PROC. OF JSCE,
No. 287, JULY 1979
[Technical Note]

155

SOME NUMERICAL ESTIMATIONS OF ULTIMATE IN-PLANE
STRENGTH OF TWO-HINGED STEEL ARCHES

By Shigeru Kuranisur* and Tetswya Y Apusr**

1. INTRODUCTION

Several researches of the ultimate in-plane
strength of steel archies considering finite deflec-
tions, vielding of the material, and its spread into
the cross sections and to the longitudinal direction
were already reported™®. Owing to those inves-
tigations, the ultimate behavior of steel arches
has become obvious to a considerable extent.

In the previous works, however, the following
problems are not sufficiently discussed: (1} pro-
blem concerning iterative approach treating non-
linearities; (2) influence of distributed pattern
and magnitude of residual stresses; (3) propor-
tion of cross sections; (4) concentrated loads
applied through the posts; (5) ultimate strength
based on the strain of cover plate buckling. The
first item is an important factor to specify the
accuracy of numerical analysis adopted. Con-
siderations of (2) and (3) are always required for
formulating the ultimate strength. For the actual
arch bridges, loads are applied on arch ribs
through the posts which are supporting the deck
system. Accordingly, the influence of (4) should
be taken into consideration in order to estimate
the ultimate strength of the actual arch bridge.
Trurthermore, considering that the plates com-
posing the cross sections adopted to the actual
arch bridges are not proportioned so as to be
able to resist the sufficiently large strain within
the plastic range, we must pay attention to the
problem of (5).

We carry out a series of numerical studies with
respect to these problems here in order to get
a clue to practical design criteria. Numerical
analyses were chiefly performed using the pro-
cedure emplyed in Ref. 3).
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2. CONSIDERATION OF RESULTS

The arches subjected are confined to two-
hinged palabolic steel ones and a general view
of them is shown in the inset of Fig. 3.

Shinke, Zui and Namita made a series of
precious tests concerning steel arches having
rectangular cross sections with practical slender-
ness ratios and reported instructive results in
Ref. 2). We shall refer to their experimental
results in order to examine the accuracy of the
analytical method employed herein. Fig. |1
shows a comparison between the experimental
results transcribed from Ref. 2) and the numeri-
cal ones computed by the method employed in
this study. The notation is as follows; P=total
magnitude of applied distributed load referred
to Ref. 2); w, p=uniform load over the entire
span and additional uniform load on one half of
the span, respectively; A=slenderness ratio;
V msx=maximum vertical displacement. Judging
from the results shown in Fig. 1, the numerical
analysis adopted here presents a considerably
good agreement with the experiment. Herein,
the basic state is defined as so-called initial stress
state for determining the subsequent state in an
iterative procedure. In this analysis, the basic
state transfers according to the deformation and
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Fig. 1 A comparison between experimental
results and theoretical ones.
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Table 1 Relationships between results by
integration approach and by this

approach.
‘\\\\_i\”;‘)proach This Ref. 1) i Improved
_Load ratio \\\_ approach Ref:_ 1)__
0.25 | 0.363 0.364 0.356
0.5 | 048 0.418 0.445
0.75 0.573 0.499 0.570
0.99 0.954 0.805 0.962
N.B Steel arch with rectangular section
B /L=0.15, 2=150, oy=2400 kg/cm?

keeps always the nearly true stress state cor-
responding to the appropriate strain caused by
the deformation. The numerical results in Ref. 2)
are also redrawn in Fig. 1. These results also
agree fairly well with the experimental results,
showing somewhat higher ultimate loads, especial-
ly, for the nearly symmetrical loading pattern.
However, in some cases, the variance between
them becomes by up to 89%. Table 1 shows a
comparison between the results obtained from
the approach in this paper and from the integra-
tion approach in Ref. 1). Here and hereafter,
the applied loads are expressed non-dimensionally
with the ratio ¢/gp, in which ¢p is the nodal load
(covering the entire arch) that would cause the
arch to yield by axial thrust at the springing®.
In the computation, the arch axis is divided into
thirty member elements and the number of divi-
sions gives practically enough accuracy®. The
accuracy aimed at in this numerical iteration is
the same one as in Ref. 3). For the integration
approach in Table I, the results of Ref. 1) and
those of improved computation are shown. The
difference between the maximum load intensities
of Ref. 1) and of this paper becomes significant
as the load ratio s increases. In Ref. 1), the
shear force in relationship between axial thrust
and horizontal force is given approximately and
a deflection slope of an arch axis is taken into
account by an inclination of a line which joints
adjacent two nodal points in an arch axis. Herein,
the deflection slope form is improved so as to be
computed using similar procedure to the algebrai-
cal expression of the displacement to vertical or
horizontal direction in Ref. 1) and the effects of
2nd order values of the shear force and the slope
on the relationship between the axial thrust and
horizontal one are more accurately considered.
Furthermore, the convergence accuracy of the
numerical computation is improved. The results
are shown in Table 1 as improved Ref. 1). The
maximum variance between both results of im-
proved Ref. 1) and this analysis carried out in

Ref. 3) becomes about 2 9%. The numerical
analyses adopted in Refs. 1) and 2) were treating
that the aforesaid basic state in the iterative ap-
proach is usually fixed to the original configura-
tion of arches. Such procedure may be simple for
usual analysis of non-linear problems. But, the
examination obtained here shows that we must
formulate the each compatibility condition
more appropriately through out those nonlinear
aspects.

We examine the effects of the cross sectional
configurations and distribution patterns and
magnitudes of the residual stresses on the ulti-
mate strength of arches. As a fundamental
loading, s=0.99 is adopted for uniformly dis-
tributed load over the whole span length in which
19, is unsymmetrized expecting similar effects
to the imperfections of arches and s=0.5 is
adopted for unsymmetrical loading which pro-
duce severer effect than standardized loadings
of practical bridges. The effect of distribution
patterns of residual stresses on the ultimate
strength is shown in Table 2 in which the pat-
terns were varied as illustrated in Fig. 2. The
arches have TYPE-B cross-section which is pro-
portioned by considering the parameters so that
the radius of gyration »/H and the core radius
k/H lie about in the average magnitudes between
these of sandwich sections and rectangular ones
as shown in Table 3. This section is treated as a
standard box section herein. For computation in
Table 2, ®=0.4 is employed, in which a=ratio
of maximum compression residual stress to yield
stress, considering the practical distribution®.
From the results in Table 2, it can be seen that
the ultimate strength reduction by the residual
stresses reaches as much as 20% and the max-
imum variance of the ultimate strength among

Table 2 Effect of residual stress pattern on
maximum load intensity.

Slenderness | Load |Noresid-| PAT- |PAT- | PAT-
ratio ratio lual stress, TERN-A TERN«B] TERN-C
0.5 0.601 | 0.606 | 0.568 | 0.565
o 0.99 0.97 | 0.912 | 0.867 | 0.840
0.5 | 0.409 | 0.405 | 0.37 | 0.376

0.99 0.888 0.701 0.668 0.672

200 0.5 0.293 0.279 0.264 0.263
0.99 0.589 0.521 0.510 0.504
0.5 0.220 0.201 0.194 0.193
250
{ 0.99 0.386 0.370 0.368 0.365
N.B. i Steel arch with box cross section; TYPE-B
|

(@=0.4) f/L=0.15, oy=3600 kg/cm?
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Fig. 2 Idealized patterns of residual stress
distribution.
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Fig. 3 Relationships between maximum load
intensity and maximum compression
residual stress.

the patterns is about 99,. Web plates box of sec-
tions provide a significant portion of a thrust
carrying capacity so that the distribution of re-
sidual stress in web becomes an important pro-
blem. Fig. 3 presents the influence of the magni-
tude of the compressive residual stress on the ul-
timate strength. From Fig. 3, the effect of the
magnitude of the compressive residual stress on
the ultimate strength becomes certain when the
magnitude is larger than 0.40y. Therefore,
formulating the ultimate strength, it may be
appropriate that the practical magnitude is as-
sumed to be 0.40¥ or some more.

In order to know the effect of the cross section-
al efficiency, the proportions of the box cross

section were varied. Three types of box section
are adopted as shown in Table 3 in which the
width-thickness ratio of the web plates, H/tw=
190, is determined by averaging the magnitudes
of over ten practical steel arch bridges with span
length ranging from 100 m to 300 m. Further-
more, a rather heavy proportion is considered as
TYPE-D in which the width-thickness ratio of
web plate is 60. Table 4 shows the effects of the
cross sectional proportion on the ultimate load.
The maximum variance among them is by 69%,.
Table 4 also shows the computed results for
sandwich and rectangular cross sections. The
maximum variance between them is about 99%,.
Therefore, the maximum influence of the cross
sectional shape on the ultimate strength may be
within 439, in this computed range.
Considering the practical loading system of
arch bridges, the influence of the concentrated
loads applied through the posts on the ultimate
strength is checked. Example computation is
presented in Fig. 4 in which the loads are applied
discretely as 7 concentrated ones shown in the
inset of Fig. 4. When the slenderness ratio is
large, the maximum load intensity for concentrat-
ed loading case has similar magnitude to the
strength for nearly distributed loading case.

Table 3 Proportion of employed box cross

sections.
“—__ TYPE
T TYPE-A | TYPE-B | TYPE-C | TYPE-D
Dimension "
H/tw 190 190 190 60
B/H 0.8 0.6 0.4 0.2
Ae/Aw 1.2 0.9 0.6 0.3
r/H 0.414 0.400 0.378 0.338
k/H 0.343 0.320 0.286 0.228
N.B. A¢: cover plate area, Aw=web plate area

Table 4 Effect of cross sectional configuration on maximum load intensity.

Slenderness ratio Load ratio 1dealized cross section &x cross section (Residual sn;ess: PATTERN-A)
Sandwich Rectangular TYPE-A TYPE-B TYPE-C TYPE-D
) 10 0.5 0.592 7).603 0.600 0.606 0.616 0.63()»‘”—

’ 0.99 0.960 0.976 0.9}){ ) 0.912 0.926 0.951
a 150 a 0.5 _,. 041; 0.400H.,4 v 0.402‘”” 0.405 - 0.408 0.409
0.99 0.816 0.870 0.690 0.701 0.715 0.746

7200 i 0.5 v 0.303 h 0.281 0 “W0.279 ] 'v* 0.279 0.279 0.276 ~7
0.99 0.572 0.578 0.521 0.521 0.522 0.532

250 » 0.5 0.229 0.208 0.203 0.201 0.200 0.196 i
0.99 0.381 0.381 0.370 0.370 0.370 0.370

o II".B. Steel arch with idealized or box cross section: f/L=0.15, oy=3600 kg/cm?2
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this study.
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Ultimate strength results
specified by local buckling
strain and by structural
failure.

However, as the slenderness ratio becomes small,
the maximum load intensity for concentrated
loading case becomes smaller than nearly uni-
formly distributed loading case. The variance
between them is about 9% when A is equal to 100.
Checking up the failure aspect according to the
numerical simulation to the collapse of discretely
loaded arches, the arches with the large slender-
ness ratio collapse as a whole structure. On the
other hand, when the slenderness ratio becomes
small, a certain amount of large negative mo-
ments which locally occur at the arch rib between
concentrated loads cause the collapse. From this
fact, we should pay attention to this ultimate
strength reduction in formulating the design cri-
teria of arch bridges.

The range of the maximum compressive strains
occuring in the cover plates of box cross section
under the nearly ultimate loads calculated
herein is shown in Fig. 5. The load ratio s ranged
from 0.99 to 0.5 and the slenderness ratio varied
from 100 to 250. The residual stresses and the
proportion of the cross sections also varied. The
effect of the load pattern factor is not shown to be
identified in the figure. But, summarizing the
computed strain obtained here, the following
remarks can be drawn. The maximum strain
occuring at the cross section of the arch subjected
to the unsymmetric load is higher than it subject-
ed to nearly symmetric load. The difference
between them becomes significant as the slender-
ness ratio becomes large. The structural param-
eters of practical steel arch bridges seem to be
ranged within the above-mentioned magnitudes
and if the arch bridge keeps its load carrying
capacity to the ultimate state avoiding local
buckling of the cover plate, they are required to
endure the strain of 4¢r by the maximum, in
which er=yield strain. However, for practical

thin walled box ribs, the cover plates will buckle
by the strain of 2¢r or a some more. Therefore,
by assuming that 2er is the critical strain, the
strength results specified by the strain are shown
in Fig. 6. The ultimate strength reduction ap-
pears as the loading pattern becomes unsymmet-
ric and the slenderness ratio becomes small. Ac-
cordingly, when we estimate the ultimate strength
of steel arches having thin walled box cross sec-
tion with small slenderness ratio, we also must
estimate the strength specified by the strain of
the cover plates local buckling.

3. REMARKS

From some numerical analyses of the ultimate
inplane strength of the steel arches performed
herein, it can be summarized that the practical
estimation of the design criteria should be made
after summing up the knowledges obtained here,
furthermore, making more detailed parametric
investigations.

Part of this work was supported by the Funds
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of Education.

REFERENCE

1) Kuranishi, S. and L. W. Lu: Load carrying
capacity of two hinged steel arches, Proc. of
JSCE, No. 204, pp. 129-140, Aug., 1972.

2) Shinke, T., H. Zui and Y. Namita: Analy-
sis and experimation on inplane load carry-
ing capacity of arches, {Proc. of JSCE,
No. 263, pp. 1124, July, 1977 (in Japanese).

3) Kuranishi, S. and T. Yabuki: In-plane
ultimate strength of 2-hinged steel arches
subjected to lateral loads, Proc. of JSCE,
No. 272, pp. 1-12, April, 1978 (in Japa-
nese).

(Recevied July 21, 1978)




