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THERMODYNAMIC THEORY OF INELASTIC MATERIALS AND
ITS APPLICATION TO STRESS WAVE PROPAGATION
IN COHESIVE SOIL

By Koichi Akar* and Fusao OgA**

1. INTRODUCTION

When the explosive and vibrational loads aris-
ing from earthquakes, traffics, construction ma-
chines and explosions are applied to the ground,
the stress wave propagates through the ground.
So, it is important to clarify the dynamical be-
havior of the ground and the mechanism of dy-
namic interaction between the ground and struc-
tures during vibratory loading to design the
earthquake resistant structures. It should be
said, however, that the present dynamic analysis
of ground motion is not sufficient to be used.
One of the reasons is that the constitutive rela-
tion of soil material is not sufficiently establish-
ed. Macroscopically the soil material is a mix-
ture constituting of three phases of solid, fluid
and air, and is markedly characterized by inelas-
ticity and nonlinearity. To describe the dynamic
behavior of soil accounting for these characters,
this study is concerned with the constitutive re-
lation of cohesive soil under dynamic loading and
the wave propagation characteristics through it.
The wave propagation test is carried out by the
special triaxial cell which is connected with the
shock tube. Such a stress wave propagation test
has been carried out by many researchers; Ham-
pton and Wetzel’, Vey and Strauss®, Heierli®,

Seaman®, Whitman® and Akai and Hori®»?.

They tried the theoretical formulation of the
constitutive relation of soil materials by assum-
ing the various models for soil material; visco-
elastic model, elasto-plastic model, compacting
model and locking model, efc. For cohesive soil,
it is pointed out by various authors that dynamic
behaviors in comparatively wide frequency range
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are approximately expressed by assuming as a
three-parameter viscoelastic model. Generally, it
is known that there exist inelastic deformation
and energy dissipation depending upon the stress
or strain level during stress wave propagation.
To these characters, various dissipative models
are proposed by Salvadori®, Seaman and Heierli
et al. The theoretical formulation of stress wave
propagation problem accompanied with the in-
elastic deformation of material was developed for
the metal bar in various ways. These are roughly
divided into two theories; the strain rate depend-
ent theory and the strain rate independent theory.
The strain rate independent theory was mainly
developed by Karman?®, Taylor'® and Rakhmatu-
lin. On the contrary, Sokolowskii and Malveren'V
developed the longitudinal wave propagation
theory (which is called “SM” theory), accounting
for strain rate dependency. This “SM” theory
was then generalized by Cristescu!® and Lubli-
ner!®), Parkin!® applied this theory to the stress
wave propagation test through sand which was
carried out by Whitman!®. Perzynat®»1? deve-
loped the three-dimensional elastic-viscopastic
theory. Adachi and Okano!®) used the Perzyna’s
theory to formulate the dynamic stress-strain
relations of cohesive soil. It should be noted,
however, that Perzyna’s theory of viscoplasticity
is not sufficient to be applied to the dynamic
plasticity of clay. The dynamic behavior of clay
includes both high strain rate behaviors and com-
paratively low strain rate ones. So, the constitu-
tive relations of cohesive soil must express the
dynamic behavior in a wide range of strain and
strain rate. In the present study, based on the
internal state variable theory, the authors intro-
duce the more elaborated constitutive relations
for cohesive soil. In section 2, the experimental
study by means of shock tube technique is pre-
sented. In section 3, the constitutive relations
for inelastic materials for inelastic material is



110 K. AKAI and F. Ora

proposed. In section 4, the constitutive relations
for a normally consolidated clay is introduced,
/based on the internal state variable theory, and
companied with the various experimental results;
the undrained creep test, the stress relaxation
test and the undrained shear test. In section 5
is discussed the one-dimensional stress wave pro-
pagation in a rate dependent material. Numerical
results by the method of characteristics are shown
and the comparison between experimental results
and theoretical study is discussed. Main conclu-
sions are finally noted in section 6.

2. EXPERIMENTAL STUDY

2.1 Introduction

The stress wave propagation test has been car-
ried by using the triaxial cell connected with the
air shock tube of which mechanism has been
described in some detail elsewhere™. The soil
specimen is made of Fukakusa dry clay seived
by a 400y net, kneaded with water, and consoli-
dated under the pressure of 2.0 kg/cm? for 40
days long. Table 1 shows the physical properties
of a silty loam used as the specimen. The soil
specimen is a cylinder of 130 cm long and 7.5cm
diameter, consisting of four segments. The soil
stress gage and accelerometer are embedded in
the specimen.

Table 1 Physical properties of silty loam used.

Specific gra'vity 2.67
L.L 54.5-59.5 %
P.L 30.0-31.9 %
P.1 22,6-29.5
Uniformity coefficient 2.85
Water content 39.1-42.5 %
Bulk density 1.73-1.83 g/cm3

2.2 Attenuation of Stress Wave

It is observed that the amplitude of stress wave
through soils attenuates with distance. Figs. 1(a)
and (b) show the attenuation of the peak stress
in traveling through the clay specimen. In Figs.
1(a) and (b), the peak stress attenuates 30-50%
by the distance 0.32m from the input end of
specimen, the rate of attenuation slowing down
thereafter. The experimental results conducted
by Akai, Hori and Shimogami® are shown in
Fig. 2. The rate of attenuation behind the loca-
tion of first soil stress gage embedded in the
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specimen depends on the ratio po/ps where po is
the maximum input peak pressure and p. is the
consolidation pressure. When tests were carried
out under the cell pressure less than p; with
undrained condition, the pre-consolidated pressure
p: was used instead of p. (see Fig. 2).

2.3 Wave Velocity

The wave velocity is calculated from the ar-
rival time measured by the accelerometer. Fig.3
shows the relationship between the rod wave
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velocity ¢ (m/sec) and the confining pressure pe
(kg/cm?) on the logarithmic paper. It is expressed
by

Cr=200D00 25 rrieeeiiiiiie et (1)

It is impossible to vary the void ratio of soil
specimen at a constant effective stress, because
the void ratio of a normally consolidated clay is
a function of effective stress. In orther to in-
vestigate the influence of the effective stress on
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the wave velocity, two kinds of tests were con-
ducted. The first kind of test was carried out
after the primary consolidation is completed and
the second one was under the cell pressure less
than the consolidation pressure with undrained
condition. From Fig. 3, it is understood that the
wave velocity only depends on the consolidated
pressure under the condition in which the void
ratio is constant and the cell pressure is less
than the consolidation pressure.

2.4 Rise Time

The rise time of stress wave is defined at a
distance, as the difference between the arrival
time of the wave and the time when stress is
maximum. From Fig. 4, it is shown that the
rise time increases with distance and finally ap-
proaches constant.

3. CONSTITUTIVE EQUATION FOR
INELASTIC MATERIAL

3.1 Introduction

Generally, the deformation of material is ac-
companied with the energy dissipation. There
exist several phenomenological approaches which
account for the energy dissipation of continua.
The most simplest one is to introduce a viscous
stress which depends upon the rate of strain.
The second one is to assume that the entire
history of strain influences the stress in a man-
ner compatible with a principle of fading memo-
ryi®, This method demands the entire past
history of material in order to predict a future
thermomechanical response. But this seems’ to
be impossible. The last one is to postulate the
internal state variables which influence the dis-
sipation effects. The state of the unit system
of continua is determined, not only by the quan-
tity which is observed on the surface of the unit
system, but also by the quantity which governs
the internal structure of the material. We call
the quantity, which is not able to be observed
on the surface of unit system of the material,
the internal state variable. The non-equilibrium
thermodynamics which introduces internal state
variables have been developed by various re-
searchers, Onsager, Biot?®, Ziegler?’, Coleman
and Gurtin??), Kestin and Rice?®, Lubliner®,
Valanis?®>, Nemat-Nasser?®> and other investi-
gators. Coleman and Gurtin developed the in-
ternal state variable theory based on the thermo-
dynamics of continuous media developed by Cole-
man and Noll?». They assumed the existance
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of entropy and internal state variables. After
all, they axiomatically assumed the existence of
entropy. Valanis and Nemat-Nasser use the
generalized or modified Caratheodory’s principle
as the second law of thermodynamics. Further-
more, assuming the first law of thermodynamics
and the existence of temperature, they tried to
establish the nonequilibrium thermodynamics in-
volving the internal state variables. They con-
sequently showed that the existence of entropy
can be reduced from the postulate of internal
variables and the entropy serves the potential at
constant value of internal variables. In this
study, we do not refer to these points any longer.
At the present, there does not exist the exact
definition of internal state variables. This seems
to be very important for future development. In
this section, the constitutive relation for the in-
elastic material is derived based on the non-
equilibrium thermodynamics.

3.2 Constitutive Assumption

Preliminaries and Thermodynamics for inelastic
material are shown in the appendix (A). It is
assumed that the behavior of material at the
point Xx is. characterized by six response func-
tions; ¢, v, Exz, 4, Pz, &

¢=$(TKLy 0’ g, PKLy IC)

5y =9Txz, 0, 9, Pxr, k)

Exr=ExlTxz, 6, 9, Prz, £)

q =é( TKL, 0) g, PKLr 'C)

. N .

Pgr=Pgi(Pxr, 0,9, Pxr, £)

& =&(Txz, 6, 9, Pz, £)
¢ is the complementary energy density function,
7 the entropy density, Exr strain tensor in Lag-
ragian form, Pxz Kirchhoff stress tensor, ¢ heat
flux vector, g temperature gradient vector, and
¢ absolute temperature, respectively. Pxrz and &
are internal state variables. The stability of
solution of Eq. (2) is discussed in appendix (B).
Generally, the internal state variables are the
components of #-th order tensor. Here, in order
to simplify the reduction of the theory, we use
scalar and second order tensor as internal state

variables. The rate equation of ¢ is
; 9 9
¢= 6’T¢ Kz-l- 9% sz-l‘—a—qin+ 4 -6
g .
+ ag g ....................................... ( 3 )

The internal dissipation inequality is expreséed
by

;1 R R
¢_;°~EKLTKL_75 S0 cresennrirerininen (4)

Substituting Eq. (3) into Eq. (4),

< agﬁfn _"—“EKL>TKL+ o9 PKL-I—%Z:K
9 V6428 520 s
+( 5~ >g+ 5 G=0 +eeees (5)

Following the Coleman’s method, we get the re-
lations as follows:

— Exr asza .............................. (6)
B o
L 5
S S— (%)

In view of Eq. (8), we must exclude g from the
independent variables of ¢.

3.3 Constitutive Equation for Inelastic Materials

“In order to satisfy Eq. (9), we assume follow-
ing internal equations as the sufficient condition
of Eq. (9).

PKL=Mla—¢ , Mi=M(Tkrz, Pkr, £, 9)=0
0Pxx
.............................. (10)
¢
IC=M15,E‘ , My=MyTxr, Pxr, £, 6)=>0

From Egs. (10) and (11), the left hand side of
Eq. (9) becomes

o e ) o 2]

P LPKL+ =M 3Pez + M, o =0
Therefore, Eqgs. (10) and (11) are sufficient con-
ditions for Eq. (9). The internal state variable
r is the hardening parameter in the classical
theory of plasticity. Therefore, on the analogy
of hardening rule in the theory of plasticity, we
postulate that scalar variable & is determined by

Prr= Grl(Trr, Prr, £, O)  <oeveeeeeereses 12)

Under the condition that Pry is constant, the
function f is defined by

f= S P M 99 dTxr (Pry=constant)
0

dPxzr
.............................. 13)
3Pxr  8Piy . . .
It Ter — 9Tkr’ the term in the integrand is
exactly differential. Then
_of
Pgr Tar (14)

From Egs. (6) and (12) the strain rate may be
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expressed as follows:

1. , .
Y Exr=1BrrisTrr+2frrzgPry «oooooeee (15)

In view of Eq. (14), the stress-strain relation is
given by

1. . af v
~——FEgr= T — 1
0 b=t Brrralrr+qfxrrr Ter (16)

where
1Brrrr=1Brrii{ Tun, Pun, 6, £)
ofrrrr=:fxr1i(Tuw, Pux, 4, £)
S=f(Tux, Py, 0, r)

3.4 Relation to the Rate Independent Behavior

If 18xz15, 2Bxrry and f in the Eq. (16) are
determined, the stress-strain relation can be ob-
tained. One of the methods to determine the f-
function in dynamic range is to clear the relation
between f-function in equilibrium and that in
dynamic range. In the process of reducing Eq.
(16), differentiation is done with respect to time
t. If differentiation is performed with respect to
the other parameter which increases with time
and does not related with time explicitly, the
stress-strain relation becomes rate independent.
In the case of rate independent behavior, f is
denoted by fs. Perzyna defined the F-function
in the elastic-viscoplastic material developed by
himself and gave the relation between fg and fs.
fais a dynamic loading function and fs is a static
loading function.

F=(fa—fs)|fs
F=0 is a static yield condition. In the present
study, we define F-function in the sense of gener-
alization of the concept of that developed by
Perzyna. F-function may be arbitrary function
if f is equal to f; only when F=0.

F=F(Txrp, Prr, 0,K) +veeoerrvesinsniinnns (17)
Here we must note that f and f; are not equal
to loading functions in the sense of Perzyna's

theory. When F and f; are given, therefore, the
dynamic stress-strain relation is given by

1 . . af '
— = T N S 18
P Exr=18xr1sTir+28rr15 oTer @18)

f=f(F, Pux, Tun, 0, k)
18xz1r=18x115(F, Pux, Tux, 6, 5) } ---(19)

2Brrir=:Pxr1s(F, Pun, Tun, 0, £)

3.5 Comparison with Other Theories
Comparing the reduced stress-strain relation

Eq. (16) with the other theories, we shall discuss

the theoretical feature of Eq. (16). Now, there

have been proposed various elastic-viscoplastic
theories. We shall begin with the elastic-visco-
plastic theory proposed by Perzyna'®. He pro-
posed the following stress-strain relation in the
case of infinitesimal strain field.

S35 1—2p 1 d0fa

su=2—‘u+ E akk'§5ij+r(6’)<¢(F)>~é—g7j

where e;5; strain tensor, ¢;j; stress tensor.

<YF)>=0F) F>0
=0 F<0

) 1
Sij=0'1:j—'§0'klc5ij

Static yield condition is given by

F= fd(o.iiy 0‘1?.7) —1=0

EP
where IC=I£<S ijo'ij de{,), £; work-hardening para-
° meter.
Starting with the Drucker’s postulate of stable
inelastic material and adding the assumption of
decomposition of strain rate tensor, Perzyna ob-
tained the convexity of the subsequent dynamic
loading surfaces and the normality of the inelastic
strain rate vector to the yield surface. After
that, he thermodynamically formulated the elastic-
viscoplastic body by using the themodynamics
with internal state variables developed by Cole-
man and Gurtin®®. In that study, &} is regarded.
as the internal state variable. Perzyna did not
refer to the normality of the inelastic strain rate
vector to the yield surface. Finally the following
relation was obtained.
e =1(0)<(F)>M;s(ew, 0, o, £)

So, the normality of inelastic strain rate vector
to the dynamic yield surface must be postulated
in order to reduce Eq. (20). In contrast to this,
in Eq. (18), the normality of &? to f is not used,
but the exact differentiability is postulated. And
function <@(F)> which is used by Perzyna dose
not appear. Differentiating with respect to the
parameter which involves time implicitly, Eq.
(18) becomes rate independent stress-strain rela-
tion. In Eq. (18), E%, (viscoplastic strain rate
tensor) is defined by

37{;’ =00 fxr1rPry  (21)
Integrating the Eq. (20) along the path, we get

WL =p0 2PELIT

P
E,gPL.—_SO I‘Tpo oBrLIT APy weerereeeeeeieee (22)

In equilibrium state, as the stress tensor is used
for independent variable, the conception of load-
ing surface in classical plasticity theory must be
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introduced in order to distinguish between the
loading state and unloading state. Considering
the loading process, the following relation is re-
duced from Egs. (14) and (17).

Ez;
__oF__of
= (Fun 0Tuw 3T1s
_So pozﬁKL1J< oF _oF ox ) of AdTux
. Py ' 3k 0Puw/) 0Tun
(along the path) «eeeeeeereveinnn (23)

where Eg; is the plastic strain tensor.
Valanis obtained the second law of thermodyna-
mics by generalizing the Caratheodory’s principle
and proved the existence of entropy and tempera-
ture. Valanis?®® derived the stress-strain relation
of viscoelastic material, elastic-viscoplastic ma-
terial and elastic-plastic material by using the
intinsic time scale Z({) which is a function of time
and strain. The equation equal to Eq. (23) is
given by

dP;; 09

dzZ 9Py — .
Integrating Eq. (24) along the path of Z({), Pi;
is obtained. And substituting P;; into the equa-
tion which is equal to Eq. (19), stress-strain re-
lation is obtained. So, there does not exist the
function that serve as the plastic potential. After
all, if free energy function is given, the stress-
strain relation is obtained. More interesting
theoretical approaches are achieved by Rice®,
Lubliner?® e¢f al. In the present, however, we
do not refer to it.

4. CONSTITUTIVE EQUATION FOR
NORMALLY CONSOLIDATED CLAY

strain rate is defined by
eg;=1Bi b

There does not exist the exact theory for stress-
strain relation of fully saturated clay in equili-
rium state. Roscoe’s original theory®® and Bur-
land’s modified energy theory®? are not sufficient
to explain the behavior of fully saturated clay
in equilibrium state, but they can explain the
behavior of saturated clay in equilibrium to some
extent. At the first step, we will use the Roscoe’s
original theory to construct the constitutive equa-
tion of clay, which includes the rate effect. Two
following assumptions are set up in order to ap-
ply Eq. (26) to normally consolidated clay.

(1) We will use the Roscoe’s original energy
theory which is extended to three-dimensional
case by Adachi ef al. as the constitutive theory
in equilibrium. f-function in equilibrium is ap-
proximated by static yield function fs; of extended
Roscoe’s original theory given by

fimks=v2J; +M*6", 1n 0%, [0}, =0 ----(27)
where ¢},, is a hardening parameter shown in
Fig. 5.
(2) F-function is given by
F=F(e3}, Tuy &, 0)
=fs—f
=€) (V2]e = Vo3 ) oo (28)
Therefore, if F=0, f=/f;.
f is given by
F=FemF  cererereniitee e (29)

Fig. 5 shows the manner how to determine f.
In this figure, a has following form.

4.1 Reduction of Constitutive Equa-
tion
We will be restricted to infinite- 7],
simal strain field and isothermal con-
dition. ¢&; is the strain temsor, &2
the viscoplastic strain tensor and ¢y
the stress tensor. Deviatoric strain
is defined by e;; and deviatoric stress

tensor is defined by sij; eij=eij—

1 1
—gemﬁij, Sij=mj—~3-akk5ij. The sec-
ond invariant of deviatoric strain ten-
sor is denoted by v2J;=+si8:; . Ea.
(18) is rewritten by

of

fs\
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é15=1Ps0m+28 201,

where B is a scalar function. Elastic
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Fig. 5 Manner to determine the function f.
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‘/2]2 (PI) */2]2 (PIII)

=Ry T (30)
where
“/m(Pxn)’f’M*U;n(Pm) In 67.(Pyy){07, =0
.............................. (31)
V2 (Pu)+M*05(Py) In 0,,(Pry)6],, =0
.............................. (32)

The point P; has the inelastic strain equivalent
to the point Pr;. From Egs. (31) and (32), fol-
lowing relation is given

“/E(Pm)= %‘/Zf;(fﬁ)
—M*¢"(Py) In %%g—ig)— =0 eeees (33)

F is obtained from Egs. (28), (30) and (33) as:
F= VI ()~ 2B Ve (P
m(PI)
07 (Pr1)

F is zero only when ¢,¢=¢’; and v2J;°=v2J;".
So, F' is satisfied with the condition that F is
zero in equilibrium state. In view of Eq. (28),

+M*¥el(P)In —2 - e (34)

4
F=v3]; +M#*al, In ";" Y S (35)
my
of Sij wBig  On | M*
dow Voh Mg I T30
.............................. (36)

Substituting Eq. (36) into Eq. (26), stress-strain
relation is obtained as:
v ﬁ)iﬁ

éij=1,8ijklé'kl+ﬁ2{<M*“ Py 3

R e LA TEALN RC)

In the case of conventional axi-symmetric triaxial
compression,

— 2 2
V2T, =\/'§(‘711—0§3):\/§q »  €n=En,
1 — |2
Tn="3 0k sij/ V2] =\/§,

. 2
511=_(‘7{1—0§3)

where o¢}; denotes the effective stress tensor.
From the Eq. (37), the stress-strain relation in
undrained axi-symmetric triaxial compression is
expressed by

) . 2
911=T1311+\/§'.82
As éxx=0,

120", + o (M* «/21 Yol prein ):0
.............................. (39)
where it is assumed that 18:6% ;=714 j+—£&;nrz§i -

3

4.2 Phenomenological Nature of Parameters

We shall discuss how the test results in un-
drained axi-symmetric triaxial state can be formu-
lated by Egs. (38) and (39). Fig. 6 shows the
relation between the viscoplastic strain rate &3}

and /2 (/25" — V2o

creep test in semi-log scale®®. It is evident from
Fig. 6 that (¢—g¢s)/o),. increases in proportional

in the undrained
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Fig. 6 Relationship between strain rate and
(4—4s)0%e -

to the logarithm of strain rate if the amount of
the strain is equal. Therefore, f; may be taken
as

me

po=Culapy exp {58 g )

Iné?=In «/ Co+ (q s) veereererene (41)

Experimental equation in the relaxation test,
proposed by Murayama ef @l.?® is given by

grls, B)—gpl(ens, bo)=—Plen) log (ko) ---(42)

where ¢r is the deviator stress at time ¢ when
the total strain is hold constant and fS(ei1) is the
relaxation velocity, dgr/dlog(f). Substituting Eq.
(42) into Eq. (38) and assuming g-{ei1, to)=¢s, we
get
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2. B8 1
3712303 7
2 m__ B n
+/ 3 Coexp { ol 2.303 B Uh)7 =0
.............................. 43)
The condition to satisfy Eq. (43) is obtained by
MED) B g e,
o, 2.303 =1 4
2 bn o _\J2
32.300 C“\/s G (45)

From Eq. (44), B increases proportionally to the
consolidation pressure. This results coinside with
the test results. In the strain-rate controlled
shear test indicated by Fig. 7 which shows the
correlation between ¢ and log ¢y, it is clearly
noticed that the slope o}, /m increases as the
strain increases and becomes constant. The inter-
cept C; in Fig. 6 decreases as the strain increases,
even if (g—¢s)/ol,. is constant. The rate of de-
crease becomes small as the strain increases.

OCR. 10 .
Kgpr? (W) e
o = 01 -
- -~
| 20— 0 05 /// '//
A 1.0 P e
20 a 30 - -

O'T‘d( K. 9/° m?)

2y
¢

1

C2=C0{<M*—%{2—>+M* lna;,,/‘a;,f} X

Therefore, if Cifr; only depends on strain, Eq.
(47) can be integrated as:

Ol = — A I (Elg) 4Gl +eereoivmeemermeseenenes (48)

_ 1 B . 7:A
where A= 39303 ° Therefore, C,= PR
A depends on the test results that the stress path
is parallel to the principal stress line in relaxation

test.  In view of Eqs. (48) and (42), ¢},:¢=1:3.

. Following the above discussion, C; is determined

from Eq. (45).

1 2nB _ 2nGe
- to 6.909 - T2

1

From the above discussion, the parameters
which are necessary to use Eqgs. (38) and
(39) are 71, 12, B, Oher M*, 2, k and e (initial
void ratio). By these parameters, the dy-
namic stress-strain relation and stress path
for normally consolidated clay are obtained.
From the test results of Akai ef @l.’® and
Murayama et al.’®, a{e11)=0.20 kg/cm? and
Ple)=0.14, 0.17 kg/cm? were obtained for
the clay samples consolidated by 2kg/cm?.
Therefore m=23.0, 32.7 from Eq. (44).

5. ONE-DIMENSIONAL STRESS

L i L
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o

—
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WAVE PROPAGATION

Fig. 7 Relationship between deviator stress and

logarithm of strain rate.

Eq. (37) includes the following experimental equa-
tion developed by Yong and Japp®® for dynamic
loading constant strain-rate triaxial test if neglect-
ing the elastic strain rate:

g(enr, €11)— (&1, €h)=alen) log (é11/¢},)

Akai and Adachi®® show that a(en) in Eq. (46) is
approximately equal to f(en1) in Eq. (42) and Eq.
(46) can express the results of undrained creep
tests. Eq. (38) satisfies these results. Next Eq.
(39) is discussed. Substituting Eq. (39) into Eq.
(42),
LY Ak
rody=— ,Bg(F){<M*—L5,{—2—> +M*1n a;,,/o',,:}

5.1 Characteristics

By the method of characteristics, the original
system of first order partial differential equations
can be transformed into a system involving
characteristic coordinates by which the differenti-
ation becomes considerably simplified. According
to Courant and Hilbert®®, the characteristic lines
play a role as wave fronts. These are the lines
across which solution of partial differential equa-
tions suffers discontinuities. We shall discuss
the wave propagation in the material which is
expressed by the following constitutive equation.

—Z—::f(g" 5)%+g(g’ e) ..................... (5())

where & denotes the total strain and ¢ the axial
stress. Thin rod is considered in order to neg-
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lect the lateral inertia. The coordinate of any
particle is X in Lagrangian form and x in cur-
rent coordinate. The displacement of particle
is defined by

The strain ¢ is given by

ox

e:l_ﬁ ....................................... (52)
¢ is taken positive in compression. The particle
velocity is given by v=0x/dt. Therefore,
ds v
T ax s (53)

We neglect the body force in the equation of
motion.
do v
Tax ™ et
Along the curve ¢=0, the interior derivative of
v, ¢ and ¢ is continuous. ¢=0 denotes the wave

front.
dv——a”—dX+— dt,
da——aLdX+_dt ............ (55)
T X
de de
de——éji:dX-l"‘aT dt

As Eqs. (50), (53) and (54) form quasi-linear par-
tial differential equations, the characteristics
exist.

dX=0, dXjdt==,] ﬂ%e)

Aloﬂg these characteristics, there exist following
differential relations:

Along dX=0, do=f(0,¢)de+g(o,¢)dt
.............................. 57)

Along dX/dt=C, o=p,Cdv—g(o, ) dt
.............................. (58)

where C= \/f (@, 6)

The most s1mplest method to solve the above
ordinary differential equation, Egs. (57) and (58),
is numerical integration. Replacing Eq. (50) with
Eq. (38), Egs. (57) and (58) becomes

Along dX=0, de=%da+ﬁz(F)\/—§—
.............................. (59)
Along dX/di=2C,
2
do=poCdv— ﬁo(F)\/ FE e (60)

3
where o0=0¢},—0%; and E=—
27’1

5.2 Numerical Results and Discussion

The parameters used here are assumed to be
constant, and we postulate that the behavior is
purely elastic if fs<0 in unloading condition.
Egs. (59) and (60) are integrated along the charac-
teristics by Massau’s method. Table 2 shows the
parameters used in the calculations. Fig. 8
shows the variation in the wave shape during
the wave propagation. The wave shape in the
neighbourhood of the peak stress becomes round
as the wave advances. The rise time becomes
large as the wave shape collapses. From Fig. 8,

Table 2 = Parameters used in numerical calcu-
lation.

Young's Modulus E= 1.4x10 kg/m?
Density = 1.9&’:3)(102kg/mzsec2

Slope of e-]ogcm' Tine of consolidation test =0.127
Slope of e-]ogcﬂ'1 line of swelling test «=0.0214

Value of {{o), o33/ ) at critical state M'=1.300

131 A %0.0em
¢=10"
1,0F 4 em C;/Y1=101
y X250 cm m=23
%80 cm
o«
§
o
x
0.5
i
&
' . L . L !
2 4 6 8 10 " 12

Time  msec

Fig. 8 Stress wave propagation (calculated
results).

the attenuation of the peak stress is large in
the first place of rod and becomes constant.
Fig. 9 shows the stress-strain relations in wave
propagation. The stress-strain relation is bi-
linear and the hysteretic type dissipation is pre-
dominant. The area of hysterises loop becomes
small as wave propagates. The dynamic stress
path is shown in Figs. 10 and 11 among which
the former corresponds to Fig. 8. It is noticed
from the stress path that the pore water pressure
increases proportionally to the inelastic strain.
Fig. 11 is the case that C; is larger than that in

'
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Fig. 9 Stress-strain relation (calculated results).
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Fig. 11 Stress path (calculated result).
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Fig. 12 Stress-strain relation during wave

propagation (after Akai and Hori®).
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Fig. 13 Stress wave propagation (experimental
result after Akai and Hori®).
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Fig. 10. Fig. 12 shows the stress-strain relation
obtzined in the stress wave propagation test.
The stress-strain relation is bi-linear type in load-
ing part and coincides with the theoretical re-
sults. But in the unloading part the theoretical
results differ from the experimental results. The
reason may be considered that the elastic re-
sponse of clay is not clearly known. Fig. 13
shows the experimental results of the variation
in wave shape travelling through cohesive soil.
The peak stress attenuates about 40 percent of
the total in the first 23 cm in the specimen. The
wave shape in the neighbourhood of peak stress
becomes round and the rise time becomes large
as the wave travels further distance. The above
discussion shows that before-mentioned theoreti-
cal approach can approximotely explain the ex-
perimental results on the attenuation of the

in,
S
£ 30r
K]
@
Q
» 25} A e
.
]
h-]
£ 20+ uné
¢ 20 o Run 2
] o & Runb
'§15 ¢ Run7
2
§
£ n
3
e
&8 5
2
[a]

2 4 6 8 10 12
Rise time msec
Fig. 15 Distance from loaded end of specimen

versus rise time to peak stress (after
Vey & Strauss®).

psi
25+
_ © Run 4
E,=8700 psf o Run 5 /A
20k A Run?7

05 10 15 %
Strain

Fig. 16 Dynamic stress-strain curves (after
Vey & Strauss®).

stress, the trend of rise time and the stress-strain
relation. Figs. 14, 15 and 16 are the results of
wave propagation test through compacted Kaolin
clay, which was carried by Vey and Strauss®.
Fig. 14 shows the stress-strain relations obtained
in wave propagation tests, and it is similar to
that of Fig. 9. The attenuation of the peak
stress and the feature of the rise time are also
similar to the numerical results as is shown in
Fig. 8.

6. CONCLUSIONS

The authors propose a general constitutive rela-
tion for inelastic material based on the internal
state variable theory and apply the proposed
theory to express the behavior of clay. The
dynamic. stress-strain relation of clay, which is
obtained from the theory, can explain the various
test results: the undrained creep test, the stress
relaxation test and the undrained strain rate-
controlled shear test. And although, it can explain
the unloading part, there remaines a distinction
between the experiment and the theoretical re-
sults. In the future study, therefore, the elastic
behavior of cohesive soil must be clarified to ex-
plain the dynamical behavior under unloading.

From a series of study the following main con-
clusions are obtained:

Conclusions in the experimental study.

(1) The peak stress attenuates by almost 30-
509 at the neighbourhood of the surface of
specimen and the attenuation rate slows down
with distance.

(2) The attenuation rate of peak stress de-
pends on po/ps, in which p, denotes the input
peak pressure and p. is the consolidation pres-
sure.

(3) The wave velocity ¢, only depends upon
the consolidated pressure p. under the condition
of constant void ratio.

(4) The rise time increases with time and
then becomes constant.

Conclusions in the theoretical study.

(1) The general constitutive equation more
suitable for clay than the elastic-viscoplastic body
proposed by Perzyna is introduced based on the
internal state variable theory to express the dy-
namic phenomena of continua, and it has been
applied to a normally consolidated clay.

(2) Thus proposed constitutive relation can
explain the dynamic behavior of a normally con-
solidated clay in various tests; the undrained
creep test, the stress relaxation test, the un-
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drained shear test and stress wave propagation

test.

(3) The one-dimensional stress wave propaga-
tion through the proposed inelastic material is

discussed by the method of characteristics.

The

numerical results by integrating the ordinary
differential equation along characteristics coincide
fairly well with the experimental results.
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APPENDIX (A)

(1) Preliminaries

Introducing a rectangular cartesian axial co-
ordinate fixed in space, the coordinate of any
particle is expressed by Xx in Lagrangian form
and by xx in current coordinate. A motion of
the body is described by.
(y K=1,2,3) «ovveene- (A-1)

where xx reveals a single function of position

rr=x1(Xx, t)

Xk and time £. The line element of the sub-
stance is denoted by Egs. (A-2) and (A-3).

AS2=dX g dX g «orireeeerrersiineaiinivii, (A_Z)
d32=dxkdwk=xk,ka,L dXK dXL ------ (A—3)

The strain tensor Egr in Lagrangian form is de-
fined by Eq. (A-4), using Kronecker’s delta, 6z:

ds*—dS?*=(xx,x Tx,1—0xr) X dXy
=2F g dXgdXy

Cauchy’s stress tensor is expressed by second
Kirchhoff stress tensor as follows:

tkl-:%xlc,Kﬂ'/'l,LTKL .................... +oo-(A-5)

where p is the current density and po is the initial
density. The deformation velocity tensor is de-
fined by

dis=Exr Xuc,i Xp,j «ooreveremrenemrenennns (A-6)

(2) Thermodynamics of Inelastic Material

The energy balance equation for non-polar case
in the local form is expressed by Eq. (A-7)

0 —ligdig=p7 —div g -eeoeerrieeiienns (A-7)
where ¢ denotes the internal energy density, ¢
the heat flux vector and » the heat supply per
unit mass and unit time. The Clausius-Duhem

inequality may now be written in the material
form by

09— pr—10 div<—%> >0

where 7 is the entropy density and 4 the absolute

temperature. In view of Eq. (A-7), Eq. (A-8)
becomes
1
p’/}—(pé—tkldkl)/ﬂ—'ﬁqm?; k>0 .eene (A-9)

The free energy density ¢ is introduced by
PmE— B ceererreeeente e (A-10)

Complementary energy density function ¢ is also
introduced by

1
¢=.p_oEKLTKL._¢. ........................ (A-11)
Then

01 . K

¢=;;(EKLTKL+EKLTKL)_¢' ~~~~~~~~~ (A-12)
From Egs. (A-10) and (A-12), Eq. (A-11) becomes

oL 1 . 1
—90+¢——ExiTrr———qf, k>0
n0+¢ o kLl kL pof qre

From Eq. (A-13), internal dissipation inequality
(Planck’s inequality) is obtained by

Sﬁ.—%EKLTKL—ﬂéZO .................. (A-14)
0
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APPENDIX (B)

Stability of Solution

Coleman and Gurtin?® defined the *“ attraction
domain of constant temperature and strain” and
. discussed the stability of the solution of differ-
ential equation governing the internal state vari-
ables. Following the Coleman and Gurtin, the
stability of the solution of Eq. (2) is discussed.
It follows from Eq. (A-10) that

og ¢¢9+ 9g PKL+_¢K

9= s L 50 0 3P

Substituting Egs. (A-11) and (A-15) into Egq.
(A-14),

( +—9£)0+ % g+< aaL—leﬁn

il Ex 00
o¢ 99 .
— anLPKL o R0 cereereeiiiann (A-16)

Since 6, § and Exr may be given as arbitrary
values,

W ¥

N=—T =

og
6 3 ag TKL =00 oE oL

Therefore,
N . 0p .
¢—-p0EKLTKL+770 OPsr Prr— o [
.............................. (A-18)
On the other hand,
___3¢_ ¢ 9. 0%,
$= TKL+ PKL+ P k4= 30
.............................. (A-19)

Comparing Eq. (A-18) with Eq. (A-19),

¢ op. 39 _ 9P
aPxz  oPxz’ o o

Consequently, following inequality is given.

¢ 99 .
— 9P 5 £ 20

¢>0 (Exz and @ are constant)

When ¢>0, ¢ serves Lyapunov function and the
solution (Ekr, Pxrz, 0, k) is Lyapunov stable. If
in addition (Exz, Pkr, 9, k)—fixed value as f—oo,
the solution of Eq. (2) is called asymptotically
stable in the sense of Lyapunov. In isothermal
relaxation process, the solution of Eq. (2) is stable,
but not necessarily stable in isothermal creep
process.
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