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CONVERGENCE OF FINITE ELEMENT LAX-WENDROFF METHOD
FOR LINEAR HYPERBOLIC DIFFERENTIAL EQUATION

By Mutsuto KAWAHARA™

1. INTRODUCTION

Recently, the finite element method has become
one of the most commonly used methods for the
computation of structural analysis by digital com-
puters. A number of research workers have de-
tected that the method is adaptable not only to
structural analysis but also to other fields of
engineering problems. This paper presents a
form of finite element method applied to the
analysis of linear hyperbolic differential equation.
Other forms of finite element method applied to

elliptic and parabolic equations are well studied |

and convergence is assured especially in the case
of linear problems. On the other hand, the use
of conventional finite element method to hyper-
bolic problems has sometimes failed to produce
the well approximate solution. The computation
often resulted in unstable solution. Therefore, it
is noted that certain techniques should be em-
ployed to overcome instability. In the computa-
tion to solve hyperbolic equation by the finite
difference method, the Lax-Wendroff method is
the best known method which is widely used.
The method has proven to be effective especially
in the case of wave propagation problem. The
method also assures stable solution even in non-
linear phenomena by numerical and theoretical
considerations.

This paper will discuss the extended scheme of
the Lax-Wendroff finite difference method, which
is based on the techniques of finite element
method. Thus, the scheme is called the finite
element Lax-Wendroff method. Namely, expand-
ing the unknown function into Taylor series of
short time increment and employing the original
equation, the algorithm of the finite element Lax-
Wendroff method can be obtained. Convergence
proofs of the method can be shown by using the
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concept of L; space.

The convergence studies of finite element
methods applied to parabolic equation have been
made by Douglas and Dupont [1970], Dupont
[1972], Fix and Nassif [1972], Wheeler [1971, 1973],
Rachford {1973], Meyer [1973], Wellford and Oden
[1973], Thomée and Wendroff [1974] and others.
These papers discuss the convergence properties
of conventional procedure to solve parabolic equa-
tion. Because of the conveniences of using full
explicit method, the idea of the lumped coefficient
scheme is often employed in practical:computa-
tion. The convergence of the lumped coefficient
scheme was studied by Fujii [1971, 1972] in elastic-
ity problem and by Kikuchi [1972] in wider prob-
lemes given by positive definite operators. This
paper will prove two theorems, one is the con-
vergence of consistent coefficient scheme and the
other is the convergence of lumped coefficient
scheme. The convergence properties are also
studied by numerical computation.

2. PRELIMINARIES

Consider linear hyperbolic problem:
0 jid
a_” 2 D)t =0 e e 2.1
t o isy

for ze€QcR?, 0<t£T, 1Zp<3 where £ is
bounded domain with sufficiently smooth bound-
ary af2. Notation ( ),; means the partial differ-
entiation with respect to %, i.e., ith component
of . Here and henceforth summation convention
is used for repeated indices unless otherwise
specified. It is assumed that the solution # ¢ C?
(@ x[0, T]) satisfies:

w(z,t)=0 2€d2 O0<IKT cvoervvvenen (2.2)
u(x, 0)=u’(x)

Let C*(2) be the set of all functions being #
times differentiable on the domain £2. Ly(9) is
the closure of C<(£2) function with norm:
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Il = { a0 verd@) 2
The inner product is defined as:
{u, v)= Sﬂu(x) v(x)dR- u,ve L(2)---(2.5)

The spaces HY2) and HHH2) are the closures of
C= functions with respect to the norm:

Nollrscor=Nolbacort £ 10l bacer 0 € S°)

.............................. (2.6)
or the norm:
P D
ol ke = "”Ilfm(n)‘l‘ig EIHU,UHL(Q)
DEIAD) veerreenes @70

respectively. H¥2) is the subspace in HYQ)
which vanishes identically in the neighborhood
of 92. The norm || + || gl is defined by

o= 2 sl 0€ HH(O) ~(28)

From egs. (2.4) and (2.8), the wellknown inequal-
ity is obtained.

12l zocar = Coliv | abcor
where Cp is real constant.
The existence and uniqueness of the solution
# is assumed and, moreover, the following smoth-
ness conditions are postulated for functions &
and #.

v ve LKD) +(2.9)

Assumption:
iy Cig|bi(x)|=C: for all ze 2 and 1<i<p
where C; and C; are real constants.

i) e (HULD)NIHH(R))*xC¥O, T
i) #,e HHL)x CHO, T']
iv) € CY(R2)x CYO, T
Consider the weak form of eq. (2.1),

%%, v>+<biu,i, 2y=0

for voe HY D), €0, T] -ovvvvvee (2.10)
subject to

w(z, t)ye HYD), <Lu,(+,0), v>={u’ v)
£Or VD€ JHI) +eorveerneermerneens (2.11)

In the subsequent sections, C, (#=1,2,..:) is
used as generic constants which are not neces-
sarily the same each time they appear in this
paper. The following lemma is derived from eqgs.
(2.10) and (2.11).

Lemma 1.
Let u® be u(., ndf) where £t=T|N and N is an

integer. Then, for all exact solution of (2.10)
with eq. (2.11), the following equation is obtained.

wntt gy
————, v
T

4t
g b0y =5 0>

+ <b1*u,n1. ’ 1)>

for VU € YD) oo (2.12)
and
(6] K CUAEN wevvremivemmmmnminiiiinieieceen (2.13)
Proof: For the exact solution of eq. (2.10), from

assumption iv), it is obtained that

2
urtl =gy At uj‘,—}-—%t— (X, £) e (2.14)

ou 9%
where |[e] <Ci(41), U= and u,n=~5{2-t~ .
Thus,
oW —ur AL,
ST T e T g ~(2:15)

Substituting eq. (2.15) into eq. (2.10) and re-
arranging it, then,

WLy At
<—At—_' v —'—2"<u,nny v

+Lbiuty, vy= <—jt—, 1;> ............ (2.16)

Using egs. (2.1) and (2.2), {#%,, v) is reformu-
lated as:

a
utlsss ”>=<_§(bi u®), 'U>

Ju
=5 00
=Lbubsuls),e, v>
2= (DU, Djv, gy oereveeeeeeens (2.17)

Introducing eq. (2.17) into eq. (2.16), eq. (2.12)
can be derived. Q.E.D.

3. FINITE ELEMENT LAX-WENDROFF
SCHEME

To solve equation (2.1) approximately by the
finite element method, 2 is decomposed into finite
elements {2}}}%. For simplicity, boundary 48
is assumed to consist of a finite number of simple
closed polygons. Here & is the mesh parameter
of the finite element mesh (i.e., if A,=dia(2}),
h=max (hs, ho, +++, hyn)). The refinement of 02}
is assumed to be uniform, i.e., for each refine-
ment of the mesh, let the radius of the largest
sphere that can be inscribed in 27 be proportional
to he. Let Sy be the finite dimensional sub-
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space of H}(£2) consisting of functions which have
the form:

W (z)= i}lq)a(x)- W2 ZER woveeern (3.1)

where {@.(x)}X, are bases of Siy. Let P be the
partition of [O, T} composed of the set (£, #1, +<-,
tx} where O=H<tHh< +++ <ty=T with fp1—Iln=
At. The function f*(x) is introduced to mean:
Fi(z)=f(x, tn)
The function W7 e Sy is defined as the finite
element Lax-Wendroff approximation in Sy when
W is determined by the following form:

(Watt, V)._-_—(Wn’ V}—At(bth;’, V>
At?
=5 W bV, e 8.3
for all VeSy and all £, € P, starting from the
initial function W e Sy which is determined by:

(WO, Vy=dul, V) weveevnrriinnienennenine. (3.4)

for v Ve Sy. With the use of egs. (3.1) and (3.3),
discretized equation of the finite element method
is obtained as follows.

A-Wrti=A.Wn+B. Wn+C-Wn
where

A={Du(x), Ps(x))

B = — 4Kbi(x)Pa, (%), Ps(x))

.(3.5)

=L b e, BADs A2
Unknown vector W7 ¢ R¥ has the form:

Wo=(Wy, Wy, -, Wi
Assume initial value #, in the form

W= iug.@u(x) .............................. (3.7)

then, from egs. (3.4) and (3.7), the following is
obtained

VOO weevnnerrneennennneetneenneneeeensenseones (3.8)
where u® € R¥ has the form:
UO=(ul, Ul, + ooy U)o veveeermnereeenee s (3.9)

In this paper, piecewise linear function is em-
ployed as @.(x), namely, Sy is taken to be a
subspace of H}({2) spanned by piecewise linear
basis functions. Precise forms of matrices 4, B
and C are listed in the Appendix. From the
viewpoint of practical computation, eq. (3.5) may
not be convenient because eq. (3.5) is not a pure
explicit scheme. In practical computation, it is
suitable to diagonalize the coefficient matrix A
" of the left side of eq. (3.5) to obtain a pure ex-
plicit scheme in the form:

AWrH= AW BWn+CWD —ooovnee: (3.10)

where
A={D(2), Dy(x))

in which @,(x) is the piecewise constant shape
function. Let Ty be the fiinite dimensional sub:
space of H}(£2) consisting of functions which have
the form:

T )= 3 Ba()- Wr 2 € woreoeene (3.11)
a=1
Then, eq. (3.3) can be rewritten as follows.
(WL, Ty=(Wn, Vy—atb, W, V)
a8 .
=5 BiWE, byVy oo (3.12)

for v VeSy and V ¢ Ty, Precise form of A is
listed in the Appendix. Finite element scheme
eq. (3.5) is called the consistent coefficient scheme
and eq. (3.10) the lumped coefficient scheme re-
spectively.

Lemma 2.
Let #(x) be a function which has bounded con-
tinuous derivatives of the second order in £, i.e.,
|Dea(2)| KM@ |a|=2

and let W(x) be the projection of wu(x) on Sx
then it holds

”u_WuLz(mgclth(z) .................. (3.19)

Noo—W || oy S Coh M vevvveniinniens (3.15)
Let W(x) be the projection of u(x) on Tu, then,

Not=W || £y SCoRIMD. cveieniennne (3.16)

where

D@ SM®  |aj=1

In these estimations, Ci, C. and C; are constants
and independent of the triangulation.

Proof: This lemma is standard and special case
obtained by Ciarlet and Wagshal [1971], Ciarlet
and Raviart [1972] and Strang and Fix [1973].
For completeness, proof will be shown in a more
elementary manner.

Referring to Figure 1, #* is a function in &5
coordinate system corresponding to # as a func-
tion in xyz coordinate system. Denoting Ci~C
as constants, the following is obtained:

HMIIL2<9>=(Sglulzdﬂ>lﬂ=<gglu*lz~I]IdQ)

(e (|0

éclljil/z' ”u*” Loy e (3‘]_8)

where [ is a Jacobian from xyz coordinate system

/2



98 M. KAWAHARA

(%2, Ys,Zs)
(X2, Y92, X2}
z
(X4, 40,20
(X4, Yo, 24
xX

Fig. 1 Coordinate System.

to &7{ coordinate system.
the equation:

el akeor= |, 10wtz a2) "

In the same manner,

=({, 1wt 714 a0)”

(persa)” (e

AT P2 flu | gdegy oo (3.19)
is obtained. Using egs. (3.18) and (3.19), it gives:
Nt=W || 2acay SCUTIV2 - || =] 1500

A

1
h

G
h

A

Interpolant W* has the form:
WHE, 1, D)=ar*+ar*é+as*y+at -(3.22)

where a*~a* are constants to be determined.
Exact solution can be expanded into Taylor series
as:

u¥(§, 9, O=ar*+a*e+as*y+a*C
(&£—&o) . Pu*  (n—no) . %u*
2 o 2 ayz

+ € ZC") aagz =o)X —n) o

4

353

where 0=é&;, 70, {H=1
Defining the notation:

. ou* Ju* du*
| — ou” on- on”
|Du ]-max( & " 17y |7 |2 )
du ou ou |
]Dul—max(’ 5z | 5@7' E >
o%u* Q¥ u* |
24, — |
| D2ug¥| max( e |" o |” o |
2u* *u* 2u* >
d9&ay mag oLog
3u 2u %u
247 ) —
]D ul_ max( axg » ayz 1 azz »
0%u 0% 2u .)
axdy 0z0x

and using eqs. (3.22) and (3.23), the following
expressions are derived.

Iu*—W*lgclezu*l R

|D(a* —W*)| < G| D2us|
The inequality:

| D2 S Ci2- | D2t oo R (3.26)
yields the relation:

( S |D2u*|2d9)1/2
2

1/2
gam(Sg[Dm]zm) AT 3.27)

and
llo6* =T || zcas

_S_CzCShZ<Sg|D2u[2 dQ>I/2.1]|—1/2...(3‘28)
””*—W*nzzé(a)
12
§C3C5h2(89|D2ul2dQ> T2 (3.29)

Assuming the uniform refinement (i.e. | J|+0) and
using egs. (3.20) and (3.28), and eqgs. (3.21) and
(3.29) lead to the desired results egs. (3.14) and
(3.15) respectively. In almost the same manner,
eq. (3.16) can be shown by using the following
estimations instead of egs. (3.24) and (3.27).

|”*"W*I SCo|Duk| cooveerierreiininiiinin (3.30)
1/2
(S Du*]zdg>
Q
éc”‘(SQIDulde)uz LTI e (3.31)
Q.E.D.

4. CONVERGENCE ESTIMATES FOR
CONSISTENT COEFFICIENT SCHEME

The convergence estimates of the finite element
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Lax-Wendroff solution with the consistent coef-
ficient scheme can be obtained in the following
Theorem 1 and proven by using Lemma 3~7.

Lemma 3.
p
0= bate, byt 5( £ b2 ) Nulskeas D)

{bizyi, 2)=0 for z€ Y)Y ooeveeeen (4.2)

Proof: Eq. (4.1) is the simple consequence of
the following matrix eigenvalue problem in case
of p=3.

bt bibs bibs “

boby  bo? beby | — © =0

bsby  bsbs  bs? y2

For simple calculation, it is obvious that eigen-
values pi, p2, s of (4.3) are:
2, yz=0 and y3=b12+b22—|—b32 ~~~~~~ (44)

Thus, eq. (4.1) is derived. Eq. (4.2) is ebtained
by integrating the left side of eq. (4.2) by parts
considering the boundary conditions, values of

which are taken to be zero. Q.E.D.
Lemma 4.
There exists constant 1 such that
o ) PR (4.5)
for ¢ € S .
Proof: Because ¢€Sy, ¢ is the function ex-

pressed in the form:

where @, («=1,2, ---, M) is shape function and
¢a € RE. Eq. (4.6) and in the sequal summation
convention is used for indices «,8,---. Thus
the following expressions are obtained.

|[¢||12(g)=<@a, DpdPapp wovveermmemeenes @7

Nl kicar="Pu,is Pp,DPaps =vrrereeers 4.8
Consider Rayleigh quotient R:
3 ¢a, ] ] 31/ Pa
R= 1611 Zdca> . Pasis Ppi)pupp (4.9)

TNl T {Pas Padeups

Then, the following equation can be derived by
using the results obtained by Irons and Treharnet
[1971] and Fried [1973].

Wi %200l _ 2

P., Oidoeps ~ B2
where @) (a=1,2,3) is the shape function re-
stricted to a finite element £2?. Constant 2 can

R

IA

be in fact calculated by using the matrices A and

iC listed in the Appendinx. Q.E.D.

T

From the algorithm eq. (3.3) and the exact
solution eq. (2.12), the following lemma is ob-
tained.

Lemma 5.

For 2% ¢ Sy the following estimate is valid.
(12| 2500y — Hznlliz(a))

4
SAt|Cbizly, Y|+ B, by

R
+At‘<dt,z" +zn

(B gm, il gny|
+4t|<b; 2%, grti42my
+%|<bi2f‘“ bz 4 2m), 5| (4.11)
where
ZO=TWB e T ceniniiieniniininirieiininane (4.12)
BB g TV et (4.13)

in which w®=u(-; ndl), Wn is the projection of
u® on Sy, and W" is the approximate solution
by the finite element Lax-Wendroff method with
consistent coefficient scheme eq. (3.5).

Proof: From egs. (2.12) and (3.3), it holds that

1 1
= qyntl + —_—— —
U= W, V- —(un— W, V)
4t :
+—2—<bi(u."i— W.2), b5V,5)

=<_;7, V> ........................... (4.14)

for all VeSyc HYR). Inserting Wn+ and Wn,
respectively, into eq. (4.14), one obtains:

—417(u"+1 —WrH L et VS
_%<un_Wn+Wn__ wn, VS
b =W A W+ W), V)

+ 2 Bt W W), V.5

- <%, V> ........................... (4.15)

Introducing egs. (4.12) and (4.13) into eq. (4.15),
eq. (4.15) is rewritten in the following form.



100 M. KAWAHARA

%{z"“‘l—z’”, Vo+<bizm, V)

4t
+7<bi 28, bV,

€ 1 1
i — —— 51+ —— /3
_< t’ V> t(z” LVy+ t(z”,V}

At
—<bi 2, V>—7<b¢ £, bV,

Putting V=2z""14-2" in eq. (4.16) yields:
1
S U125 s = 12% 1 20c00)
+<biz,niy Z"’+1>—|—<b1;2,"1;, Z“)

At 4t
+7<bi 2%, bjz,njﬂ>+—2“_<bi 2%, bjzty

=5 g

y _i:'_t<§n+1’ Zntt +zn>

+—3t—<z», S (BB, P

—%@i En, b 2m) 5y e (4.17)

Using the results in Lemma 3 and eq. (4.17), eq.
(4.11) can be obtained. Q.E.D.

The estimated results of the right side of eq.
(4.11) are listed in the following two Lemmas.

Lemma 6.

There exist constants C; and C; such that

u™
At|(bezmy, 2| £ 482Cy
0t | mhear
FAECo|| 2| ycgy erreereeereessinns (4:18)
Proof: Using Lemma 3, and the wellknown in-
equality:
1 b2
ab<7[sa2+_s-] for >0 verrernnnn (4.19)

where @ and b are real numbers, the following
estimates are derived.

4t|<bi2%, 2|
=4t|biler — 27, 2|

2

1
= 1 rry —znt
SAECy|| A — )

PRI

+AtCu|[ 274 Tyc0y

Let PCYO, T: Sy] be the space of functions
which are continuous with piecewise continuous
derivatives between the points of the partition
P of [0, T, then PCYO, T : Su] is the subspace
of PCYO, T : Su] of functions which are piece-
wise linear. The space was originally introduced

by Wellford and Oden [1973]. Let the functions
W(t) and W(f) be respectively such that

W(t) € PCYO, T : Sul
W(ts)=W" for vit,eP
and
W(t) e PCYO, T : Sul
W(tn)=Wn
Then, the right side of eq. (4.20) can be estimated
in the following form by considering eq. (4.12).

(@) AW

for vineP

2

— A
4t CSH o o | aicor
+4tC|[ 27+ 200y
4]
TN (Faaal PP (4.21)

The explicit expression for f is not introduced
because it can only result in the higher order
terms in the error estimate. Considering this,
eq. (4.18) is derived from eq. (4.21). Q.E.D.

Lemma 7.

Taking di=A-h where 1 is the constant in Lem-
ma 4, then, there exist constants Ci~C, such
that

2
%(bi 2%, bizntty

SARCH| 22 Ry H A2 Col 27 | Rico
Z G (|2 Lacoy + Co* |2 || Ly

& l
At|<At,z —|—z”>

1
=Gt el zaca

FHCLN 2 | Facoy + 1127 2acor)--(4.23)
[(amHi 4 3m, gntt 4 goy|
G127 2y + 1127 2acon
Hl2 1 Loy + 2% W ycay) -oeeeee (4.24)
LH|CbiEn,, g2
= Codt|| 27| Fhcor
Gl 27 Lo+ 11271 3 000) - (4.25)

Atz ; >N 1
5 IKBiZ, bl 4-2%),5)]

=Cudt 2 Yoy

+Cadt(|| 24 ) heay+ 2% drhcay)
ZCadt? || 27 oy

+Co2¥(|| 2 | Lycar + 11 22 2acoy) -+(4.26)
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Proof: These inequalities are the simple con-
sequences of eq. (4.5) and eq. (4.19). Q.E.D.

Basing on the aforementioned Lemmas, the
convergence of the finite element Lax-Wendroff
solution with consistent coefficient scheme eq.
(3.5) can be concluded in the following theorem.

Theorem 1.

Taking 4i=2k and assuming uniform refine-
ment of 4, the norm of the difference between

W= determined by eq. (3.5) and #?=u(-, {») can
be estimated as follows.
WPt 1oy SCH vvvevrsemsaenieinnnns (4.27)

where C is a generic constant.

Proof: Inserting W» into the left hand side of
eq. (4.27), the norm is estimated in the form:
| W —us|| £yc0y
S W= zycay+ | WP — 02| 150
=1 2%|| 0y + 12| gcay wooeemeeeeeees (4.28)

Thus, it is enough to show that [[27]|,,c0y and
llz7|] 250y are estimated by the terms of 2. From
Lemma 2,

N22]|2,00) SOt -oveveemrereeeeenii (4.29)

1252y S Caltt -oevvveneennniniiines ' --(4.30)

12211 2oy < Coli? SRR ;11
and from Lemma 5, 6 and 7,

e O s S I

+Csliell Lacar + Clll 27 | 2acay+ 1871 2acor)
+ Cadt]| 27| iy + Cod2|| 2% kcor

are obtained. Introducing egs. (4.29)~(4.31) into
eq. (4.32) and rearranging the terms, one obtains:

|27 2500y S Call 27 | gy + Codit®
+ Croht+ Cuadt B2+ Crod? oooevevenns (4.33)

Considering 4t=41k then eq. (4.33) can be rewrit-
ten in the following form.

2+l Zacay SCall 2l 2ycay + Crah® oo (4.34)

Thus, recursive use of eq. (4.34) yields the im-
portant estimate as follows:

27|20y S Cralt wovveevememenemnncsnanns (4.35)

Introducing eq. (4.35) and eq. (4.29) into eq. (4.28)
and- rearranging the terms, the conclusion eq.
(4.27) can be obtained. Q.E.D.

5. CONVERGENCE ESTIMATES FOR
LUMPED COEFFICIENT SCHEME

The convergence estimates of the finite element
Lax-Wendroff solution with the lumped coeffici-
ents scheme are described in a similar manner
as in Section 4. Functions Ue Sy and U e Tu
are said to be associative if both functions have
the same value at each nodal point. The follow-
ing two Lemmas were originally introduced by
Fujii [1971].

Lemma 8.

There exists constant y such that

o1l Hocms

for ¢€Su and ¢ € Ty, where ¢ and ‘§ are as-
sociative.

NGl nacay weoeereeesersmesnnc (5.1)

Proof: Because ¢ €Sy and ¢ € Ty, these func-
tions are expressed in the form:
G0 o vvevrrienreie i (5.2)
&:6‘5 [ BRI TN LT TR O P RPOPPREPRTRR (5.3)

where @, and @, are shape functions on S and
Tu respectively and ¢, € Ry (a=1,2,--., M).
Thus, the following expressions are obtained.
N 61 2acar=4 P P> Papp -oeremereerers (5.4)
1611 53cay=4Pa,z» D i) Pagpp cenrereeneres (5.5)
Consider Rayleigh quotient R:

rolBllideoy _ Peis Pp,i) paps
91 2acar Pu, Ps)puppp
<Pt Phdpbeh 7
= L0, Pdehey T R
where &, and @, (a=1, 2, 3) are the shape func-

tions restricted to a finite element £27?. Constant
7 can be in fact determined by using matrices A

Q.E.D.

and —EC listed in the Appendix.

Lemma 9.

Let e Sy and U € Ty and assume both func-
tions are associative, then it holds that

Cill Ul 1ycoy ST W gy weeeeremreeemesees (5.7)
where C;, is a constant independent of the tri-

angulation.

Proof: Becauge UeSy and U € Ty are associa-
tive, the following can be obtained.
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~ » ~
NU~Ul1a0r=2Ce T A3 2 [ Uil 2aco
ey 7= :

=Csh?|| (7“2%(9) ............ (5.8)

Using Lemma 8, the right side of eq. (5.8) is
estimated to be:

10Tl ks SCallT N dacay oo (5.9)
Finally, the following estimate is derived.
IO 23> = 10 2acor+ 1 =Tl 2acoy

SA+HVCONT 2oy oo (5.10)
Q.E.D.

Lemma 10.

For zntte Ty and 2% e Sy, the following esti-
mate is valid.

Uz 2300y — 2% Zacar)
SKOmH — gyt Y| - |t 20— )

T8, 2|+ 4EKBizY, 2

48
+ 5 1B, Byl [Ke, 2] -(5.11)

where
EAH T A e (5.12)
A= WE— TP e (5.13)
FR g TP el (5.14)

in which U+ and W” are the projections of the
exact solution # and T at (#+1)4t and on Si
at ndt, respectively, and W»+t and W* are the
* solutions determined by the finite element Lax-
Wendroff method with lumped coefficient scheme
eq. (3.10).

Proof: Using eq. (2.12), the equality:
O, Vy—(Wnt, Vy+ Ao, V)
+£Zg(b¢W,"i, b;V,5>
=0+, Vi—<ur+, V>
+Hut =W, Vy— A bun,—Wn), V'

At n Trn A i
— b=, BV +<At, V>

is obtained for V ¢ Ty and Ve Sy. Introducing

the finite element solution eq. (3.12) into eq. (5.15),

employing eqgs. (5.12) and (5.14) and rearranging
terms, the following equation is derived.

(g, Vy— (2, Vy+dibiz, V)

a2
+—2—<bf 2%, bV,

=(0nH, TyS—Lur+, VS
+zn, Vy—dichizr, V)

Atz
— 5B, bV e VY e (5.16)

To put V and V in eq. (5.16) as

V304l i e (5.17)
T2 eeeeeiea e et ae b aas (5.18)
leads to:

2% Lacar— 11 2% || Zacay + 48KBi 2Ty, 27

At?

+7<bi 2%, byl

:<[7n+1_un+1, FAHY (gt g g

+<&", 2"y — Abi 2T, 2
Atz »n n n

—7<biz,i, bjamy+Le, 2y veene (5.19)

Thus, eq. (5.11) is obtained by estimating both

sides of eq. (5.19) and using Lemma 3.
Q.E.D.

The estimated results of the right side of eq.
(5.11) are listed in the following Lemma.

Lemma 11.

Taking 4fi=2i-h, where 1 is the constant in
Lemma 4, then, there exist constant C;~Ci; such
that

1<[7n+1_un’ 2”+1>|§C1||[7"+1—u”+1”ig(g) :
+C2”§n+1”iz(g) ..................... (5.20)
KM”'H, 2"‘“—2”)]
ZCsll a1 | g0y 124 =27 £y00y

SCufl 274 2gc0y + Csll | ooy «+o++(5.21)

[<Z", 2| S Cs 2% ]| Lycor +Crll 2% || 2acoy
Kb 27y, 2
SACs|| 7| irdcor HACo [| 27| F500y ++(5.23)
Vil _
7](1712,"1, bizrp|

= Cu || 2% || icay + Crudit|| 2 [ ilco
= Cio 4 || 2| oy + Cus 22| 2% 3000y

Proof:
sequences of eq. (4.5) and eq. (4.19).

These inequalities are the simple con-
Q.E.D.

On the basis of the aforementioned Lemmas, the
convergence of the finite element Lax-Wendroff
solution with lumped coefficient scheme eq. (3.10)
can be concluded in the following theorem.
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Theorem 2.

Taking 4t=2h and assuming uniform refine-
ment of %, the norm of the difference between
W determined by eq. (3.10) and u”=u(-, t») can
be estimated as follows.

NWr—un)| Ly <Ch

where C is a generic constant.

Proof: Inserting W* into the left hand side of
eq. (5.25), the norm is estimated in the form.

N W7 —u || Lycar
SHW—W zycoy + I W#— 07| 1y
=12 0y + 12 | gy woeveemeereeees (5.26)
Thus, it is enough to show that ||27]|,,c., is esti-
mated by the terms of 2. From Lemma 11, the
right side of eq. (5.11) can be estimated in the
following form employing new constants Ci~C;.
2"+ [ 2gcay = 112" 1 2aco>) _
SCT# —w |3, 00+ Call 274 | 2oy
+Csll 2% | Zocor + Call 2 || Zocas
+ 4t Cs|| 27| Hhcor + 48 Coll 27 || 2ac0

L CrdEs e (5,27)
The use of egs. (4.29), (4.31) and (3.16) yields:
1277|2500, S Coll 27 || Lycoy+ Coht - ooeve (5.28)

Because U7+ and W*+ are associative, 2! and
z"*1 are associative. Thus, egs. (5.7) and (5.28)
lead to: )

[ - T e (5.29)
w) O,
0.5 pemgazmz = - i LELEMENT
0 ]
i
; 4.
:
0 10 20
(unstable) @

10ELEMENT

1
]
4 :\‘
1 S
| — T
1

\. 8.
0o 10 20
\ [¢}]
1] (unstable)
L OF s St 20ELEMENT
A, 1
|\‘\
N
N e
N 1 * i
0 10 20

48]

The conclusion eq. (5.25) can be derived by intro-
ducing egs. (5.29) and (4.29) into eq. (5.26).
: Q.E.D.

6. NUMERICAL STUDIES

To illustrate the adaptability of the finite ele-
ment Lax-Wendroff miethod, numerical calcula-
tions were made for a simple well-known prob-
lem. It is the analysis of the behavior of one
dimensional wave propagation such that

du  Ou
ot Tom
%(0, £)=0.5
w(l, y=u(—1, )=0
where u(z, t) is the unknown function and domain
is taken as [—!/,/] with /=20. Numerical ex-
amples in this paper are restricted to the one
dimensional problem since convergence properties
can be clearly shown by using one dimensional
examples. It is a simple and straitforward task
to extend one dimensional algorithm to two or
three dimensional algorithm. The computation
was carried out by using the algorithm of the
finite element Lax-Wendroff method with the
lumped coefficient scheme for 4, 10, 20, 40 and
80 elements divisions and the results plotted in
the figures by solid lines. Dotted lines in the
figures show the exact solution. Figure 2 is an
illustration of the numerical results, taking space
mesh % hold constant and changing time mesh
4t as dt=h, 0.5k and 0.1h. The figure shows
the numerical results at £=10. The computed

0

(u)| wnstable)
d LOELEMENT

T e
P
.
: N hig s
0 10 20
p

[{'h}

0.5¢7 80 ELEMENT

0 10 20
)
—o— A%_‘ = 1
—.— AVh = 0.5
~e= M4 = 041
----  EXACT

t =10

Fig. 2 Numerical Resuults Mesh Hold.
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norm flu— W liz,0y, i.€., the norm of the differ-
ence between the exact solution and the finite
element approximate solution is illustrated in
Figure 3. From the figure 3, the difference be-
tween the exact solution and the finite element
approximate solution takes the minimum value
at 4t=0.8%. Therefore, it can be concluded that
the optimum value 7 in Theorem 2 is nearly 0.8.

t=10

llw-uIIL,u.
10
—o— L ELEMENT
~e= 10 4
m 20 4
—x~ 40 7
—— 80 4
1
———
o
B
r/“*'
0.1
1 10 .
At
e
Fig. 8 Difference Norm of Numerical Results
in Fig. 2.
t=10
At =04
()
0,5 peagesseomesessmpopooovssanay = = — — = —— 4 ELEMENT
—— 10 s
_— 20
—— 40 4
—— 80

20
<

[=]
w
-
o f-m———-
—
w

Fig. 4 Numerical Results Taking Time Mesh
Hold Constant.

Figures 4 and 5 show convergence properties as
space mesh % tends to approach zero while hold-
ing time mesh 4¢=0.1. The computed results at
t=10 are plotted as shown in figures 4 and 5.
Figures 6 and 7 show the convergence properties
as space mesh % tends to approach zero while
holding 4t=y-h, where 7 is taken as a constant.
The computed results at t=42 and 84 are plotted
as given in figures 6 and 7. The norm of the

M. KAWAHARA

difference between the exact and approximate
solution is illustrated in figure 7. From this
figure, the order of convergence is observed to
correspond to the order of %. These numerical
result prove the conclusion obtained theoretically
in Theorem 2.

Iw-u 6y
T=10 '
10| I
[ —— dt=10 :
—-—  dt=05 /
----- 4101 |
;
) /
-
[T ~t1\~;.\/
\x\\ \\i
e
10" . .
107 107 1
(%yh )

Fig. 5 The Difference Norm of Numerical
Results in Fig. 4.

7. CONCLUSIONS

This paper has presented two schemes of the
numerical method, their convergence proofs and
certain numerical illustrations. One of the
schemes is called the finite element Lax-Wendroff
method with the consistent coefficient scheme
and the other the finite element Lax-Wendroff
method with the lumped coefficient scheme. Con-
vergence proofs of both schemes were obtained
theoretically in Theorem 1 and Theorem 2. Nu-
merical illustrations were also discussed for the
case of one dimensional wave propagation prob-
lem. The methods employed the mesh points
involving both time and space. The basic idea
for discretization of time was originated from
Lax-Wendroff difference method and for discreti-
zation of space from finite element method.

The numerical algorithm of the lumped coef-
ficient scheme is a pure explicit scheme and,
therefore, need not to solve algebraic simultane-
ous equation system. As far as the author’s
numerical examples are concerned, their compu-
tation has brought stable solutions. By both
numerical and theoretical considerations, the
order of convergence has shown to be the order
of mesh parameter. For the choice of mesh
spacing, it is concluded that both time and space
mesh should be selected to be of equivalent
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> 1 16 ELEMENT
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.
0 42 84 126 168
() )
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L 1
~. ; 20 ELEMENT
;
, i
N :
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0 42 8% 26 68

(b}

M/ =05

40 ELEMENT
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1)

80 ELEMENT

)]

160 ELEMENT

0 42 84 126 168
M

200 ELEMENT

i

.

.

:
0 %2 84 % %8
(1)

Fig. 6 Numerical Results Taking 4{/4=0.5 Hold Constant.

Bl By
T=84
2
—e— 44, =04
—0- 4‘/h =0.6
——— At/h =0.8
: \ S
. \ —_
05
L .

10 10 )

Fig. 7 Difference Norm of Numerical Results
in Fig. 6.

order.

The numerical examples in this paper were
restricted to one dimensional problems because
of simplicity. However, the adaptability of
the conclusions in Theorem 1 and 2 is not
limited to one dimensional problems, but also
applicable to two and three dimensional problems.
This paper has discussed only the case of linear
problems. However, when taking the time mesh

to be reasonably small and assuming the be-
havior of the phenomena to have linear property
during the time increment, the nonlinear prob-
lems can be considered to be of piecewise linear
problems. Thus, the conclusions in this paper
are extended to apply to certain nonlinear prob-
lems such as tidal flow, flow in rivers and lakes
and in many other fields of engineering problems.
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APPENDIX

The matrices 4, 4, B and C are constructed

by

B and C over the whole field.

superposing the elementwise matrices A4, A,
In case of three

dimensional problem, the elementwise matrices
are expressed in the following form, where V is
the volume of an element and

L; =(zxy1—20yn) 2y m— 2my1)
+(2mYi—2KYm)

M;=(zxx1— 21%K) + (21T m— 2mL1)
+(2mdr— 28Tm)

N; =(yrtr—y126) +(Y1Zm— ym®1)
FHYm&x— YrLm)

in waich (&%, yx, 2x) k=1, 2, 3, 4 is the coordinate
of the nodal point k [figure 1].

2 1 1 1 1
vit 2 1 1 v
A =—_" ) A =
2001 1 2 1 4
1 1 1 2
biLi+b0: M+ 53Ny b Lo+boMy+0s N,
4 b1 Li+boMy+b3Nt byLo+0.My+b: N>
24| by L+ b My+beNy  byLo+boMy+b3N,
biLiA-boMi+bsNy by Lo+b,Mz 453N

1
o1Ls-+boMs+bsNs  byLs+b:Mu4-bsN,
biL3+boMy+bsNs  biLa+0:Mu+ BN,
byLa+-02Ms+bsNs  biLa+0:Mu4 55N,
b1Ls+boaMa+b3N3  biLy+0:.My+bs N,
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4

T2V

( 012L12 4022 M2+ b Ny?
+2b1b2L1M1 + 2b2b3M1N1 +2b3b1N1L1 »

SYM.

bi2Ly Ls+ b2 My Ms+bs2N N3
+&1b2( Ly M3+ My Ls)+bobs(M1 N3+ N1 Ms)
+b3by( N1 Ls+ N3 Ly)

b2 Ly Ls+ b2 MMy +bs2NoNs
+b1bo( Lo Ms~+ Mz Ls)+ bobs( M Ns + No M)
+b3bi(N2 L+ Ns L)

D12 Lg%+ b2 M52+ bs® Ny
+ 20153 Ls M+ 2b3sbs Ms N3+ 2b3b1 N3 Ls

b2LyLy+ b2 M M5+ b2 N N
+b1bo( LiMe+ My L2) 4 bsbs( M1 Ny + Ny M)
+bsbi(N1Le+ LiNy)

012112+ bo2 L%+ bs2Ly?
+ 2615 Ly M+ 2b3b3s Mz Ny + 2b3b1 No Lo

0:2L1 La4-b:2MiMy+bs2NiN,
+b1bo( LiMy+ LMy )+ bobs( MyN + N1My)
+bsbi(N1Ls+NyLy) ,

by Lo Ly+0:2MoMy+-b32N: N,
+b1bo( LoMy+ LiMs)+ bobs( Mz Ny+ N2 My)
+bsby(NoLy+NiyLs)

012 LsLy+4-b:2Ma M+ bs2 N3 Ny
+b1bo( LsMi+ LsMs)+ bobs( Mz Ny + N3 My)
+bsby(Ns L+ NyLs) ,

b2 Lt b M Dt N4
+2b1by Lo M+ 2025 My Ny +2bsbi Ny Ly
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