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CONSTITUTIVE THEORY FOR SOLID-FLUID MIXTURE AND
ITS APPLICATION TO STRESS WAVE PROPAGATION
THROUGH COHESIVE SOIL

By Fusao Oxa*

1. INTRODUCTION

In order to clarify the ground motion under
dynamic loading such as earthquakes, the realistic
constitutive relation of soil should be obtained.
The essential nature of soil is that soil is con-
sidered as the multi-phase mixture and has a
non-linear property. One of the purpose of this
paper is to construct the solid-fluid mixture
theory for saturated cohesive soil.

Many authors treated the saturated soil as the
solid-fluid mixture. Biot? developed the three-
dimensional theory of saturated porous elastic
material and applied it to the stress wave pro-
pagation problem. Ishihara® proposed the
theory of porous material having the heat effect
which is considered as the generalization of Biot’s
theory. Ishihara introduced the saturated porous
material with the heat effect from the linear
irreversible thermodynamics on the basis of
Onsager’s reciprocal theorem. Using the On-
sager’s relation, he formulated the flow through
the porous solid and the heat diffusion. The
theory obtained as the results includes the poro-
elasticity and the thermoelasticity proposed by
Biot.

As Truesdell® pointed, Onsager’s relation has
the following defects.

1. Generally the resolution of entropy produc-
tion rate to force and flux is not uniquely
determined.

2. Onsager’s relation is strictly limited to
linear process.

From the above discussion, the theory based

on the Onsager’s relation is too restrictive for
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continuum mechanics. The non-equilibrium ther-
modynamic theory proposed by Coleman & Noll®
is not restricted to the state near the equili-
brium state and the linear process. Using this
theory, Green & Naghdi,” Ingram & Eringen®
and Bowen?” et al. investigated the mixture.
Miiller® proposed the more rational approach to
a mixture by his original thermodynamics based
on the modern continuum mechanics developed
by Coleman & Noll.®

Ishihara® clarified the physical meaning of
coefficients in the Biot’s equation and showed
the similarity of Biot’s theory to the linear visco-
elasticity. So, Akai & Hori'® considered that the
visco-elastic nature of soil is due to the solid-fluid
interaction. But Ishihara concluded that in the
actual situation such as earthquakes, the attenua-~
tion of compressional wave due to the friction
between the solid and fluid is close to zero. After
all, the inelasticity existing inherently in the solid
phase is more important for energy absorption
than the friction due to the interaction between
the solid and fluid during the earthquakes.
Adachi'® induced the theories of mixture con-
stituting of elastic solid and two or more fluids
and elastic-plastic solid and viscous fluid. But,
he did not apply them to the practical problem in
soil mechanics.

In this paper, the saturated cohesive soil is
formulated as the mixture of an elastic fluid and
the viscoelastic-viscoplastic solid. The author
previously proposed the constitutive theory'®
that can explain the behavior of a normally con-
solidated clay, but there are still left difficulties
that the theory is not sufficient to explain the
behavior during the unloading. By the Fourier
transformation of the wave form which is obtained
by stress wave propagation test at low stress
level, a viscoelasticity seems to be also the
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properties of cohesive soil. So, the constitutive
theory for cohesive soil must be able to explain
the visco-elastic behavior. From the above
discussion, the inelasticity in the solid phase is
assumed to be viscoelastic-viscoplastic.

The concrete constitutive theory is induced by
introducing internal state variables.

The mechanical nature of principle of effective
stress has not been discussed sufficiently. In the
present stage, Terzaghi’s effective stress is mainly
dependent of the experimental results rather than
rational interpretations. Following the mixture
theory, the author can explain the meaning of
effective stress concept clearly. It can be seen
that effective stress concept is usefull during the
dynamic loading.

In section 2, experimental results that are
obtained by the Fourier transform of experimental
test data are shown. In section 3, the mixture
theory of solid and fluid is presented. In section
4, the constitutive theory for a normally con-
solidated clay is proposed including the visco-
elastic and viscoplastic property. In section 5,
one-dimensional stress wave propagation through
cohesive soil is discussed. Numerical results are
given by integrating the differential relation
along the characteristics numerically.

2. EXPERIMENTAL STUDY

2.1 Introduction

The author has carried on the stress wave
propagation test in order to investigate the dyna-
mic characteristics of soil, using the special
triaxial cell connected to the shock tube. The
test procedure has been presented in the previous
papers.i®:!®  The pressure form given by experi-
ment is pulsative and contained the wide range
frequency components. In this paper, a pulsative
wave form is replaced by the combination of
harmonic wave and the character of dispersion
is clarified by discussing the phase velocity and
attenuation coefficient. The soil sample is a Fuka-
kusa silty clay consolidated under the pressure of
2.0 kg/cm? for two months. The liquid limite is
57.5-60.59%, and the plastic limite is 28.1 and
pre-consolidated pressure is 0.65-0.85 kg/cm?.
Peak stress wave is 0.1-1.0 kg/cm®. It is assumed
that stress wave is smooth and can be replaced
by the combination of harmonic wave.

Y =Aexp{ilwt+(E+ia)r]}

where, 2, is stress, 4 is its amplitude, w is the
angular frequency, % is the wave number, « is
the attenuation coefficient, ¢ is the time, 7 is a

imaginary unit and x is the coordinate of posi-
tion. X is transformed by Fourier transformation
to 2.

, 172 ‘
Z'=7 S_T,ZZ exp (Gwi)dt
=4 eXP(~ax+iﬂ> ..................... (1)
Cp
a:—%ln[zz'(iw)/zl,(iw)], Cp=w'-};:§:

where Cp is phase velocity, R:—R, is the distance
between two soil stress gages, 0:-0: the difference
of phase angle between two observation points,
T is a time interval, R; shows the position of the
stress gauge (¢=1 or 2) and Number ! and 2
show the two different positions.

2.2 Phase velocity

Fig. 1 shows the spectrum of stress wave.
From this figure, the predominant frequency of
the stress wave observed in stress wave propaga-
tion test is 0-200 cps. Fig. 2 shows the relation-
ships between phase velocity and frequency. In
this figure, Co is a speed of wave front. From
this figure, in the higher frequency range than
300-350 cps, phase velocity exceeds the speed of
the wave front and increases. Generally, in the
linear viscoelastic body which has an instantane-
ous elasticity, phase velocity asymptotically
approaches elastic wave velocity as the frequency
becomes large. But, in the linear Voigt type
viscoelastic body, phase velocity exceeds the
wave velocity Co and increases as frequency be-
comes large. From the above consideration and
Fig. 2, it seems to be that the elastic property
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Fig. 1 Fourier Spectrum.
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of cohesive soil is described by a linear Voigt
model.

2.3 Attenuation coefficient

The attenuation of stress during wave propaga-
tion is estimated by attenuation coefficient o.
The two waves as samples are equal in peak
stress. Figs. 3 and 4 show the relation between
attenuation coefficient o and frequency. From
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these figures, it can be seen that attenunation co-
efficient becomes large as the frequency increases.
a begins to increase at almost 0cps in Fig. 3,
but in Fig. 4 at almost 100 cps.

Fig. 4 is the case of high confining pressure Pe.
The tendency of increase of « is not monotonous,
but has extreme value between 150 cps and 400
cps. As a confining pressure becomes large, the
frequency at which «a is extremum increases.
Furthermore, @ decreases as the confining pressure
becomes large.

It can be concluded that the viscoelastic pro-
perty of cohesive soil is approximately described
by a linear spring-Voigt model from above dis-
cussion between 0 cps and 100 cps.

From the dynamical test results for the co-
hesive soil, Kondner & Ho,'» Nishigaki & Hiro-
be* and Hatano & Watanabe!® reported- that
the elastic shear modulus becomes large with
the increase of input frequency. Furthermore,
they concluded that the dynamical behavior of
cohesive soil can be approximately described by
a linear spring-Voigt model. In contrast to these
researchers, Krizek & Franklin'®, Hara!'” and
Parmelee et al.!® showed that the dynamical
behavior of some soft clay does not depend on
the frequency. After all, viscoelastic property
of cohesive soil depends on the material property
and the level of strain. So, in some soils, visco-
elastic property is predominant and in the other
viscoelastic behavior can be neglected. In order
to reduce a general constitutive equation of
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cohesive soil, the viscoelastic property must be
considered.

3. THEORY OF SOLID-FLUID MIXTURE

3.1 Introduction

The review of the theory of mixture is reported
by Truesdell® and Atkins & Craine.!® Here, the
following two important points of dispute in the
theory of mixture is discussed.

1) The definition of total stress

2) Entropy production inequality
Modern treatment of mixture was firstly tried by
Truesdell.?® He introduced three metaphysical
principles.

1) All properties of the mixture must be
mathematical consequences of properties
of the constituents.

2) So as to describe the motion of a constitu-
ent, we may in imagination isolate it from
the rest of the mixture, provided we allow
properly for the actions of the other con-
stituents upon it.

3) The motion of the mixture is governed by
the same equations as is a single body.

From the third principle, total stress, total energy
and total body force etc. are defined. He defined
the total stress tensor as follows.
tiz=2, tij— 2 PaUAUG wrrrrreerereresn, (2)
a a a a a

tij:  total stress tensor acting on the surface
of mixture

u;:  diffusion velocity vector

a

t:5: partial stress tensor
a

From Truesdell to Miiller or Green & Naghdi,??
the theory of mixture has been confirmed by
applying the theory to the results in classical
thermo-chemistry, for example, Dalton’s Law.
Against the Truesdell’s definition, Green and
Naghdi defined the total stress by Eq. (3).

Bijm= D fgjerereearuernrrenrnnntonsetintintinerneiriees (3)
o a

Green & Naghdi construct the theory of mixture
based on the different primitive concept. They
took as the fundamental postulate the balance
equation not for the several constituents, but
for the mixture as a whole. When we face to the
boundary value problem including the total
stress as the boundary condition, it is important
which definition is used. As Atkins & Craine
pointed out, for the general mixture rather than
ideal gas need not be described by Eqs. (2) or
(3). Miiller and Bowen® criticized that the Green
& Naghdi’s theory®, because their theory was
not consistent with the classical thermo-chemical

results when it was applied to the ideal gas
mixture in equilibrium state. In order to solve
the dilemma, Green & Naghdi®® asserted that
the partial stress in the classical theory is different
from that in their theory. After that time, they
recognized the error and introduced the arbitrary
function which did not violate the balance law
as a whole in order to consist with the classical
results.  Furthermore, they took the energy
equation for several constituents to introduce the
arbitrary function?®. The usefulness of the method
in which the arbitrary function is introduced is
based on the thermodynamics by them.?® Mil-
ler® proposed the theory of mixture that com-
sisted with the result of classical gas mixture and
was well motivated physically. His assertion is
based on the two important postulates. One of
them is for the independent variable in the con-
stitutive assumption and the other is for the
entropy production inequality. Introducing the
density gradient as the independent variable,
Miiller prevents the theory from oversimplifying.
This method solved the dilemma into which Bowen
fell.” He took the entropy flux as the constitutive
quantity which was specified by a constitutive
equation, not by the Eq. (4).

entropy flux=(heat flux)/(temperature)

On the basis of the several principle (equipre-
sence, objectivity, entropy inequality, postulate
for entropy supply and constitutive equation for
entropy flux), Eq. (4) is derived for a broad
class of single material by Miiller. Truesdell®
concluded that the only Miiller’s theory seemed
to satisfy the general principle of modern con-
tinuum mechanics. Comparing with the Miiller’s
theory, Green & Naghdi’s one is less sensitive and
has the advantage that total stress can take the
form that is applicable to the practical problem.
Fundamentally, there is no difference between
the basic equations in the Miiller’s theory and
Green & Naghdi’'s one. In the case of treating
the motion of saturated soil, the motion of soil
skeleton is more important for engineering
problem than that as a single material. So, we
need not describe the mean motion. The author
induces the theory of mixture from the point of
view of Green & Naghdi basically.

3.2 Balance law for two phase mixture

Here, soil is considered as a mixture of two
interacting constituents each of which is regarded
as a continuum. It is assumed that each point is
occupied simultaneously by all constituents.



Constitutive Theory for Solid-Fluid Mixture and its Application 121

The position at the peculiar particle of constitu-
ents at time 7 is denoted by x:‘® (7).
200 =£(O( X0, X0, Xl 1) (—0<7LE)
a=fors
The indices (f) and (s) denote the fluid phase
and solid phase respectively. x:(*> is a reference
position of each particle. At time ¢, any position
is occupied by a particle of each constituent.
xi(s)=xi(f)=xi
Balance of mass
It is assumed that a mass of an individual
constituent is conserved. So, we postulate follow-
ing balance equation for each constituent.

S ﬁsvismds—{-s ?dv-——o ........................ ( 5 )
s v Of
57
S ﬁfvif%ids+g B0 0 e, (6)
s v Of
R G L IR A (7)
ﬁf:npf ................................................ ( 8)

pf and p’/ are the specific mass densities of soil
particle and water respectively. ¢° and o7 are the
mass densities of each continuum constituent
(solid and fluid) constituting of the mixture. #» is
the porosity of the mixture. v: is the component
of velocity vector. v is the arbitrary volume and
s is its surface.
Balance of linear momentum

The balance equations for linear momentum
for each constituent are taken as follows,
For solid phase,

N

S tfjnjds~g (m—bis)dv=3 oSvdSuinids
8 v s
0
_I_S __(psvis)dv ................................. ( 9 )
v O
For fluid phase,
S t{j%jds-i-s (m+bif)dv=\ oTvilvinyds
s v Js

+ Sv %(ﬁfvif)dv ................................. (10)

where #{% is a partial stress tensor or bulk area
averaged stress tensor. Total stress is defined
by Eq. (11).

tij=tf7-+tifj ............................................. 1)
If # is a water pressure in the void, Terzaghi’s
effective stress tensor is denoted by #;.

tsztzj_ualj=tfj_‘(l‘—‘%)M81] .................. (12)
Bttt Gy woveveememreeennemme e (13)

The definition of Terzaghi’s effective stress tensor
is discussed further later. 7 is the component of
interaction force vector arising from the transfer

of momentum between constituents. 6:;¢* is the
component of external body force vector. Total
body force b; is the sum of b:® and b:7.

From Egs. (9) and (10), linear momentum is
also balanced for mixture as a whole. Using the
Eqgs. (5) and (12), the local forms of Eqgs. (9) and
(10) are denoted as follows if functions in the
equations are continuous.

0ty _ dvst _ H1—mubij

-  5SBS eannns 4
ox; U dt dx; mi—pbi a4
0tfj dui?

LT L) g7 GTByT eeeerrnenaniinearannnn 15)

0y P dt mi—p7bi (15)
where

dvi® Qv | Ovs® _

7R v +us oz, (a=s or f)

Balance of angular momentum

Balance equation of angular momentum ref-
fered to a fixed place for individual constituent
is assumed in the form.

9
0t

.
R Eiup’ UL jdi)-f—S i kP VS Um X jumds
JU s
-+ S ev T — 0%ba%) X jdv — S eijuts immxids =0
v s
where, e:jx is a permutation symbol.

From Eqgs. (14) and (16), we get following equation
for solid phase.

6o;jki§i=0 tfj-:t_s,vi .............................. (17)
Similarly, for fluid phase, Eq. (18) is obtained.
HLmtdy e (18)

From above consideration, partial stress for each
constituent is symmetric.
Balance of energy

It is sufficient to assume that each constituent
has a common temperature. So, we postulate the
balance equation of energy for a mixture as a.
whole in the form Eq. (19).

d 1 1
L 53eS+ 5F el —g5u:SusS +— o7 vilvT \d
at3v<p5+p€+297}101+2p1/ v )dv

1
4 [(mer Lo
+(ﬁf$f+%ﬁfvifvif>vjf}njd$
= S vt +H v nyds -+ S (g:*+g: nds
§ s
+ S (88554 p7sT)dv+ S (6*bi*vi* + 57 b T v dv
v v
where e® is internal energy density, ¢:* is heat

influx wvector, s* is heat supply. (e¢=s or f}
In the local form, Eq. (19) is rewritten by
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dss e’ s 5 BV

r dt =til vl —pvt
dvs

— ply s 2 +th it v g gl

dt
+ 555+ 577 + %50+ 97 b7 viT

Using the Egs. (12), (14) and (15), following Eq.
{21) is given in local form.

ds des
dt +P dt —tl]vl ]+(1 n)ualﬂjz ]+tLJD1. J

+qli+qi i+ 677+ 055 —mi(vi —vif)

o7

Entropy production inequality

We assume the following entropy production
inequality for mixture as a whole, which is
equivalent to one used by Truesdell.

S odv =i S (e*y°+ o7y dv
v at v
+ S (vt + 67y v Ynids — S %(qis-l—qif)mds
$ 8
_S %(psss+ﬁfsf)dvgo ........................ (22)
v

9* is an entropy per unit mass and ¢ is an entropy
production density of a mixture as a whole, and
¢ is a absolute temperature.

From Egs. (21) and (22), following reduced
inequality in the local form is obtained.

dr 1 <_sdes dsf>
o i T

+p7 at o\?
1
+§(t sod el J)+~(q1 +q7)0,:

_%m(vif_vis)go .............................. (23)

Following two inequalities are sufficient con-
ditions to satisfy the inequality (23) in the case
of neglecting the body force.

) o a an’
7 ch — d‘gt +t”vlj+0qz 6,z+0pf‘—‘
_pf.ddit -H”v{]-}- 0q{0,¢§0 ............... (24)
— (U —U5) =0 e (25)

‘We can take the Eq. (26) as the sufficient con-
dition to satisfy the inequality (25).

7Ti=—d(7/if—vis) (dZO) ..................... (26)
More general form of Eq. (26) is

mi= —do(vif—Uis)"‘dl(’l)ij_vis)s ............... (27)
(d®, dr, --eee =0)

From Eq. (26) or (27), it is clear that r; is in-
variant under superposed rigid motion.

3.3 Equation of Consolidation
With the aid of Egs. (13) and (26), Eq. (15)
becomes
onu . d o
oz, 0=
If we can neglect the body force and the accelera-

tion under the condition that % is constant, Eq.

(28) is reduced to the Eq. (29).
ou
37 _‘d(vz _vzs) ................................. (29)

Furthermore, if p7 and p® are constant, Eq. (30)
is obtained from Eqs. (3) and (6).

—l—d(vzf—vzs) bez """ (28)

DU =0 )], 408 4 woeereemmeremnsenneaceraneenens (30)
The coefficient d in Eq. (22) is defined by
A= pIgNE[R5D  orereiiin (31)
By Eq. (31), E (29) becomes
1 OJu
LA ou T 0] ereeereeeininaa s
pfg EPy 11(1)1, Ui ) (32)

where % is the permeability coefficient and p7g is
the weight of water per unit volume.

Asin Eq. (32), n(vs/ —v4®) is considered to be the
water influx through the unit surface per unit
time, Eq. (32) is reduced to the one-dimensional
from Eq. (33) which is equal to the Darcy’s law.
ou 1
ox; p’g

Differentiating the both side of Eq. (32), under
the condition that # is constant, and using the
Egs. (30) and (31), Eq. (34) is obtained.

vi=h-i e s (33)

RV S B W
plg oz kT T RO TR 4t
.............................. (34)

Eq. (34) and the stress-strain relation of solid
phase form the governing equations of a con-
solidation.

3.4 Effective stress concept
In Eq. (20),
1508, 5=+ (1 —m)udi; v =t 05 s (1 —n)uvs ;

Under the undrained conditions, v§ ;=uv{; such that
If fluid is incompressible, é§;=0. So, £9¢3;
=468, &9 is the strain rate tensor. From the
above discussion, the only stress power reduced
by effective stress contribute to the entropy
production if fluid is incompressible. In this
case, (l—mn)udi; is acting on the surface of the
solid, but does not contribute to net work. That
is to say, if the fluid is nearly incompressible, it
is the cause of internal constraint. But, in the

511—5{7.-
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case of an unsaturated soil, the fluid is fairly com-
pressible. Therefore, #f; is not effective for the
macroscopic deformations.  Effective stress is
the stress which takes away the stress (1 —mn)ud:j
constrained by the fluid {rom the bulk surface
area averaged solid stress ¢{;. Akai & Tamura?®
determined the pore pressure by adding the con-
straining condition to the balance equation in
their numerical study of multi-dimensional con-
solidation problem. That is, bulk surface area
averaged fluid stress und:; restrains the volumetric
deformation of solid. But, if the stress tensor
(1 —n)udi; does not exist, the skeleton constituted
by soil particles goes to pieces. So, (1—n)uds;
can be called the self-support stress tensor. The
effective stress causes the macroscopic deformation
of saturated soil. Nobody has been clarified the
structure of Terzaghi’s effective stress concept.
But the effective stress is useful in the practical
domain of soil engineering. Skempton®’ chal-
lenged the generalization of Terzaghi's effective
stress equation. From his original observation,
he has shown that Terzaghi’s effective stress is
not the true effective stress, but excellent ap-
proximation for the saturated soils. Three
definitions of effective stress were proposed by
him.

(c) For shear strength,

g _ac_fazlﬁ> .....................
o'=0 <1 tang’ u (38)
For volume change,

R I L — )

Where ¢’ is the effective stress angle of shearing
resistance ¥ the intrinsic friction angle, Cs com-
pressibility of soil particle, C soil compressibility,
ac contact surface area, o total stress and o’
effective stress.

These equations were examined in order to see
which were able to control the soil behavior.
Skempton concluded that Eq. (36) was not a
valid representation of effective stress.  The
Eqgs. (38) and (89) account well for shear strength
and the volume change of soils, concrete and
rock. Eq. (37) is valid only for soils. The above
discussion depends on the value of C, Cs, ao and
tanyr/tan¢g’. Skempton’s generalization of effec-
tive stress has following defects.

(1) The definition of a effective stress for

shear strength is different from that for
compression,

(2) The empirical parameters, which are
introduced in the reduction of effective
stress in order to connect the inter-
granular force with the external force,
have not the physical basis.

(3) Skempton’s approach depends on the
assumption that Coulomb’s strength equa-
tion is valid a priori.

Almost all considerations of the effective stress
expressed by many soil engineers, for example,
Lambe?®, Scott?” and Mitchell®® et al., follow
the Skempton’s study. But, from the above
observations, Skempton’s generalization of the
effective stress is too restrictive and not rational.
Kenyon® reduced the self support stress which
he called self equilibritated stress in his study of
an incompressible solid-fluid mixture. But his
theory is restricted to the equilibrium state since
he depends on the Miiller’s mixture theory. The
present study is not so. This distinction is due to
the difterence of the definition of total stress
between the Miiller’s theory and Green & Naghdi’s
one.

4. CONSTITUTIVE THEORY FOR A MIX-
TURE OF A VISCOELASTIC-VISCOPLAS-
TIC MATERIAL AND AN ELASTIC FLUID

4.1 Constitutive assumption

The principle of objectivity requires that the
constitutive equation is invariant under the
superposed rigid body motion. In order to satisfy
this principle, it is sufficient that all tensorial
variables are invariant under such motion. Eq.
(24) is rewritten by invariant form.

— oY +0)+ T L B+ 13510

— T (YT 47 0)+ Th L B4 1+ R G [§20--- (40)
where < is a fee energy density, T%, second
Kirchhoff stress tensor and E%, strain rate tensor
in Lagrangian form. (¢=s or f)

If we introduce the complementary energy
density ¢°,

1
a———To [ao _fa

¢ o kLKL 1/f
Eq. (40) takes the following form.

ﬁossﬁs"E‘}_cLT%L—ﬁosﬁns+his§is/9+ﬁofsﬁf
_E{{LT{“_ﬁofﬂnf_‘_hifgif/ggo ............ (41)
B Fijege, Gie=FIf6,; and FY is
a deformation gradient tensor. Principle of
equi-presence is a rule for a mathematical con-

venience, but not a physical principle. So, this
principle need not be satisfied always. The

where hi*=
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behavior of the solid phase is characterized by
eleven response functions.

P = S(Ey, Tkr, &, 0, §1°)

+52323(E’5§L, T, 0, 15) wreerreveeeenieeenins (42)
PT=GT(Thr, 0, F17) wreevveeeerrerreeenins (43)
=3 (ELy, Er, Thr, K, 0, F15) +oeveereerecnes (44)
W =T, 6, 317)
Exr=Ex (B, Bz, Thes, &, 0,89 oveee (46)
Efx=FLx(Thg, O, FrT)reeeeeemeeermiianennies (47)
his=hS8(EY:, E%;, Tk, &, 0, FIS) evreeerenns (48)
Rt =hit ( Leits O, F17) cvvreermeermmenin, (49)
Ez;(rL: %L(E%L, TSr, K, O, G15)eeeeeveevennennn (50)
E??L= G%L(E”KQ, Tz, B, Gr8)ceevveniemeeinninnns (51)
l&:lg(E%’L, TSer, K, O, Jr5)  eeeeeersermmmnreninenne (52)
LY, and E¥; are the internal state variables

corresponding to viscoplastic strain and visco-
elastic strain respectively. « is the scalar param-
eter which is an internal variable for hardening
parameter. Egs. (50), (51) and (52) are evolution
equations that govern the internal wvariables.
In Eqgs. (42)~(52), it is assumed that the coupling
between solid and fluid does not exist. The case
that such coupling exist is discussed later. The
rate equations of ¢* and ¢7 are

ge= ;f};Tth a‘Z’f,, Eg+ a;‘ :
+gf,f o S50+ ‘?f: T (53)
= 2t 2004 2
Substituting Eq. (53) into Eq. (41),
(S s Pra+ 208 Bt 2 B,

L 06 K_*_li P13+ ¢17)

—_nt —
ox 0 7 ’7}0

0 o0¢s - 0 1 ;
+ 6¢f Ji +a¢ S-I—((.)quS ?E§K>T{{K

—{-(hﬁgﬁ—}—hzsglf)/ﬁzo ........................ (54)

Following the Coleman’s method,” we can con-
clude that

. U R 5
E%r=pt ;:Z:L ....................................... (56)
Elp=po 5‘19’;_:;{ ....................................... (57)
gfl; O vreeeeeeerr e e e e (58)

0¢s

p Zm() ceeeereereenereenrnii it e ranans (59)
(hifgif+hisgis)/g%0 .............................. (60)
0¢:% - J N

af%LE’}?L—F a;bfe E+ g’ EZ0 ceeeeerennes (61)

Since the energy dissipation is attributed not
only to plastic work but also to viscoplastic work,
the inequality (61) will be divided into two parts,
each of which is therefore assumed to be positive
or zero. Resultantly, these inequalities (62) and
(63) corresponds to a sufficient condition of Eq.
(61).

085 | . 998
E%’L aEulp 44 ;,; e 1 I (62)
E%Lajvle T ceeeeeereeeseriniinrennaeaaa e (63)

We also postulate Egs. (64), (65) and (66).

- 0
B, =Mzgrrs af”lp ................................ (64)
E=GrrEP, covrvervromme (65)
S
E%, =%xiry aE’i ................................. (66)

Eq. (64) shows that £%, is not generally normal
to the complementary energy function ¢:°.
Eq. (65) indicates that & is a function of only
the rate of viscoplastic strain. In this sense, «
corresponds to the strain-hardening parameter
used in the classical theory of plasticity.
Complementary energy densities are assumed
as follows for future use.

08 =E¥L T +E% Tk
——7’11JKLE"[8JE1}<EL+G(T§'J) ............... (67)

Visxr=a0rsdrr+b0'(0rxdsr+ridrx)

o’ T = ( )2mf/6 .............................. (68)
where, a!, b' and my are material constants.

From Eqs. (56) and (67),

aG

Eyx.=E%.+E%, aTs ........................ (69)
Similarly, from Egs. (57) and (68), Eq. (70) is
given.

E{(K TSI wre v ree e et (70)

where # is a pore water pressure and mzy is an
intrinsic compressibility of a fluid. Usually, my
is smaller than the compressibility of soil skeleton
for saturated soil. So, in the following, my is
assumed to be zero. That is to say, fluid is in-
compressible. In the case that a pore fluid is
incompressible, from the discussion in section
3.4, we must use the effective stress tensor 7%,
in place of the bulk area averaged solid stress
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tensor T'7;. The viscoplastic strain which is Viogt

type is introduced by taking Eq. (71) as the
explicit description of Eq. (66).
E%L=7_7KLMN(T§UN—‘)/¥WNIJEL}EJ) """""""" (71)

If 7gzuw is a fourth order isotropic tensor,
Trrun =a*0xrdun +b*(Oxudrn+8xndrm)
Eq. (71) becomes

E%,=38a%T% 0xr+ 202 g, — STLEY . — 21%%,
.............................. (72)
7'=3a'a®+2a'0?+ 2b'a?
T2=20'?
BKL=EKL—§EMM8KL
I5= ?{K/B , Sxr=T%.—T%0xks

Finally, Eq. (69) is reduced to

E%L—EKL‘*‘(aa(f >+(3ﬂ2Tem“37'1E%M)8KL
F (2B o —2T2E8E L) wverenvererrrniiniinaas (73)
The function f is defined by
Tr1J 0¢.5
fdng ArsdTry <A 17=N1sKI7 > )
= Jo 0By
.............................. (74)

Integration is carried under the condition that
¥ is constant. This definition is more general
than in the author’s previous paper.'®

0415 _ 0dk:
If T T (75)
= 0r
Ary= Gro; (76)
From Eq. (64),
. 3
E¥=Mrser(Nriyx) IaTe .................. (77)
MN
0f __of

where Mrsxr(Nxrun)™t = .
0TSy 075,

Complementary energy ¢ of viscoelastic-visco-
plastic body is illustrated in Fig. 5.

1+ 11 =554°
11 =35¢°

Stress
-
o

I

0 Strain

Fig. 5 Free energy 3 and Complementary
energy ¢ for Viscoelastic-Viscoplastic
body.

When the soil particle and the fluid are com-
pressible, following relations must be given if
the coupling between solid and fluid influences
the volumetric strain only.

Exx=E%xx(Tis, Tis, EYr, E¥, 0,015, k)
Eix=E4x(T4s, Ty, EY, EYy, 0,315, k)

The deformation of a solid phase depends upon
that of a fluid. For example, Biot takes the linear
relation Eq. (79) as the Eq. (78).

1

——5 ([ ~n)u+ T4 Tke—nucts}

Elex= (Beoty—a

Ef

1
L [(L =)+ T4 Jeaee}

{nuon—

where op, o and ke are material constants.?®
The case that the internal constrain is a special
case as two phase mixture and the essence of
the mixture appears only when the coupling
between two phases like Eq. (78) exists. There
must exist a relative velocity between solid and
fluid phase and this term should be taken as an
independent variable in derivation of the con-
stitutive equation. From a thermodynamic
restriction,® andfor a property of wave pheno-
mena,® however, the first order term of relative
velocity vanishes deductively under a condition
with a special assumption. Moreover, higher
order terms of the relative velocity than the second
order is neglected from the consideration.

4.2 Constitutive theory for a normally consolidat-
ed clay

We will be limited to the infinitesimal strain
field and isothermal condition. Adachi & Okano®
extended the Roscoe’s original theory to the
three dimensional case. The extended static
yield function is given by

fo= 1/27]_2+M*0'§n 10 (07 [0y ) romeseesneeenenes (80)
where 2 Je=sijsij, Sij=0"1j—1/3 065, O'm=
1/3 0'ke, 0745 is an effective stress tensor and M*
is the value of +2):/0’m at critical state. and
0’my is a hardening parameter. The yield condi-
tion of Von Mieses asserts that the material
yields and flow plastically when the elastic energy
reaches some critical quantity.

f— SLJSZ]

The yleld condition Eq. (80) is regarded as the
extension of that of Von Mises. So, Eq. (80) is
replaced by Eq. (82) corresponding to Eq. (81).
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Fo= 2 a—(MEG ) 10 (07} |G y) Jorrveenveesenmennns (82)
The reason that fs is given by Eq. (82) is as fol-
lows. Function f must be connected with the
energy since f is defined by Eq. (74). If the yield
condition fs=0 is used, the results obtained by
using Eq. (82) is the same as that by using Eq.

(80) as plastic potential. Num and My are
postulated as isotropic tensor.
Nijur=A681:0m-+B(0ird it S1alr) vreveererereee (83)
L[ 2M* s gy
—3[ 307 (M*a),In (oh[on,)—F)

-(ln(aiu/(riw)qtl)—z}, B=1
Misa=P8:i8u+ Q8+ 8ulsm) ---o-oemeeo (84)
P=(3A+2)X+24Y, Q=2Y
X=(82— N6 V2], Y=pY442]:
From Eqgs. (74) and (83),

Aij=28ij"‘%ﬂ/[*(M*0’;nln(O‘;n/o"my)—~F)
QLN (A ZA TR Y, P R (85)
Therefore, —'?-Ai:gM

dot.,. Ool;
Then fis f=2J:— (M*owln (67, /ny) — F)2
From Eq. (64),
= Mum 5o~ g¢
Substituting Eq. (86) into Eq. (62), using 0¢%/dx=
0, we get
sop 281 a¢1

61] a vp

=(3P+2Q)0.0:5+2Qs:5 --- (86)

=M *(In () [ y) + Dol + V2] 8

=F 2+ V2] f1— fD)+ 0 M* B2 (87)
If Bt and f? are positive functions, Eq. (88) is
a sufficient condition because F is positive.
BLm B0 e (88)

From the Eqs. (73), (77), (83) and (84), the stress-
strain relation for a normally consolidated clay
is obtained.

%Tzé‘;naij'f'(ZbZSij— 27235

+(8atol, —

éij=n18e5+

3rtel)dist+ q/S%}—Zﬁ '

«/2—]2

+%8ijﬂ2 M*——"=+M*In (o7, /c" )}

5. ONE-DIMENSIONAL STRESS WAVE PRO-
PAGATION THROUGH COHESIVE SOIL

5.1 Wave equation

Bar wave propagation can be observed under

the condition that the lateral displacement is not
confined and wave length is very small than the
diameter of the bar. So, boundary condition is
given by stress condition. We observed the wave
of this type at the stress wave propagation test?®
using the shock tube. Stress condition under the
triaxial compression test is as follows.

o111 0 0
0‘i1=[0 g2 0 }, 022 =033
0 0 T33

As o33 is constant under the undrained condition,
the equation of motion in one-dimensional case
is

Hoh~ck—al)  dofy __,dv{ duvi
ox dx =5 a TPy
ch=nu
after all,
0 dvs dv”
a_g o 1+~f_;t_ G= Ol — Oy reeereenees (90)

The equation of motion for several constituents
are denoted by Eqgs. (91) and (92).

99 _ 5 ——f ———(%Z )
=04 + - AR TL cerreerrereeiieraaaaen (91)
__._(( ) 5 2V B
P) 8= FTqveerrerronronmrniaiaicaeaeaas (92)

M= —d(Uxf—’st)
If ©1% is equal to v/, equation of motion becomes
g _ 0
9 Por
According to Ishihara®, if v/ is not equal to v:®

and frequency range is from 1 cps to 30 cps, inter-
action term = is predominant rather than inertia

(Po=005+PoT) --orrnensrrinniinns (93)

7
term po” di So, the form of the motion comes to

dt
consolidation. Therefore, in the ordinary range
of frequency, a motion of soil becomes wave
only if v:* equals to v:7. The pulse in the stress
wave propagation tests carried by authors has
the several hundred frequency. If the water is
incompressible and cohesive soil is modeled by
a elastic-viscoplastic body reported in the previ-
ous paper'®,

|d(vs” —v1%)|=1.48 x 10% (kg/m sec?),

“f%—l 19 % 10* (kg/m sec?),
du " .
df =3.71 x 10* (kg/m sec*)

At this time, permeability coefficient % is 2.14x
10~* cm/sec. The stress-strain relation used for
calculation is as follows.

s)}

d+C: exp[

L1
vll'—E
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., C m
e o o)

C1=104(1/sec), Cay2=100(kg/m?/sec), m=23,

The calculation procedure used here is finite
difference method. In this case, interaction term
is not necessarily predominant than inertia
term. But the attenuation of stress wave is
scarcely different between the cases which has
several different permeabilities. When £ is 2.14 %
10~* cm/sec, |vi¥ —u1¥] is about 107% m/sec. Taking
the above discussion into account, we can postulate
that »,7 is equal to v’

5.2 Stress Wave propagation through saturated
cohesive soil

We shall treat the stress wave propagation
through the bar of saturated cohesive soil whose
behavior is described by the Eq. (89). From the
discussion in section 5.1, we can postulate that
v/ is equal to vis. So, the equation of motion is
given by Eq. (93). If we can assume volumetric
strain is zero, in one-dimensional case Eq. (89)
becomes

s'quiq'—i-<%b2q—2726¥?>+\/%/5‘1(1:) ----- (94)

Furthermore, if viscoelastic volume strain is
zero,
.y ‘/2]28 Y /8
27967, + f2 M*—-‘o’_jr—i—]\/f* In{ojow) (=0
.............................. (95)
In the similar manner of previous paper,!?
2 m
\/§ﬁ1=cl exP[;Z(q_qs)] .................. (96)
= m
f=Ciexp [ o (q_gs)} ........................ o7

The parameters #, Ciand C; are considered to de-
pend on the value of strain which can be given by
the strain-rate constant triaxial compression test.
If ei is positive in compression, the relation be-
tween strain and particle velocity is given by
_ 6eu _ _a_’[j_i
ot~ ox
Eqgs. (93), (94) and (98) from quasi-linear partial
differential equations. The characteristics are
£ =
pPo

dxi=0 and d./di= j:\/

Along these characteristics, the following differ-
ential relations exist.

Along dy=0, den= %,qur(%ng—weve)dt

—}—«\/%ﬁ‘(F)dt ................................. (100)
dx, Ff_ _____l_
Along 7 —i\/ 2 =%¢, dun=7F pocdq
—-[(%bzq—212e7{i>+%ﬂx(l~")]d& ......... (101)

5.3 Numerical results and consideration

Numerical calculation is carried by integrating
the ordinary differential relation along the charac-
teristics. The visco elastic parameter E(=37%/
2b%) and p(=4/3b*) can be determined by the
Akai and Hori’s'® viscoelastic approach to soil.
Akai and Hori concluded in their research that
the physical behavior of soil is viscoelastic in
the strain level of 10— 10"® and the soil can be
assumed to be described by linear spring-Voigt
model in wide frequency range. The viscoelastic
parameter k(=E/E’) and relaxation time con-
stant 7(=1/Ep) take the value of 0.1—0.5 and
1072—5x 1072 (sec) respectively.. =~ E’ is the
Young’s modulus of free spring and E is the
elastic modulus of Voigt part in the spring-Voigt
model. 1/p is the viscosity coefficient. Table 1
shows the fixed parameters in the calculation.
The parameters m and C: used in the calculation
are as follows.

Table 1 Parameters used in numerical éalcula—
tion.

Young's Modulus E'=1.73%X107 (kg/m?)

Density 70=196.3 (kg/m2sec?)

Slope of ¢—log ¢'n line of consolidation test 4=0.127
Slope of ¢—log ¢'x line of swelling test ¢=0.0214
Value of ((6'11—a’33)/6¢'m) at critical state M*=1.300
Consolidation pressure ¢'me=1.06 (kg/cm?)

Void ratio ep=0.77

k(=E/E")=0.32, p=1.75%10-% (1/sec/kg/m?2)
C1/2r2=10.0%C; (kg/m?/sec)

m=—1 400811+37.0(611< 10—2)
m=23.0 (11 >107%)
Ci=[1.8x 107" x (100e.,)*-%+ 10717]
“exp(mgs/oT.)(en <1072)(1/sec)
Ci=[1.8x1071*+107"]
-exp (myg,[oh.Xeu>1072)(1/sec)
k=0.32E/E’)  7=1.03x 10~¥sec)
Figs. 6 and 7 shows the wave variation during
the wave propagation through the cohesive soil
bar. Fig. 7 is the previously reported case that
viscoelastic element in the model is neglected.
Comparing Fig. 6 with Fig. 7, the attenuation of
peak stress in Fig. 7 is larger than that of Fig. 6.
But the tendency of peak stress attenuation is
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X=0.0cm
o0t
Tok X =28 cm e 23
X =50 cm €17, = 100
X = 80 cm

°
w
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Fig. 6 Stress-Time Relationship (calculated
results)
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Fig. 7 Stress-Time Relationship (calculated
results)
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Stress-Strain Relation (calculated
results)

=10"%
€= 10
m= 23
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Fig. 9 Stress-Strain Relation (calculated

results)

equal between these two cases. The rise time
becomes large as the wave propagates in these
figures. Figs. 8 and 9 show the stress-strain rela-

£'= 1400 kg/en®

Stress {kg/cn?)

PTIE TR S BRI
0 0.05
Strain (%}

TS S S TS S
0.

Fig. 10 Stress-Strain Relation During the
Wave Propagation Test (after Akai

and Hori*®)

25 | E.=8700 psi Run 4
Run 5

0l Run 7 j
1o i /
5

0 2.5 1.0 1.5 %
Strain

Fig. 11 Dynamic Stress-Strain curves (after

Vey & Strauss®®)

1.0 |-

Stress path Total siress path

X= 0.0 cm

=3
T

Stress q (kgfand)

0 0.5 1.0 1.5

o
m

20 frg/en?y

Fig. 12 Dynamic Stress Path (calculated

Results)

tions in wave propagation. Fig. 8 and 9 cor-
respond to Figs. 6 and 7 respectively. In each
case, the stress-strain relation is bi-linear and the
type of dissipation is hysteretic, but in Fig. 8,
the viscoelastic effect of Voigt type turns up.
That is to say, the strain has the delayed com-
ponent. The new stress-strain relation can de-
scribe the behavior of cohesive soil in both loading
part and unloading part. The stress-strain rela-
tion obtained in the stress wave propagation
test. (Fig. 10) and the result obtained by Vey &
Strauss® (Fig. 11) are similar to the calculated
result. Fig. 12 shows the dynamical stress path
obtained by calculation. The proposed stress-
strain relation can describe the behavior of
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normally consolidated clay better than previously
reported one.!®

6. CONCLUSIONS

The following main conclusions are obtained
in the present research.

(1) From the Fourier transformation of the
stress wave obtained in the wave propagation
test, the cohesive soil seems to have a viscoelastic
property at a low stress level.

(2) From a point of view of Green & Naghdi,
the theory of mixture of an elastic fluid and a
viscoelastic-viscoplastic solid is proposed in order
to explain the dynamic behavior of saturated
cohesive soil.  Moreover, by this theory, the
physical meaning of Terzaghi’s effective stress
is rationally explained.

(3) The proposed constitutive theory can fairly
express the test results obtained by the wave
propagation test, especially, the stress-strain
relation during the unloading.

The author wishes to thank Koichi Akai, Pro-
fessor of Transportation Engng. of Kyoto Uni-
versity, for suggesting the present study and
constructive criticism. The author is also indebt-
ed to Masayuki Hori, Research Associate of
Transportation Engng. of Kyoto University for
final support and helpful advices, and thanks to
Kenji Kita, Graduate Student of Kyoto Uni-
versity for his support to numerical calculation.
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