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ON THE BEHAVIOUR AND ULTIMATE STRENGTH OF
LONGITUDINALLY STIFFENED FLANGES OF
STEEL BOX GIRDERS

By Yoshikezu Yamapa* and Eiichi WATANABE**

1. INTRODUCTION

The ultimate strength of box girder is con-
trolled mainly by the strengths of the component
members, namely, flanges, webs, and bulkheads.
This paper presents an investigation on the load
carrying capacity of box girders, and concerns
itself particularly with the local strength of the
stiffened compression flanges. In spite of a great
number of researches on this particular subject,
not a few problems remain still unsatisfactorily
solved.

This program of investigation consists of ex-
perimental and theoretical studies performed
simultaneously and closely incorporated, in which
the behaviour and the ultimate strength of the
flange plates are inquired. The investigation
aims eventually at some possible representation
of the ultimate strength in terms of simple de-
sign variables.

The elastic buckling of stiffened plates under
uniaxial compression has been well studied since
Timoshenko® and Barbhé?»®, and has been almost
completely investigated by Kloppel, Sheer, and
Moller in the case of ribs without substantial
torsional rigidity.#»%

The ultimate strength of unstiffened plates has
been studied by von Karman®, Timoshenko?,
Yoshiki®, and Dwight®. Some of these results
have been taken into account in various specifi-
cations.!9%112,12  Furthermore, the effect of re-
sidual stress upon the ultimate strength of un-
stiffened plate has been studied so well as to be
considered in the design of steel bridges of
Japan.1®

The ultimate strength of stiffened plates, how-
ever, does not seem to have been studied as
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much as the former studies mentioned so far.
Among many researches on this subject, Skaloud
14,18 investigated the effect of initial curvature
on the post-critical strength and Maquoi'® per-
formed postbuckling analysis of orthotropic plates
by series expansion with special attention to the
initial deflection and compared the results with
those from Dubas’s tests!”; while Ito'®>, Ushio!®,
Fukumoto?®, and Hasegawa??> placed emphasis
on the effect of the residual stress in the linear
buckling analysis; on the other hand, Murray?®:
2 and Sherbourne®® investigated the failure
mechanisms of stiffened plates based on the rigid-
plastic theory.

In the United Kingdom, an extensive program
of study was conducted on this subject by Mer-
rison Committee? after some accidents of box
girder bridges and from the results, the Interim
Design Rules was made for the design and method
of erection of steel box girder bridges. Never-
theless, the interpretation of the Rules is rather
difficult and they seem to give quite conservative
results?®,

The present paper consists of three aspects:
The first aspect is devoted to the postbuckling
analysis of stiffened plates under uniaxial com-
pression with the extension to the case of elasto-
plastic stiffeners by finite element method. The
second aspect is devoted to the description of the
test program conducted at Kyoto University and
the results. The third aspect is devoted to the
presentation and comparison of available test re-
sults at several institutions besides at Kyoto Uni-
versity, from which an empirical formula for the
ultimate strength of stiffened piates is derived.

2. EXPERIMENTAL INVESTIGATION

(1) Scope of Study

The purpose of the experimental program is to
investigate the load carrying characteristics of
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box girders under pure bending, and at the same
time to investigate the local ultimate strength
and the postbuckling behavior of the stiffened
flanges under uniaxial compression. The cross
section of the box girder is thus so designed for
the failure to occur in the compression flange.
The number and the rigidity of the stiffeners
were changed stepwise to examine these particu-
lar effects on the ultimate strength.

(2) Description of Test

The tested specimen of a box girder consists
of three parts. As can be seen in Figs. 1 and 2,
the central portion is the test specimen which is
bolted to two end beams that were served for
repeated use. The cross section of the tested
box girder was actually an open section because
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of the easiness during the test and the fact that
no torsion is involved in the present test. The
stiffeners are made of small angles.

The testing machine (HPL-A 50/75) used is a
fatigue machine with the static capacity of 75
tons. The tested box girders were subjected to
two-point-loading which consisted of two hydraulic
jacks of the capacity of 30 tons each.

Photo 1 shows a test specimen, measurement
frame, and the hydraulic jacks.

As shown in Fig. 2, the steel plates used for
the flange plate were very thin and had the
thickness of 2.3 mm and those used for the stif-
feners had the thickness of 3.0 mm. The stand-
ard material testing was conducted using univer-
sal testing machine (REH-100TV) to obtain the
yielding strengths of those steels in accordance
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with JIS (Japanese Industrial Standards).

Just before the loading test, the initial deflec-
tion of the flange plate was measured by auto-
matic level, and during the test, the followings
were recorded: readings of the load cells, and
the testing machine, deflections of the flange
plates, strains of the webs and flange plates.

Photo 1 Loading Test of Box Girders.

16UE TESTING MAcHINE

=

HyprauLc Jack

DispLACEMENT
Loap CELL | 7| TRANSDUCERS

Loap CELL
T e e [ -f‘*
P "
STATIC STRAIN Dispracevent H{Dvamic STRAIN Avp,
Ave, TRANSDUCERS

Fig. 3 Instrumentation for Loading Test.

Among those, web strains were recorded to ob-
tain the total compressive force of flange as will
be described in the following section, and the
deflections of the flange plate were recorded to-
gether with the strains of the flange plate and
stiffeners mainly to examine the postbuckling
characteristics. In other words, the strain read-
ings of the flange plate and stiffeners were
analyzed mainly to obtain the change of lateral
distribution of both the in-plane and flexural
strains in the postbuckling range, and to obtain
the load-strain relationships with a view to find-
ing the initiation of plastification of the stiffened
plate. A schematic diagram is shown in Fig. 3
to indicate the measurement during the test;
while, the instrumentation on the specimen is
illustrated by Figs. A.1. and A.2. in the Appendix.

The positions of instrumentation were deter-
mined in accordance with the mesh points of
FEM analysis,

(3) Evaluation of Flange Force

The measurement of the flange force is one of
the most important aspects of the test. The
direct method would have required a great num-
ber of rosette gages mounted on both surfaces
of the flange, which was not actually employed
for various difficulties. In the present test an
indirect method was employed to get the flange
force: This method is based on the measure-
ment of the web strains that are more stable
than flange strains. Since the axial stress and
the bending stress exerted on the webs can be
thought to be linearly distributed across the
depth of the webs and are in so-called plane
stress condition, the total force carried by the
flange can be easily obtained from the equilibrium
condition.
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«—Fp

1«rﬁstxa.ml

(¥ T cages o

50 mm E*—Ll
Tem

z

Fig. 4 Axial Stress Distribution of Web.

Fig. 4 shows a portion of the cross section of
the box girder, assuming the linear stress distri-
bution, then the stress ¢ can be obtained in
terms of the bending moment carried by two
webs, M,,, and the axial compression Pp:

ek (L 1P

Iyyly—12,\ 2 2 Aw

where I, and I; denote the moments of inertia

with respect to z and y axis, respectively, and

Iys, Aw refer to the product of inertia of the

cross section, and the area of a web, respec-
tively.

Substituting specific values to z and y, |g:| and
0y can be expressed in terms of M, and Pr, and
conversely, M, and Pp can be expressed in the
following equations: (both in cm?)

Moy=294.28(|61| -+ 02) )
Py =—27.106|01| +30.860:

3. THEORETICAL INVESTIGATION

(1) Scope of Study

The purpose of the theoretical investigation is
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firstly to evaluate the linear buckling load, and
secondly to analyze the postbuckling behavior of
the stiffened plate while incorporating the results
with those from the experimental investigation
conducted simultaneously.

(2) Formulation of Problems by FEM2»

The element used herein is a rectangular ACM
element and can take into account the stiffeners
along four edges. It is assumed that the plate
itself and the stiffeners are made of homogeneous,
isotropic, and elastic materials at first; later on,
an extension is made to the case of elasto-plastic
stiffeners.

Fig. 5 Rectangular Element.

Fig. 5 shows the rectangular element. Let the
displacement components be expressed by u, v,
and w, associated with the rectangular coordi-
nates shown in the figure, then, these can be
expressed in terms of the nodal displacements,
u; and w; using dummy indices:

U=l ; V=oaxlpts; W=
(=1, +--,4; I=1,-..,12
where
ar=armnE™ ", Be=bkpEP 0L

(1sm, n<2; 1<p, g<4).

Table 1 Components of ag;.

NN =
B k= DD

— o o ol w
—_ o = o |

The values of a;; and by are given in Tables
1 and 2. Let the strain be represented by e,
and let the angle of rotation of the stiffener be
represented by ¢, then,

Table 2 Components of by;;.

k

r 1 2 3 4 5 6 7 8 g 10 11 12
11 1 0 0 0 0 0 0 0 0 0 0 0
1 2 0 1 0 0 0 0 0 0 0 0 0 0
13 -3 =2 0 0 0 0 0 0 0 3 —1 0
1 4 2 1 0 0 0 0 0 0 0 —2 1 0
2 1 0 0 -1 '} 0 0 0 0 0 0 0 0
22 -1 -1 1 1 1 0 —1 0 0 1 0 -1
2 3 3 2 0 —3 —2 o} 3 -1 0 -3 1 0
2 4 -2 ~1 0 2 1 0 -2 1 0 2 -1 0
3 1 -3 0 2 3 0 1 0 0 0 0 0 0
3 2 3 6 -2 -3 0 —1 3 0 1 -3 0 2
3 3 0 0 0 0 0 0 0 0 0 0 0 0
3 4 0 0 0 0 0 0 0 0 0 0 0 0
41 2 0 -1 -2 0 -1 0 0 0 0 0 0
4 2 =2 0 1 2 0 1 -2 0 —1 2 0 —1
4 3 0 0 0 0 0 0 0 0 0 0 0 0
4 4 0 0 0 0 0 0 0 0 0 0 0 0
1
& :Biﬁcuk+38i§cﬁwkwl+3i§cwk ;
()
d¢ d?
’d;":Bfkwlc ) "dg':Bzd’kwlc

where s represents distance along the stiffeners,
and B{;, BE, BAE, BY, and By, are referred
to as strain functions.

Now, at first, only the elastic behaviour is con-
sidered. Let the elastic constants be denoted by
D;;, then the following relations hold between
the stress and the strain:

Gi=Dijg;  (§: dummy) eeeeererenenes (5)
Then, the strain energy stored in the element,
U, can be given by

U:ZSVSEiaidsidIH—-;— {G]s< >

B

Hs[pg( o ddgzs:)d;l
+ECws< dﬂ“) }ds ..................... (6)

where GJs, ECys, and Ips refer to the torsional
rigidity, torsional bending rigidity, and the polar
moment of inertia of the stiffener, respectively.
The subscripts [ and E refer to the initial dis-
placement, and the elastic displacement, respec-
tively. The first integral is a volume integral
indicating the strain energy of the plate element,
and that of the stiffeners corresponding to the
axial, and bending deformations. Using the
generalized nodal displacements, §; (i=1, ---, 20),
the strain energy, U, can be rewritten in the
following form using dummy indices:
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. 8P . .
U=—(K#+S%)5:0; ; P 0= (KK * 4+ SE)g; ;
(])J ...... (7) 161(’ AR (9)

OV =(ut, - -+, us, Wiy + -+, Wis) AP; = (K }3** 4+ SE*) 40+ Rt + RS
The equations of equilibrium and their incre- where P; refer to the nodal forces, and K, KX*,
mental equations can also be given by the equa- Kx** and Sk, SE*, SE** refer to the element stiff-
tions: (-7 implies a derivative with respect to ness matrices of the plate itself and the stiffeners,
some parameter, say, the magnitude of load) respectively, being given by the following equa-

oU ions:
P=— A:(K,*;MLS )35 3 eerenneennenens (8) tions:
1 1 1

[K*]=[Ko]+‘3“[Kx] Tl [S*]=[Se]+ [Sx] SII]

1 1 1 1 10
(K= S (KI5 Kl 5 (SIS0 45 S0+ 5 5] o
(K] =Kol + [ K ] +[ Kl 5 [SHEk]=[So] + [SI]+[SH] .

in which
KE ‘ K&twh
[Ko] = —
szlc wlc ‘ z]+KwIclw/cwl
[ 0 K&wl
K] = — e | e 1)
KIiwk K{E %E+3Kﬁfzwk w¥
I 0 0
[Kul= 3 ]
oo S Kapww )
i S ‘ (SEE+SH)wi ]
[Se] = S
(SHEE+SHhwi ‘ SE+SEA(SHL 458 whwt |
[ 0 ! (SE2+S8)w |
[S]=! T el I ST L PP PP T PP PP PP (12)
L (SfE+ Jzk)wE | (STBSL) ui+3(SE5+ St wiwf ]
0 i 0 ]
[Si]= |
0 ‘ (kaz S{f) wiwf B
and,
_ 1 - _ _
Sia;k k+5m” : S{j@;cz:—é—(sigkrFSi@kzj‘*”Sid;m) ...................................................... (13)
- N
KF, :S DynBI,BE AV Sk =73, ESASS BELBZE ds
v I s
kg =\ DuiBIBLAV St =L Bk BABds
v .3
KrpE :SVDmnBvﬁiBfﬁ dv SEE = ZS] ESASSSBS’{Bf}E ds
K!}EFS DwnBEBBPE AV Sit=12 S EsAsBEPBEEds ) e (14)
st =3\ (GBAB+ BCuBAB) ds
Sty =2 S EspBiB¢BY, ds
S Js
Sf;m = %: SSESISPBm?jBl¢kB1¢L ds
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Furthermore, R¥ and RS can be given by the following equations:

i K,MAwJ duw ]
RPI=| - — — _ e
1 L Kh AwJAkaF 3 K”HAwJAwkww ]
- 4(&% I]k)AwJ » [ ST r P VO PRSP PSPPI (15)
RS=| — & P .
s (Slczj ij)d”lcdw] (Szmz"f”sum)AwJAchwzo |

where dw; and du; refer to the increment of the
out-of-plane and in-plane displacement, respec-
tively.

The element stiffnesses can be thus explicitly
obtained, and they can be easily combined to
get the global stiffnesses.

(3) Extension to the Case of Elasto-Plastic
Stiffeners

So far, the discussion has been confined to the
case of elastic stiffeners. However, as can be
seen from the following discussion, it can be ex-
tended to the inelastic case by considering the
tangent modulus of the stiffeners.

stiffener

Fig. 6 Plate with Stiffeners in Pair.

Fig. 6 shows a symmetrically spliced stiffener
of width & and depth 4. Suppose that it is sub-
jected to the axial force P and the bending mo-
ment M, then the following relationships hold
from the stress distribution assumed in Fig. 7:

4

M:%(ay Oa) <—~k>
sm:%—<k— ) >h/c
P =g’k L (16)

_ L /or 1
k= hk ( E 5m>+ 2

_“2(/0'Y_‘—0'a‘)

k2Eh

where em, £, and ¢q refer to the strain at Point
C, the curvature, and the average axial stress of
the stiffener, respectively. From those, the fol-
lowing relations can be obtained:

-

{ stress )

4’{‘4“‘ [ strain ]

Fig. 7 Stress, and Strain Distribution of

Lodx
1

Stiffener.
oM
M =0 bk 6k +3)
2 — g E=k - an
qky=k;  g(k)=k(4k?—6k+3)

The physical meaning of ¢(k) and (k) is ex-
plained in Fig. 8.

Fig. 8

Tangent Modulus for Axial and Flex-
ural Deformations.

Fig. 9 Plate with a Stiffener Fastened on

One Side.

If the stiffener is spliced on one side of the
plate as in Fig. 9, the following relations hold
similar to those in Egs. (16) and (17):
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b’ h? oy Using the tangent modulus functions ¢(k) and
Mp=M+——04 ; =———fh
s + 2 da; “=E i g(k), the incremental equations of equilibrium
oM EW h3 can be given by the equations:
P (k) Ely= ks -.-(18) _
O AP, = (KX q/ SEF** Y4854 RS +ovvvveeeees (20)
aag“ =g(k)E=LE where ¢’ implies g(k), g(k), or similar to those
& functions, and R;S is given by the equation:
q(k)=k ; Glk)y=Fk3 oo (19)
1 PB 14 rQr 1 ' QPB
B ?(qsijk+sijk)dwjdwk+q S du;+ EQ SER dwjwio
RS )= T :
3 1 1 _
(S#5-SE,) dur dw; Ty (@S5S {fi) dws dwiwo -+ ¢'SF% dujwio+— 7'S dw;
1 3 1
-}—E q'SEE dw; uko+’; @’ SEZ, dwjwro wio — s q'SHE dwjiw), wi
in which hinges about which the rigid planes rotate.
A P In case there is no stiffener or a single stif-
q,:,;q,,,d mt P Awm fener, the mechanism may be given by Fig. 10
tm e b @1) provided that the loaded edges are clamped and
7= g M+ g Lwm the unloaded edges are simply supported. A
0t ow.

(4) Linearization by Means of Perturbation
Method

Various numerical techniques have been deve-
loped to linearize problems of geometrically and
materially nonlinear problems. The classification
of the techniques is well summarized and ex-
plained in Stricklin’s paper?®, The selection of
the method for use will depend on the accuracy
required, the computer time allowed, the degree
of nonlinearity, and the ease with which re-
searchers are familiar.

In this paper, perturbation method is selected
considering the above-mentioned points?®, The
perturbation method consists in expanding certain
guantities such as the load, deflections, stiffnesses,
and strains in terms of some small appropriate
parameter into the layered form. Either the in-

-crement of the load, 4P;, or that of the deflec-
tion, 40;, of Eqg. (20) was selected to be the
perturbation parameter. However, the formula-
tion of the problem by means of the perturbation
technique may be wholly omitted herein due to
the limitation on the pages.

(5) Failure Mechanism of Buckled Flanges

The discussion herein is proceeded using so-
called rigid-plastic theory using Tresca’s yield
criterion®” and assuming the stiffened plate re-
maining plane prior to the attainment of the
ultimate load, and it is limited to the cases of
upto two stiffeners. The failure mechanism con-
sidered herein consists of flat planes and plastic

simple energy consideration will lead to the fol-
lowing load-deflection relationship, or in other
words, unloading curve:

Pw=2My(atan ¢-+20)+4Myps --+-vreeees (22)

where M, and Mys refer to the plastic moment
of the plate, and the stiffener, respectively.

e

Rib.

—
4
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Fig. 11 Yield Lines of Plate with Two Ribs.

In case of no or two stiffeners spaced at equal
intervals, the failure mechanism may be as given
by Fig. 11 assuming the same boundary condition
as before. Then the following relationship will
be obtained similar to Eq. (22).
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tan ¢ a 4
Pp——— i i
W T+ tan g bMp<3 b 2tan ¢+ fan ¢

Mps
1+tan ¢

4

+ sin 26 >+12

The effect of the axial compressive force, P, and
the crash load, Py, have been neglected in Eqgs.
(22) and (23). Although ‘the rigorous derivation
is difficult, the effect of the axial force may be
approximately considered in the above equations
if Mp and My are replaced respectively by
My[1—(P[Pp)*] and Mps[1—(P/Pp)].
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4. RESULTS AND DISCUSSIONS

(1) General Remarks

The dimensions, cross sectional and mechanical
properties of seven tested box girders are shown
in Table 3. Each of the tested box specimens
were bolted tightly along the webs and flange
to those of the end beams; while spot welding
was adopted for the connection of the webs to

Table 3(a) Dimensions, Cross Sectional and Mechanical Properties of Tested Box Specimens.

No. of Height of Magnitude of Length Depth Thickness Yielding Thickness Yielding
Test No. Stiffeners Stiffeners Initial Defl.  of Plate of Plate of Plate Stress of Stiff Stress
N & (mm) wm (mm) a (mm) b (mm) t (mm) oy (kg/cm?) b (mm) oys (kg/em?)
Case 0 0 — 3.9 ‘
Case 1 1 12 1.8
Case 2 1 15 1.3
Case 3 1 19 1.3 718 600 2.3 2442 3.0 3243
Case 4 2 14 1.8
Case 5 2 18 1.6
Case 6 2 23 3.7
Table 3(b) Non-dimensionalized Area and As shown in Table 3, the yielding strength of
Rigidities of A Stiffener. thin plates used for the flanges of thickness 2.3
mm averaged 2440 kg/cm?, which was much less
Test N As _El_ S (T . .
est No b =D o1+ \ a3 than that for the stiffeners of thickness 3.0 mm
Case 0 0 0 0 averaged 3 240 kg/cm?.
Case 1 0.063 3.99 0.0115 The observed initial deflections of the tested
Case 2 0.070 6.89 0.0127 flange plates are shown in Fig. 12. The maxi-
gazzi g'gég lg'gg g'gi;g mum values varied from 60% to 170% of the
a . . . .
Case § 0.076 11.10 0.0139 thickness of the plates.
Case 6 0.087 21.66 0.0158 The theoretical computation consists of the

Case 5 Case &

Case 4

Fig. 12 Observed Initial Deflections of Flange
Plates.

the flange, and of the stiffeners to the flange of
each specimen. Thus, it may be reasonable to
consider the loaded edges of the tested flange
plate clamped, and the unloaded- edges simply
supported.

eigen value analysis and nonlinear postbuckling
analysis. Perturbation method was exclusively
used for the linearization of the problem since

Table 4 Mesh and Degree of Freedom in
Finite Element Analysis.

BOUNDARY
CONDITICN

31

11

69

o)
e}
o)
T
=2

74
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it was found through preliminary computations,
the results by Newton-Raphson’s method did not
yield too much difference from those by pertur-
bation method of second order for appropriate
interval of incremental steps.

The mesh employed in FEM analysis is shown
in Table 4, and the corresponding degrees of
freedom are also shown herein. The size of the
mesh was determined in consideration of the

135

computer time required for fulfilment of each
nonlinear analysis. Furthermore, the actual ec-
centric stiffeners as in Fig. 9 were replaced by
the equivalent symmetrically placed ones having
the same flexural rigidity and cross-sectional area
as in Fig. 6 to avoid complexity in postbuckling
analysis; otherwise, more element stiffness ma-
trices in addition to those in Eq. (14) should have
been used.

Table 5 Buckling, Yielding, and Ultimate Loads in Tons.

MESH
SUPPORT
CONDITION
CASE 0 CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 SE 6
S8 P, 1.49(1.59) 3.37(3.50) 4.67(4.75) 6.12(6.51) 5.89(5.92) 9.86(9.90) 12.13
[ = p, 12.26 16.53 21.52
PESS 88 % ? B 12.30 15.99 21.97
1
s
S8 P, 2:09(2.25) 6.71 6.79 6.90 11.17 11.61 12,14
P, 4.09 7.27 8.81 9.62 11.98 16.63 16.63
rEc cE o Y
e P 5.62 7.27 9.47 9.62 12.32 16.63 22,04
ss
¢ e, 3.33(3.84) 8.77 8.88 9.02 18.33 19.55 20.93
S 10.02 10.86 10.07 14.16 16.00 16.67
pHc cEg P Y
£ =N 6.24 11.45 10.07
T
FXPERIMENTAL
ULTTMATE LOAD 6.1 7.7 8.3 9.7 12.3 16.9 19.8
(2) Buckling Loads and Ultimate Loads
The buckling, yielding, and ultimate loads ob- = = p-Neo ] =2 B N /]
tained by FEM analysis are shown in Table 5, & | | =
together with the ultimate loads obtained experi-
mentally. Buckling Loads obtained by Timo-
Case 4 Case 5

shenko’s series expansion™ are indicated by
figures in parenthesis. The yielding load refers
to the load at which the yielding initiates in the
stiffeners except for Case 0: In Case 0, it refers
to the load at which the yielding of unstiffened
plate initiates along the loaded edges.

i
3.

Case 0 Case 1

D

Case 2 Case 3

Case 6

Fig. 13 Sketches of Buckled Flanges.

The ultimate load refers to the load at which
either the yielding initiates in the plate element
or the deflection of the plate element increases
unlimitedly.

The failure mechanisms of the tested flanges
are sketched in Fig. 13 and photographed in
Photos 2, 3, and 4. Accordingly, the actual
plastic hinge lines can be seen well represented
by those illustrated in Figs. 10 and 11.

It has been shown that the flange compression,
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Photo 2 Failure of Flange Plate.

Photo 4 Failure of Flange Plate.

{ton)

Flange Copression Py

(6 4 8 12 16 20 24
Jadk Load Py

(ton)

Case 0.

Case 5.

Flange Eorce and Jack Load.

30
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Photo 3 Failure of Flange Plate. Case 1.

Py, can be obtained through Eq. (2); on the other
hand, however, it must also satisfy the moment
equilibrium (see Fig. 4). Let P/ be defined by

[ ‘,l J—

7 92.36
where Mr refers to the total bending moment
acting on the whole cross section; then, P} is
seen to satisfy the moment equilibrium.

Provided that the stresses |gi| and ¢: were ex-

actly correct, then, P} in Eq. (24) should be
equal to Py in Eq. (2). Actually, this is not the
case, and the error is always involved. Now let
loi] be thought to be correct and Ppm be such
that

(Mrp—DM) , woeeeereemeemseanns (245

1
me:_Z_(pF/_,,PF) , eeeeeeene e (25)

and let of be chosen instead of the measured
stress, 63, so that both Egs. (2) and (24) be
satisfied simultaneously by setting P;=P;, then,
the corresponding load, P}, may be thought very
close to the true load. Consequently, the error

(ton)

Ratio of the Bending Moment Carried by the
Compression Flange.
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involved in the evaluation of the flange force,
Pr, may be predicted by the following equation:

Prm— P

ET(PF)—q PFm

_ —0.539Pr—2.8|01] +8.850%

7 1.34P;—15.13|01| +8.602
where, Pr refers to the magnitude of jack load.
The error evaluated at the ultimate load in ac-
cordance with Eq. (26) is tabulated in Table 6
for each of the tested box specimens.

The relationship between the flange force and
the jack load obtained experimentally for each
of the tested girders is given in Fig. 14. More-
over, the ratio of the bending moment carried
by the compression flange to the total bending
moment exerted by jack loads is also given in
Fig. 15, for each of the tested girders.

, (26)

Table 6 Estimation of Error in Evaluation
of Ultimate Flange Compressive
Force for Tested Box Specimens.

Jack Flange Compressive Forces
Case Load —mM8MmmMmM8 Error
No. Py Pry  PFu Prum  PPu  E(Pra)
(ton)  (ton) (ton) (ton) (ton) (%)
1 8.78 8.00 7.25 7.63 7.48 +2.0
2 10.00 8.92 7.63 8.28 8.19 +1.0
3 10.62 10.01 9.46 9.74 10.04 —3.1
4 12.74 11.34 13.27 12.31 12.42 -0.9
5 16.19 16.46 17.26 16.86 16.96 —0.6
6 18.49 19.55

20.03 19.79 19.91 —0.6

(3) Load-Deflection Relationship

The deflections of flange plates were obtained
experimentally using electric displacement trans-
ducers by subtracting the displacement com-
ponent corresponding to the rigid body motion

P, ton Initial Deflection: Rigid \
v Plastic N
I I A A R A R I
-3 -
OFEX (yioy/a; y'=y/b) .\\
&r b @ } ‘\
.
a ~
B 6.1 ton
6 O P
e R <X J— P_(FEM)= 5.6 ton
4 - P
O‘/Of- =
4 o]
without AT
initial /O' exporiment
o]
o) ~ 2.
2 @erlection O Pox (PP Ztg?,
/ With inttial
{ deflection
A 1 n I w
0 1 2 3 4 5 t

Fig. 16 Load-Deflection Curve. Case 0.
(Unstiffened Plate).

Fig. 17 Load-Deflection Curve. Case 1.

Rigid Plastic Line, Eq. 22
Pu(FEM) = 3.5 ton
ex _
————— Pu = 8.3 ton
———————— P

- o FEM) = 6.8
T~ ton

¥
t

Fig. 18 Load-Deflection Curve. Case 2.

7%= 0.7 ton
u

Pu(l"l-M) = 9.6 ton

N4 B

\ \ Rigid Plastic Line
Q .22,

Pk

Fig. 19 Load-Deflection Curve. Case 3.
P, tm
(Rquﬁ Plastic Line
5 \ Bq. 23.
FEM Sol. \

BRI of

, ext ~
OWO_‘)‘ AAAAAAA Pu = Pu(F'EM) = 12.3 ton
@ ‘6 pcr {FIM) = 11.2 ton
Q’\vo
\‘

Experimental

Fig. 20

Load-Deflection Curve. Case 4.
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of the box girders. The load-deflection curves
of the tested flange plates obtained in this way
are shown in Figs. 16 through 22. The results
from the postbuckling analysis, and those from
the proposed failure mechanisms, Egs. (22) and
(23) are also plotted. In every case, the ultimate
load is seen to exceed the linear buckling load,
and most of the flange plates underwent the
typical postbuckling deflection that is character-
ized by the portion of load deflection curve con-
vex downward before the ultimate load is reach-
ed. Furthermore, every stiffened flange plate
demonstrated the existance of the collapse mecha-
nism by the portion of the load-deflection curve
convex downward after the ultimate load is
reached. It may be interesting to note that a
snap-through took place during the test of un-
stiffened plate. Apparently, in this case, the full
plastic capacity was not attained in the collapse.

5

LA
t

Fig. 21 Load-Deflection Curves. Case 5.
(stiffened plate with 2 stiffeners).
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On the other hand, as can be seen from Table 5,
the theory predicted the snap-through type of
failure of Case 1 and Case 3: In these cases,
the stiffened flange plates deflected unlimitedly
at the ultimate load.

(4) Linear and Deflectional

Modes

The linear buckling loads of the tested flange
plates have been presented in Table 5, and the
failure deflectional modes have been shown in
Fig. 13. In this section, the buckling load cor-
responding to the lowest symmetric mode is con-
sidered since the ultimate deflectional shape is
always symmetric for each of the tested flange
plates. Table 7 shows first few buckling loads
of the tested flange plates, and the lowest sym-
metric modes are indicated by underlines.

Buckling Leads

Table 7 First Few Buckling Loads of Tested
Flange Plates Obtained by FEM.

Case Buckling Loads in tons Exp. Ult.
No. Load in
1st 2nd 3rd 4th 5th 6th tons
0 2.09 2.8 4.81 592 6.04 8.6 6.14
1 6.71 6.8 7.0l 7.66 10.30 11.68 7.63
2 6.79 6.96 7.65 8.07 11.78 12.29 8.28
3 6.90 7.06 7.97 8.38 11.92 12.69 9.74
4 1117 12.92 14,03 16.82 19.41 27.44  12.31
5 11.61 13.42 14.61 18.08 23.41 31.60  16.86
6 12,14 13.92 15.28 19,04 24.29 34.34

19.79

It would be seen from this table that the ulti-
mate load can not necessarily be given by the
linear buckling load even if the appropriate mode
is taken.

(5) Distribution of Axial Strain of Flange

The axial strains of the tested flange plates
were measured using linear electric resistance
strain gages and were compared with those pre-
dicted by finite element analysis.

Figs. 23 through 28 show the average axial

Along the Center of Span

(x1075) x5
1 i i 1 9 1 i 1 1 1 n
o] p
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10 ﬂW“
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1 1 L

4 5

¥
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Fig. 22 Load-Deflection Curves. Case 6.

(stiffened plate with 2 stiffeners). Strain.

‘/\* 208
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Fig. 23 Axial
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Fig. 24(b) Axial

Case 0. Strain. Case 1. Strain. Case 2.
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—_—

Along the Center of Span

Along the Center of Span (xm‘ﬁ)

1 L L 1 L )

Fig. 25 Axial Strain.
Case 3.

Fig. 26 Axial Strain.
Case 4.

strain distribution of stiffened plates, and wher-
ever the stiffeners are located, the average is
taken over the whole cross section including the
stiffener. (circles represent the test results.)

5. EMPIRICAL FORMULA

(1) General Remarks

Many formulas have been proposed to repre-
sent explicitly the ultimate strength of compress-
ed unstiffened plates.®,8,9,10,115;12) For instance,
according to the AISC specifications!®, the non-
dimensionalized ultimate stress, or the ratio of
the effective width, can be given by the equation:

ow  be _ 1.69

oy b B

_b \/ a
B= t V'E

where b, b;, E, and ¢ refer respectively, the width
of the plate, effective width, elastic modulus, and
the thickness of the plate. Moreover, g4 and gy
refer to the ultimate stress and the yielding stress
of the unstiffened plate, respectively.

On the other hand, none of such simple for-
mulas have been proposed on the ultimate
strength of compressed stiffened plates. Thus,
in this paper, the explicit representation of the
ultimate strength of the stiffened plates is pro-
posed based on the results of tests conducted at
various institutions!?,193,20),21),31),32) hegides those
at Kyoto University. This formula is restricted
currently to the case of stiffened plates with
equal stiffeners without substantial torsional rigi-
dity; nevertheless, it might be easily extended
to other cases with appropriate modifications.

(2) Derivation of Formula

If the compressive force were carried by the
independent actions of the plate itself and the

Fig. 27 Axial Strain.

Pe = 5.9 ton
O]

F o100

20n

309

ann
500

600

Fig. 28 Axial Strain.

Case 5. Case 6.

stiffeners, the following equation would hold:

Ou 1+N% Py _ Ow OTys

oy - 1+N5 Py - gy + Oys 7sINo (28)
Fo— grs | 5_‘,42

= gy ’ - bt

where As and N refer to the cross sectional area
and the number of stiffeners; moreover, P, and
Py refer to the ultimate load and the full plastic
load of the stiffened plate; whereas gy, 0us, and
oys refer to the ultimate stress of the stiffened
plate, that of the stiffeners, and the yielding
stress of the stiffeners, respectively. The first
term in Eq. (28) represents the fraction of stress
carried by the unstiffened plate; whereas, the
second term represent the fraction of stress car-
ried by the stiffeners only.

In actual situation, however, this is not the
case. The stress carried by the plate portion is
enhanced by the stiffeners’ cross sectional area;
while the stress carried by the stiffeners depends
upon the stiffeners’ cross sectional area and the
flexural stiffness. Thus, the ultimate strength of
the stiffened plates under compression may be
represented by the following formula in consider-
ration of Eq. (27):

o - 1.69
OY_«/1+2N¢ B
_9 T < L<>
+1+¢ N},*, NT*:I (29)
El
¢=7sNG ; =D

where y and 7* refer to the relative flexural rigi-
dity of a stiffener, and the optimum relative
flexural rigidity of a stiffener according to DIN
41143, respectively. Furthermore,  EI; and D
refer to the flexural rigidity of a stiffener, and
the flexural stiffness of plate, respectively.

The results of tests are correlated with those
from Eq. (29) in Tables 8, 9, and 10.
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Table 8 Ultimate

Table 9 Ultimate

Table 10 Ultimate

Strength of
Stiffened Flange Plate
in Compression as Com-
pared with Experiment-
al Value.

Strength of
Stiffened Flange Plate
in Compression as Com-
pared with Experiment-
al Value.

Strength  of
Stiffened Flange Plate
in Compression as Com-
pared with Experiment-
al Value.
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5. CONCLUDING REMARKS

In this study, the behaviour and the load car-
rying capacity of steel box girders when the
failure takes place in the stiffened compression
flange are investigated both experimentally and
theoretically. The emphasis was placed on the
effects of the cross sectional area and the flexural
rigidity of longitudinal stiffeners, and the yield-
ing strengths of the plate and stiffeners upon the
ultimate load carrying capacity of stiffened plates.

The following concluding remarks may be made
from the foregoing discussions:

i) The ultimate load of stiffened plates under
uniaxial compression may be empirically express-
ed by Eq. (29), and good correlation is found be-
tween the results from the formula and those
from experiments.

ii) The load-deflection curve under the as-
sumption of rigid plasticity may be given by Egs.
(22) and (23), and is considered to be the asymp-
tote of the actual load-deflection curve of a stif-
fened plate.

iii) The ultimate load of stiffened plates is not
necessarily determined from the linear buckling
load.

iv) The ultimate load can be clearly found
experimentally from Fig. 14, and it can also be
found from Fig. 15 by taking the inflection point
of Myp/Mr— Py (ratio of bending moment carried
by the flange vs jack load) curve.

The following remarks may be added to the
above concluding remarks:

a. The effect of the residual stresses was not
investigated in the proposed theoretical formu-
lations; however, it may be easily considered
using tangent modulus. This effect nevertheless,
may be implicity considered in the formula of
Eq. (29).

b. The effect of the torsional rigidity was not
taken into account in the formula of Eq. (29);
however, it may be considered with slight modifi-
cation of the formula if sufficient number of tests
are conducted.
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APPENDIX

Instrumentation

Fig. A.1 Instrumentation. Case 1.

Fig. A.2 Instrumentation.

Cases 4, b, & 6.
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