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NONLINEAR ANALYSIS OF REINFORCED
CONCRETE FRAMES

By Tunwa SIRISREETREERUX* and Tada-aki TANABE**

1. INTRODUCTION

(1) Literature Review

The behavior of reinforced concrete frame struc-
tures is fundamentally nonlinear since the stress-
strain relationship of concrete, as shown in Fig. 1,
is not linear especially under high load condition,
therefore; the elastic methods of analysis such as
slope-deflection, moment distribution, and Castiglia-
no’s Theorem, etc; are applicable only for the case
of low load condition. Assuming the behavior of
the frames to be linear at high load condition, after
the yielding of reinforcing steel, produces large
amount of error because of the rotations of plastic
hinges.

Early research works were mostly on the deter-
mination of the rotational capacities of plastic hinges
in reinforced concrete members. In 1956, Baker®
suggested a rather complicated set of equations in
terms of the compressive force and section properties.
His equations yield a safer prediction of the availa-
ble plastic rotation than the other methods. In 1966,
Corley'® proposed the equivalent length of the
plastic hinge equation in terms of the section pro-
perties and steel reinforcement which were based
on the test of simply supported beams. Mattock®
developed Corley’s equation to a simple form which
fit the experimental data. Sawyer' also proposed a
simple equation for the length of plastic hinge based
on the assumptions that the maximum moment in
the member is the ultimate moment and the zone
of yielding is spread over one-quarter of the depth
of the section past the section in which the bending
moment is reduced to yield moment. As for the
comprehensive analysis and design procedures to
consider moment redistribution in concrete struc-
tures, essentially there are two analytic approaches
used. That is, the mechanism approach in various
forms which is the basis for the three design met-
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hods of Sawyer, Baker, and Cohn which have been
retained for consideration by the ACI-ASCE Com-
mittee 428 on limit design and an analysis by suc-
approximation. Past work in the
latter direction has been quite limited, however, for

cessive linear
concrete structures. Scordelis and Ngo! presented
a finite element solution for particular cracking
pattern. Ernst and Berwanger® showed a modified
elastic analysis approach for beams. Wang® have
developed a general finite element computer program
for limit analysis of frames but it lacks the sophis-
tication to handle complicated concrete structures.
Lazaro and Richard® derived the stiffness matrix
using a beam element. In deriving the stifiness of
each member, the moments working at both ends
were assumed before hand and the overall analysis
was repeated until the assumed end moments agree
with the resulting end moments. When a certain
critical point reaches the stage of plastic hinge, the
computer sets up a new nodal point.

(2) Scope of the Study

This study is closely related to the later approach.
However, no linear approximation was made. In-
stead, a set of simultaneous equations of unknown
curvatures at each segments are derived applying a
simple load-moment-curvature relationship. An itera-
tion is carried out until the resulting curvature
agrees with the curvature that is uniquely given by
the moment working at the section. In this way, a
rigorous method of analysis of reinforced concrete
frames which is applicable for all stages of loading
(these are the stages after the formation of several
hinges until collapse) is formulated. Furthermore,
the ultimate load and capacity of plastic hinge rota-
tion is also studied.

2. METHOD OF ANALYSIS

(1) Assumption

The following assumptions are made in the ana-
lysis : (1) axial deformation, shear deformation and
slenderness effect are neglected, (2) small displace-
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ment is assumed, (3) plane sections remain plane
after bending, (4) the structures are divided into
finite small segments; the curvature along any seg-
ment is assumed to be constant.

(2) Stress-strain relationships

The stress-strain relationships of concrete and rein-
forcing steel in tension and compression adopted in
this analysis are as shown in Fig. 1 and Fig. 2,
respectively.

(3) Sign convention

Positive sign conventions for moments and shears
are as shown in Fig. 4.

(4) Load-moment-curvature relationship of
a section

Let the rectangular section shown in Fig. 3 (a)
be subjected to axial force P and bending moment
M, and let the strain distribution across the section
be linear as in Fig. 3 (b). The stress distribution
in the concrete and steel corresponding to the strain
can be evaluated according to the stress.strain cha-
racteristic of the concrete and steel mentioned in item
2.(2) as shown in Fig. 3 (¢). The load-moment-
curvature relationship can be generated as follows :
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where the symbols are defined in Fig. 3, feo=1:()
and fs=fs(6) represent the stress-strain characteris-
tics of the concrete and reinforcing steel as in Fig.
1 and Fig. 2, respectively.

Equations (1) and (2) are nonlinear; usually, a
closed form solution cannot be expected. Therefore;
a numerical iterative method of solution is developed.
In this method P and ¢, are assumed and the
corresponding % and M values are calculated. The
strain &, is increased monotonically and at each ¢,
value, a “%£” value is found by iteration to satisfy
The moment,
M is calculated from the moment equilibrium of
equation (2) and ¢ is determined by equation (3).
In this way, the moment, axial force, strains and
stresses, corresponding to any deformation imposed
on the section, are found. The results are expressed ‘

the force equilibrium of equation (1).

in terms of the continuous load-moment-curvature
diagram. The flow chart for the basic steps of the
numerical method adopted here is shown in Fig. 6.

(5) Slope-defiection relation

Consider the elastic curve shown in Fig. 5, with
the left end of the member as the origin of the X
axis directed along the original undeflected position
of the straight member, and the Y axis directed

o] X

Y

Fig. 4 Positive Sign Conventions for
Moments and Shears.

Fig. 5 Elastic Curve.
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Fig. 6 Flow Chart for the Numerical Method of
Analysis for M-¢ Curve.

positive downward. The deflections are assumed to
be so small that there is no appreciable difference
between the original length of the member and the
projection of its deflected length. Consequently, the
curve is very flat and its slope at any point is very
small. Hence,
2
jx{ S (L) erereerreeerireeniereeneeeanaas (10

where ¢(x) is the curvature per unit length of
member at any point X and assumed positive when
concave upward as shown in Fig. 5.

Integrating equation (10) twice leads to

d
d—i»: _j¢(x)dx+cx ........................ an

and

y:‘“f () dxdx+C X+ Cy vrevreereeens 12

where C, and C; are arbitary constants of integra-
tions. Equations (11) and (12) are the standard
expressions for the slope and deflection. For a
member 7 divided into N small segments of width
4X, by virtue of the assumptions made earlier,
equations (11) and (12) can be written in numerical
forms as,

(dy/dx>n.m: - _Z:ml B.i () Axn,i+ciz,1

and

Ynym:“‘ % Zlqsn,j(x) AXn.jAXn,i+Cn,1X+Cn,z

i=1 j=

where,
(dy/dx) y,m=slope or rotation at segment m of
member 7z
Y ».m=deflection at segment m of member
n
b1,i (%), 85, 7(x) =curvature at segments i and j,
respectively ; of member n
4X,.;, 4X,,;=width of segments i and j, res-
pectively, of member n
Ci,i, Cu,p,=first and second integration con-
stants, respectively; of member =
and

1< m< N reeneiiiienen. teetearstecirnrsnnsranse (15)
(B) Simultaneous equations

By using ¢(x) as the unknown variable, if the
number of ¢(x) of all members is N then a set of
N simultaneous equations are needed for solving the
values of N unknowns. All these equations can be
generated by equilibrium, compatibility and boun-
dary conditions.

a) Equilibrium of forces at the segment

The equilibrium of forces at any segment and
equilibrium of moments at any joint must be satisfied.

By definition,

dM(x)
dx

S(X) = i (16)

where
S(x) =shearing force at point =
M (x) =bending moment at point x
For numerical computation, equation (16) can be
written as
_ M(x+4x) —M(x)

S(x) P G an
Therefore ;
. Mn,m+1“]\’1n,m
S”,m____A_XT ........................ (18)
where,

Sn.m=shearing force at segment m of memher
n
M,,,=bending moment at segment m of mem-
ber n
My, mei==bending moment at segment m+1 of
member z
4X,,»=width of segment m of member 7
Considering the equilibrium of forces at segment m
of member 7 as shown in Fig. 8,
Sotom—Srmin=F g oveseiereereerieneaarens a9
where
F, n=applied load on segment 7 of member 7.
Substituting equation (18) into equation (19) leads
to
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4Xy,m T

If 4X,.,, in equation (20) is equal to 4X,, .1,
4X,,m+. and so on, equation (20) becomes
= n,m'ﬁ‘ZMn,mﬂ‘]wn,erz: n,mAXn

where

4X,=width of segment of member n.
Now, from the relationship between M and ¢ in
Fig. 7 and by geometry,

Moyia =Ko s werereesesmsrnsansemrssensens 22)
where K,,,, is the total flexural stiffness at segment
m of member z. Substituting equation (22) into
equation (21) yields

- n,m¢n:m+2Kn:m+1¢n,m+1“— n,m+2¢n7m+z

R Y D GRSV RR 23)
Equation (23) is the force equilibrium at segment
m of member 7.

b) Equilibrium of moments at joint
Considering the equilibrium of moments at joint O
as shown in Fig. 9,

I\[m,m1+Mn2,m2+Mns,m3+Mn4,m4:0 -+ (24)
where My, mi, Muzomss Mus.ms and M, .. are the
moments of members #z1, #2, n3 and 74, respecti-
vely; at the segments vicinity of joint O.
Substituting equation (22) into equation (24) leads
to

Kn1>m1¢n1,m1+Kn2,mz¢nzym2+Kn3>m3¢n3,m3

+Kn4,m4¢n4,m4:0 ............................ @25)
Equation (25) is the moment equilibrium at the joint.
¢) Compatibility and boundary condition

The constant C,,, and C,,, in equations (13) and
(14) can be determined from the boundary conditions

Mz me
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Fig. § Equilibrium of Moments at Joint.

or by the compatibility at the ends of the member.
Hence, by means of equilibrium, compatibility and
boundary condition as mentioned, a set of simaulta-
neous equations can be generated for solving all
unknowns and this may be written in the matrix

form as
TRT{g} m= {F} ceeeereeemmmeenneeennnianiecans (26)
where
{F'} =structural column matrix of external appli-
ed loads

{#} =structural column matrix of segment curva-
tures
[K]=structural stiffness matrix and is a function

of {¢}
(7) Interative process of solution

Since equation (26) is nonlinear, a direct method
of solving the unknowns cannot be used; therefore,
an iterative method is needed. The steps involved
in solving for unknowns are described below and
the corresponding flow chart is shown in Fig. 10.

1. Assume all values of axial forces (P,) and

segment curvatures (¢,.); elastic values are
recommended.
2. Develop P-M-¢ curves for all members by

using the values of axial forces (I°,) in 1.

3. Determine the values of K,,,,, corresponding to
¢, and P-M-¢ curves in 1 and 2, respectively.

4. Set equation [K]{¢}={F} as in equation (26)
and solve for the unknown (¢.).

5. Compare the values ¢, and ¢,

asSME Ry aND B
DEVELOPE M- #  CURVE
DETERMINE Ky m

YES
12

CALCULATE M | S, Y

Fig. 10 Flow Chart for Iterative Process.
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the values of ¢, to ¢, and go to step 3.

If ¢, is close enough to ¢, then calculate the

values of all axial forces (P.).
6. Compare the values of P, and P,

If P, is not close enough to P, then change

the values of P, to P, and go to step 2.

107

shown in Fig. 11 were analyzed, experimental result
of which were quoted from Reference No. 10. The
section and material properties used are shown in

Table 1. The moment distribution at each load

Table 2 Comparison of Ultimate Loads for Example 1.

Total load on beam, kip

Beam No. -— Error
If P, is close enough to P, then determine ’ Test Proposed method (%)
every required values, i.e.; My, m> Su,m> Yu,m- SEI 6.2 18.0 e
16 EI 92.0 81.0 12
3. COMPARISON OF THE EXPERIME- 27 E1 110.0 117.2 7
NTAL RESULTS WITH THE RESULTS
194xiG"
OF THE PRESENT STUDY *
To compare the experimental results and numerical
results of this study, several cases were studied.
el Beam 8EI
(1) Case 1
Three two-span continuous beams 8 EI, 16 EI and
27 EI subjected to two point loads at midspans as
Table 1 Section Details and Material Properties
for Example 1.
: ] ] .
Unit | Beam 8 EI | Beam 16 EI | Beam 27EI - - Beam IGEI
z in 14.5 4.5 14,5
b in 6.0 6.0 6.0
d in 12.5 12.5 12.5
d’ in 2.0 2.0 2.0
As in® 0.62 1.2 2.0
A’ in? 0.62 1.2 2.0
fe 1b/in? 5280 5280 5280
E. 1b/in? 4.05x10°8 4.05x 108 4.05x% 108 —— . Beam 27E[
Eu - 0.0038 0.0038 0.0038
772 — 0 0 0
Ly 1b/in? 42 400 42 600 38300
s 1b/in® 29x 108 29x 108 29 % 108 57x10%
ing
Esh Ib/in 0'(’)760902506 0(‘)95;);06 0'31(1):9(1)05 Fig. 12 Curvature Diagrams at Ultimate Loads
€ hand . . . N .
ek : . (Unit : in™! or 0.4cm™).
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Fig. 11 Distribution of Moments at Loads and Mid-Support in Example 1.
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stage and ultimate loads are compared as shown in
Fig. 11 and Table 2. The curvature diagrams at
ultimate loads are also shown in Fig. 12.

In the first place, the close agreement of moment
distribution between the experimental and the theo-
retical results at loading stages prior to the ultimate
stage is noted in Fig. 11. Fig. 13 shows an exam-
ple of numerical results of the process of moment
distribution after the initlation of a plastic hinge.
In the case of Beam 27 EI, it is noted that at the
load of F/F,=0.80 yielding of the mid-support start
and at the load of F/F,=0.87 yielding of mid-span
also start and the formations of three plastic hinges
proceed almost simultaneously. When the mid-
support reaches its ultimate capacity, the mid-span
reaches the 91 percent of its ultimate capacity.
Depending upon the span ratio loading conditions
and so forth, the process of formation of plastic
hinges are quite different and present study is pos-
sible to clearly analize the difference of those pro-

T. SIRISREETREERUX and T. TANABE

cesses.

While the general trends obtained by the proposed
method are in good agreement with those obtained
by the experiments!® there exist some differences
of the ultimate values of the mid-support moment in
8 El and 16 EI beams. The ultimate loads for beams
8 EI, 16 EI and 27 EI in Table 2 show the differen-
ces of about 15%, 12% and 7%, respectively. These
differences are considered to be due to the failure
condition that is, the ultimate strain of the concrete
assumed in the analysis and also due to the assump-
tion of analysis that the beam is supported by points
instead of supports with certain width which is the
case of the experiment and also due to experimental
errors since in the experiments the observed ultimate
moment of the section at mid-supports are shown to
be 15 to 20% larger than the ultimate capacity cal-
culated which are extremely rare when the sectional
dimensions and material property are given accurately
in view of the study of Hognestad®.

10 — —
Midspan ="
0.9 Mid-Support
087
08 I |
| Diffe‘irence of rotations of the mid span hinge
o6l and the mid support-hinge at load F/Fu= 0.93
=]
1 | l
~
i ]
0.4~ | |
02 ] }
L
! Vi Y1 L 1 ! 1 1 1
0.2 0.4 0.6 0.8 Q9l 1,0
B/ Py
Fig. 13 Load-Curvature Relationships at Critical Sections for Beam 27 EI.
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Fig. 14 Moment Curvature Relationship at Ultimate Loads.
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From Fig. 12 in combination with Fig. 14, it is
possible to obtain the rotational capacity of a plastic
hinge just at the collapse of the continuous beams
and also the amount of moment redistribution.

For above three continuous beams, the redistribu-
tion of negative moments at mid-support is found to
be about 13%. In these cases both the mid-support
section and the load sections reached the plastic
hinge condition without so much redistribution of
moments.

(2) Case 2

A portal frame C1 subjected to a horizontal point
load as shown in Fig. 15 is analyzed by the proposed
method, experimental result of which is quoted from
Reference No. 8. The section details and material
properties are tabulated in Table 3. The load is
increased up to ultimate. The ultimate load capacity

F_.B 2] c
T
)’2
g
o] ® 2
M i‘s
Ly Ly,
B woeem TG

Fig. 15 Frame in Example 2.

=———--by elastic analys|

by proposed meth

e by aliernative meth

Frame C|

Fig. 16 Moment Redistribution (kip-ft or 0.138 t-m)
Ultimate Load of Example 2.

Table 3 Section Details and Material Properties
for Example 2.

i Unit | Frame C1 ' Unit Frame C1
t in 4.0 E. ib/in? 3.5x 108
[ in 3.0 €y — 0.0038
d in 3.25 &1y — 0
d’ in 0.75 Iy 1b/in? 45000
As in? 0.1 Es 1b/in? 29% 108
Ay Lm0 Eg | lbjin? 0
fe | Ibfimt | 3650 esh 5 — -

Table 4 Comparison of Ultimate Load for Example 2.

Ultimate Load, Ib E
Frame No. |— — fror
Experiment Proposed Method (%)
c1 | 693 710 2.5
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and load-deflection curve compared with the experi-
Table 3 and Fig.
17, respectively, which show the close agreement of

mental values® are shown in
compared values. The distribution of bending mo-
ment at ultimate load compared with elastic analysis
is shown in Fig. 16. The curvature diagram at
ultimate load is shown in Fig. 18.

The proposed method gives results which are very
close to the experimental result since the difference
of ultimate loads is only 2.5%. Fig. 16 shows the
distribution of moments at ultimate load, the mo-
ments at joints B and C are about 6% less and 4%
more respectively than the elastic values. The
difference of these two moments from the elastic
analysis is due to the effects of axial forces on the
sectional stiffnesses of columns AB and CD. Applied
lateral force F causes column CD to be stiffer than
column ADB, in tension
Hence, the
moment at joint C is greater than that at joint B.

In Fig. 17, the load-deflection relationship was

since the column AB is
while column CD is in compression.

compared. It is to be noted that in the present
study, good prediction of the real behavior of the
frame is achieved. In Fig. 18 and Fig. 19, the
800~
1350
700}
-1300
600
— 250
2
E %00 ___ by experiment
< — by proposed method 120
= a0l
.
3 s «
2 e sliso
£ soof 5
- &8 =
2
S e {i00
s
g
100} 50
° o 3o 4o s
f B . YIHC”ES . . ;
) 2 4 10 12 4

haorizontal

8
centimeters
deflection at load point

Fig. 17 Load-Deflection Curve for Example 2.
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Fig. 18 Curvature Diagram at Ultimate Load
(by in™* unit or 0.4cm™).
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Fig. 19 Load-Curvature Relationship at Ultimate Load for Frame C1.
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Fig. 20 Load-Moment-Curvature Relationships
at Ultimate Load for Frame C1.

curvatures at ultimate load are shown. Furthermore,
it is interesting to note that at a joint of a beam
and a column, the curvatures are quite different for
a beam and a column even though they have the
same amount of moments and final failure is cont-
roled by the failure of the column top which is
receiving tensile axial force, at which point about
80 percent of the rotational capacity is consumed at
one of the beam ends and almost zero in the other

end.
(3) Case3

Two portal frames A 40 and A 60 subjected to two
equal vertical, point loads as shown in Fig. 21 are
analyzed, experimental result of which 1is quoted
from Reference No. 11. The section details and
material properties are shown in Table 5. The
loads are increased up to wultimate. The load-
midspan deflection curves and ultimate capacities of
the frames compared with the experiments are shown
in Fig. 22 and Table 6, respectively. The distribu-
tion of moment at ultimate loads compared with

elastic analysis are shown in Fig. 23, and the curva-
ture diagrams at ultimate loads are shown in Fig.
24.

The load-capacities of the frames shown in Table
6 and the load-deflection curves shown in Fig. 22
indicate that the results obtained by the proposed
method are in very good agreement with those ob-
tained experimentally since the difference in ultimate
loads is only 1.3%. It can be seen from Fig. 23
that the negative moments at the joints of frames
A 40 and A 60 are about 0.3% and 0.49%, greater

F/2 Fr2
| I
L ©
Yo —
£
e
Q
© S =
@}
X1 X3
Y1 ' ' Y3
7 allzem) 4'(1.22m) | 4'{1.22mP7e
12'(3.66m) [
Fig. 21 Frame in Example 3.
[{[om
20| =
/‘,/
/(’
o sl " ———by experiment
- 10— ——by proposed methed
o
-; Frame A80
8
S 0 L I ! I
o (2) 1 {4) 2 (&) 3(8}
8
B oy
2 201
2
I
(,50 ~——by experiment
——by proposed method
Frame A40
Ry | L i L fy
o (271 (a) 2 (8) 3(8)
vertical deflection at
midspan in, (cm }

Fig. 22 Load-Deflection Curves for Example 3.
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Table 5 Section Details and Material Properties
for Example 3.

Unit i Frame A 40 Frame A 60

¢ in 8.0 | 8.0

b in 4.5 4.5

d in 6.5 6.5

d’ in 1.5 1.5
As in? 0.62 0.62
Ay in? 0.62 0.62
S 1b/in? 4220 5650
E; 1b/in? 4.05% 108 4.05x 10°

&y — 0.0038 0.0038
&1y — 0 0
fy Ib/in? 51200 61700
Eg 1b/in? 29x 108 29 %108
Esp 1b/in? 0.86x 108 1.68x 108
Esh — 0.015 0.0068

Table 6 Comparison of Ultimate Loads for Example 3.

Total load, kip Error
Frame No.
Experiment Proposed method (%)
A4 15.9 16.1 1.3
A 60 19.96 19.7 1.3

respectively, while the positive moments at midspan
are about 5.9% and 6.5% less respectively, than
the moments obtained by elastic analysis which in-
dicates that the negative and positive moments are
identical. This is due to the effect of compressive
axial forces in the columns which causes the increase
in the stiffness of the columns. In Fig. 24 and Fig.
25 (a), the curvatures at ultimate loads are shown.
It is to be noted that at ultimate stages the curvature
at midspan of the beam is approximately one-half
of that at the column face of the beam.

4. ANALYSIS OF A MULTISTORY
FRAME

A multistory frame subjected to three equal hori-
zontal point loads as shown in Fig. 27 is studied.
The section details and material properties used are
tabulated in Table 7. The distribution of bending
moments are compared with elastic analysis as shown
in Fig. 29.

The same frame subjected to uniform vertical
loads as shown in Fig. 28 is also analyzed. The

Table 7 Section Details and Material Properties
for Multistory Frame.

Unit Dimension | Unit Dimension
¢ cm 40 E; kg/em? 0.24x 108
b cm 20 A — 0.0038
d cm 35 &ty — —
da’ cm 5 Sy kg/em? 3000
As cm? 10 Es kg/cm? 2.1x108
Ay cm? 10 Esp kg/cm? —
fe kg/em? 350 esh —_ _

l 16
1810 N y 3]
\\\ i
N Vi
N 7

N 77

L pyp——————
gl
810
Frame A40 —=== by elastic anolysis
~———hy proposed method
===y qalternative method
N\
N
R\

ANY y

N
HT,zgu_/
183
970

Frame A60

Fig. 23 Moment Distribution (kip-ft or 0.138 t-m)
at Ultimate Loads of Example 3.

210x16* 21.0x10*
80xI6° L J son6*
9.5x16%
Frome A40
203¢16* 20:3x16%
70x10° J oxig*
J 7
85xi0%
Frame AGO

Fig. 24 Curvature Diagrams at Ultimate Loads
(¢ by in~! or 0.40cm™).

distribution of moments compared with elastic ana-
lysis are shown in Fig. 30 and Fig. 31 for two sets
of loadings.

The maximum difference in the moments obtained
from elastic analysis is 6% for lateral loading and
15% for vertical loading. Because of the rough
discretization used, the numerical results show some
error. Without this error, the difference would
amount to several percent or more according to the
section properties of the elements.

5. ALTERNATIVE METHOD OF REIN-
FORCED CONCRETE FRAME ANA-
LYSIS

Since it is found from the present study that the
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Fig. 30 Bending Moment Diagrams (t-m) Due to Vertical Loads, W=78 kg/cm.

nonlinearity of reinforced concrete frames are mainly
due to the axial load effect on column stiffness and
rotation after the yielding of steel at a critical sec-
tion, an alternative elastic method of frame analysis
may be used in which the EI to be used in the
moment distribution is expressed as a function of
P/Prax at the loading stage prior to the formation
of plastic hinges.

In Fig. 32, the EI values are calculated for the

section shown in the same figure for various P/Pyax
values and in Fig. 33 non dimentionalized EI values
are shown for each steel amount ratio ranging from
0=0.01 to p=0.08, sectional dimension of which is
also shown in the same figure to generalize the
discussion. It is to be noted from these figures that
El/Elcracked is roughly approximated by the para-
bolic function of P/Pp,,y.
Hence ;
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El=equivalent flexural stiffness of the section

El/ Elcrack

0 ©1 02 O3 04 05 06 07 08 03 1.O
P/ Eran

Fig. 32 Relationships between EI/EL ached
and P/P,.x.

As=As
o . 2As
r ch
30
~Eg.28
(P:=00!)
/
/
0 // Obfained from P-M# Curve

(P=001)

x
S

o
Fg 28
v {P=002)

1|\ -Oblained from P-M- # Curve
(p=002)

02 04 06 08 )

(a)

°.88

650 /\ /|50
g /
\\ TEE0 660 /

868 .13 /|8es8

\
408 \a.60 480, 4?8
\ 5w 580 /
.42 014
391 \as51
i
Y .
| 593
|
|
&1.93 19311

By Proposed Method

Bending Moment Diagrams (t-m) Due ot Vertical Loads, W=82kg/cm.

Elrackea=Mexural stiffness of the cracked section
P=axial force on the section
Pp=axial force at balanced condition
Prax=maximum axial force that the section can
take
In view of practical proposes, it would be more
useful to obtain the coefficient of Eq. 27 which is
applicable to general cases. As three coefficients
are necessary three conditions are needed. For this
purpose, it is assumed that at P=0, El=Elc ackea
and at P=Pn.x, EI=0 and EI become maximum
at P:Pb
justified considering the initial and ultimate conditi-
ons of beams and columns.

The former two assumptions may be

The last assumption is
obtained from the numerical results which are shown
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in Fig. 33. It is noted that
maximum when P equalts the balanced load, Pj.
Then EI is expressed as

El is always nearly

(Lo-ppr)

1.0—

El=Elcracked Pma;b — 1.0 7,
1.0—2.0Pmax 1.0-2.0 Po

P P, \?

.(Pmaxﬁpmax>

This EI is an approximated value, so gives some

inaccuracy. However, using this EI will give much

higher accuracy than to use the gross sectional EI
in the analysis of frames.

Using equivalent flexural stiffness of the sections
(ED in Egq. (28), the elastic analysis of the frame
shown in Fig. 15 and the frame shown in Fig. 21
were’ carried out. The numerical results were shown
in Fig. 16 and Fig. 23 respectively. It was found
that the analysis produces small error, as about 1%
for examples 2 and 3.

For the moment distribution which exceeds the
yielding moment, the rotational capacity should be
taken into consideration.

Fig. 12, Fig. 18, and Fig. 24 show the curvature
diagrams at ultimate loads of examples 1, 2 and 3
respectively. It is observed from these figures that
the shape of curvature diagrams at plastic hinges
are always approximately triangular at negative mo-
ment area where elastic moment changes sharply.
Hence, the plastic hinge rotation at the critical sec-
tion excluding the effect of diagonal tension cracks
may be roughly expressed as :

,9u=_;_41(¢u_¢y) ............................... (29)

where
0, =capacity of plastic hinge rotation
¢, =ultimate curvature of the section
$y=curvature at initial yielding of the steel
4;=width of plastic hinge

The width of plastic hinge, 4, which depends on
the material and section properties, configuration of
the structures and loading conditions may be roughly
approximated by the depth of the section for con-
tinuous member and one-half of the depth for dis-
continuous member.

If we want accurate analysis including the check-
ing of critical rotational capacities we can recourse
to the aforementioned analysis.

Conclusively, notwithstanding the fact that the
nonlinear properties of concrete and steel exists, an
elastic moment distribution may be used up to a
load limit at which the steel reaches yielding point
at a first critical section. Beyond this load, the
redistribution of moment starts. The- degree of
redistribution of moment depends upon the rotational

capacity whose limit is roughly estimated by Eq.
29).

6. CONCLUSIONS

From the result of the study, the following con-
clusions may be made :

(1) Within the limit of the stated assumptions,
the method presented in this study gives reasonably
accurate prediction of the deflection and the moment
distribution for the whole loading history.

(2) The conventional elastic calculation which is
used in design work predicts moments within per-
missible error for horizontal loading. However, for
the loading condition in which pronounced effect of
axial load exists, it is necessary to consider the load
effect on relative rigidity of members. One way of
incorporating this effect is proposed in equation (28).
Hence, with the proposed EI value, an elastic mo-
ment distribution may be used as an alternative to
the iterative method of the present study.

(3) The rotational capacity is relatively small in
frame joints than in continuous beam joints and
there exist a trend that the capability of the moment
redistribution is smaller in frames than in continuous
beams if the ultimate concrete strain is kept at
around 0.3 percent.

LIST OF SYMBOLS

Ag=area of reinforcing steel in tension,
Ay'=area of reinforcing steel in compression,
b=width of rectangular cross section,
d=effective depth of tension reinforcement,
d'=effective depth of compression reinforce-
ment,
(dyldzx) »,m=slope at the middle point of segment
m of member 7,
E.=initlal tangent modulus of elasticity of
concrete,
Ey;=modulus of elasticity of steel,
Egp=slope of stress-strain curve for stee in strain-
hardening zone,

F,, n=applied loads on segment m of member n,
f y=yielding stress of reinforcing steel,
f¢'=compressive strength of concrete,

K, m=total flexural stiffness at segment m of-

member 7,
kd=distance from extreme compressive fiber to
neutral axis,

M, »=bending moment at segment m of member

n’
P,=axial force in member #,

Syu.m=shearing force at segment m of member n,

t==total depth of rectangular cross section,

Yu,m=deflection at the middle point of segment
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m of member 7,
$,,m=cCurvature at segment 7 of member 7,
4X,, »=width of segment m of member 7,
e.=concrete strain at the extreme compressive
fiber of section,
¢s=strain of tension reinforcement,
s/ =strain of compression reinforcement,
ggp=strain at initiation of strain-hardening of
steel,
&, =ultimate concrete strain in tension,
&,=ultimate concrete strain in compression,

¢,=strain at initiation of yielding of steel,
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