following equation is
proposed for design purposes.
o= fuor (1ot fa) wovervemmmiioeis (15)
foor =0.85f,-,n
=0.17£.5Y" (in MPa)
(2) Examples of application for specified

structures

Although Eq. (15) is simple enough for practical
use, more simplification is possible if structures
to which it is applied are limited. For example,
applications to T-girder highway bridges and
floor slabs of the bridges are described in the
section below?".

In simply-supported T-girder highway bridges
maximum spans are about 20 m and are usually
less than 15 m, and the span depth ratios are
about 10. Therefore, the effective depths are
usually less than 1.5 m. Reinforcement ratios of
web  (Pw=As/bwd, bw: width of web) at the
span centers are usually higher than about 1.59,
and at the critical sections against shear they are
considered to be about 19, at least. Therefore,
for T-girder highway bridges, it is usually safe
if Eq. (15) is applied with d equal 1.5 m and p,
equal 1.0%. Similarly, Eq. (15) can be safely
applied with d equal to 0.2 m and pw equal to
194 for the floor slabs of the bridges in case the
slabs are designed as beams against shear.

5. CONCLUSIONS

A design equation for shear strength is proposed
upon investigation -of published test results on
shear strengths of reinforced concrete beams
without web reinforcement. The proposed
equation is deduced based on experiments of
beams failing in a diagonal tension mode and
subjected to no axial force, and basically, this
is also the range of application of the equation.

(1) Shear strengths of reinforced concrete
members with shear span-depth ratio larger than
3 and without web reinforcement are estimated
well by Eq.(10) which includes concrete strength,
reinforcement ratio, effective depth, and shear
span-depth ratio in a cumulative form.

(2) For design purposes Eq. (15), which is

derived from Eq. (10) by ignoring the effect of
shear span-depth ratio, is usually adequate.

(3) 1If the structures to which the equation
is applied are limited, shear strength can be
safely expressed by the function of compressive
strength of concrete only since the reinforcement
ratio and the effective depth are generally within
certain limits.
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