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ELASTIC STABILITY OF CENTRALLY LOADED THIN-WALLED
MEMBERS WITH OPEN SECTIONS

By Masaharu Hirasuia* and Teruhiko Yopa™*

SYNOPSIS

The present study is concerned with theoretical
and numerical investigation of elastic stability of
a thin-walled straight column which is composed
of flat plates and subjected to uniform axial
compression that acts at simply supported ends.
An approach that differs slightly from existing
methods in computing critical loads is proposed
on the basis of Kirchhoff’s hypothesis for the
out-of-plane deformation of the plate and Euler-
Bernoulli’s hypothesis for its in-plane deforma-
tion.

In the theoretical part, a unified analysis in
determining critical stresses of arbitrary plate
assermblies is given, in which all possible inter-
actions between column and local buckling are
taken into account. Numerical results on tor-
sionally weak columns with channel-sections show
that the consideration of all possible interactions
results in significant changes in column buckling
stresses.

1. INTRODUCTION

When thin-walled elastic columns composed of
plates are subjected to uniform axial compres-
sion, either column or local buckling may take
place depending on their lengths and their cross-
sectional dimensions®.

In the theories®~® of column buckling, it is
assumed that cross-sectional shape is preserved.
As a result, three possible modes exist; (1)}
flexural buckling; (2) torsional buckling; (3)
torsion-flexural buckling®~11,

While in the usual treatments!®~'" of local
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buckling, the unloaded edges of a buckling plate
are considered to be either completely restrained
against translation and elastically restrained
against rotation by the adjacent plates, or being
completely free against translation and rotation.
In reality it is not the single plate which becomes
unstable, but the whole assembly of plates
reaches a state of instability characterized by
the beginning of distortion of the cross-section®.

The effects of profile deformation on overall
buckling have been considered by many investi-
gators!®~2%, In connection with the interaction
between column and local buckling, Bijlaard?
pointed out that the real buckling stress is
smaller than either column or local buckling
stress. According to his conclusions, the inter-
action is important only for the case of columns
with T-sections and angle sections, .in which
torsion-flexural buckling mode governs.

Pfliiger?® investigated the interaction on a
column with a channel section by reducing the
section to an equivalent structural model con-
sisting of three plates, and computed critical
loads by means of the Rayleigh-Ritz method.
However, the assumed shape functions in his
calculation excluded the possibility of transverse
bending of the flange as a plate.

Under a similar structural model, Ghobarah
and Tso?” determined critical loads with the aid
of transfer matrix method. But their approxi-
mate analysis did not include the possibility of
torsion-flexural buckling.

Wittrick and Williams?®> solved the same prob-
lem by treating the section as three flat plates
connected together, in which torsion-flexural type
of modes is taken into account. One puzzling
aspect of their results is that the modes are al-
ways either symmetrical or antisymmetrical;
whereas the real buckling mode can not neces-
sarily decompose into the two distinct modes.

The purpose of this paper is to present a
unified approach to elastic stability of a thin-
walled straight column subjected to uniform axial
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compression, in which all possible interactions
between modes are considered. The systematic
equilibrium method based on Kirchhoff’s hypo-
thesis and Euler-Bernoulli’'s hypothesis®, is appli-
cable to a buckling analysis for plate assemblies
with arbitrary cross-sections. The deformation
of every component plate is assumed to vary
sinusoidally in the longitudinal direction. How-
ever, the present analysis does not assume before-
hand the buckled pattern of cross-sections; thus
it leads to explicit exact expressions for coupled
buckling.

Although the present analysis is similar to that
of folded plate theories?80, it differs from
Bijlaard’s theory in that the concept of a ““spring
constant of restraining plate” is not used, and
also differs from the approximate methods such
as the finite strip methods®’:3® in that the exact
buckling displacement functions are introduced in
place of approximate ones. The analysis used
herein is exact, apart from the assumptions in-
herent in the small deformation theory, in the
sense that all possible interactions between modes
are considered.

A numerical approach is to arrange linear
homogeneous equations governing the buckling
stability, and to find critical stress by trial with
the condition that the determinant of coefficient
matrix becomes zero. The elements of the ma-
trix are transcendental functions of the longi-
tudinal half wave length. However, the compu-
tational procedure is not a hard task for a high
speed computer, as long as the column is made
up of a few plates. It has the advantage of us-
ing small matrices, thus requiring little time for
computer execution.

To illustrate application of the present analy-
sis, the coupled buckling stress for I-sectioned
columns and channel-sectioned columns is com-
pared to column buckling stress and local buckl-
ing stress, in which the former is calculated from
the assumption that the cross-section does not
distort, and the latter is computed from the as-
sumption that the corners of the section remain
straight lines. Comparisons are also made be-
tween the results of this paper and those of
existing literature®»?0,28),

2. THEORETICAL DEVELOPMENT

Consider a straight column of open cross-
section composed of m thin flat plates, as shown
in Fig. 1. Each plate is assumed to be of uni-
form thickness and the cross-section of the
column is supposed to be constant.

z[u;]

Fig. 1 Structural Model for Thin-wailed
Column. ‘

The local coordinate system (z, s, #) with origin
on the middle surface of each plate is used to
describe the location of a point, where the direc-
tion of z-axis coincides with that of the longi-
tudinal axis of the column, s is taken along the
middle line and # normal to it. The orientation
of the system follows the right hand rule. The
displacements of a point lying on the middle
surface of the i-th plate in the z, s, and # direc-
tions are denoted by #;, v;, and w;, respectively.

The assumptions are summarized as follows:

1) Material is homogeneous, isotropic and
linearly elastic.

2) Deformation in the buckled state is sup-
posed to be infinitesimally small; and no
postbuckling phenomena are considered.

3) Kirchhoff’s hypothesis®> is applicable to the
out-of-plane deformation of each plate.

4) Euler-Bernoulli’s hypothesis® is applicable
to the in-plane deformation of each plate.

5) Joints of plates are rigidly connected along
the edges.

(1) Equilibrium Equations

a) The Out-of-plane Equilibrium of Plates

Consider a thin flat plate which is loaded at
both ends by the uniformly distributed compres-
sive load 0;6¢® where §; is the thickness of the
i-th plate and ¢ is the normal stress in the
pre-critical state.

From Kirchhoff’'s hypothesis, the basic differ-
rential equations for the buckling deflections
wi(z, s) are written as®

D, /ﬁ4wi jﬁ”j_ Fwy \_*_540-(0),@2'“)2_0
LK ozt 02%0s? ast [T 022 ’
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Fig. 2 The i-th Plate subjected to Uniform
Axial Compression.

in which D;=Ed3;3/12(1— y?) is the flexural rigidity
of the i-th plate, E being the modulus of elastic-
ity and g being Poisson’s ratio.

b) The In-plane Equilibrium of Plates

Fig. 3 shows the positive directions of distri-
buted loads p;, transverse forces Si,i, Si,i—1,
distributed forces #;,:, #¢;,:-1, shearing forces
Vi, normal forces N; and moments M; in the
buckled state.
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Fig. 3 Force Diagram for an Elemental Strip
of the i-th Plate. g

The equilibrium equations in the s direction
are given by

AL
avi =—3S;,i—Si,i~1—Ds »

dz
(G=1,2,3, voe, ), seeerees (2)

in which, for the loading condition of a distri-
buted load in the buckled state?®,
dQI)@'

Pi=—0Pdi—

(Z.:ly 2; 37 ey, m) s
where A; is the cross-sectional area of the 7-th
plate. The equilibrium equations in the z direc-
tion are written as

dN;
dzz ={;i—tii-1

(i=1,2,3, -+, m) .

The equilibrium equations of distributed forces
along the edges are of the form

tivt,i=lti,1 » (i=1,2,3,---,m—1),

(at free edges). - -+ (5b)

t,0=tm,m=0,
Other equilibrium equations are obtained from
taking moments of all the forces acting on the
element, i.e.,

aM;
dz

4
:‘/i_(ti,i’{‘ti,i—l)‘a‘ ,
(i=1,2,3, ey ) o woeeeeeen (6)

According to Euler-Bernoulli’s hypothesis®’, the
relations between moments and curvatures are

where I; is the moment of inertia of the ¢-th
plate, and the reduced modulus of elasticity E,=
E/(1—p?) is used.

The curvatures d%;/dz? and the additional mean
strains g of plates in the buckled state are not
independent of each other, because where two
plates join, the strains in both plates must be
equal. Then, the compatibility conditions become

5i+”§'%:5i+1_vﬁ“_d‘;i ,
(G=1,2, coe, m—=1), oo (8)
in which a prime (') denotes differentiation with
respect to z, and & are positive in contraction.

The additional normal forces in the buckled

state are written as
N;=E,A;e; s (1:1, 2,3, --.,m)’ (9)

which must satisfy the following condition:
m
¥ N;=0.
7=1

Hence, in view of Egs. (2), (3), (6), and (7), the
in-plane equilibrium equations are expressed in
terms of the transverse forces Si,s, Si,i—1, the
distributed forces #;,:, #;,;—1, and the displace-
ments »;, i.e.,

Si,i+St,1-17= EcLiv!” + 0@ Ay
di .
M(té,i"{"tg,i—l)*z’" , ((=1,2,3, -+, m).
Note that Egs. (4), (5), (8), (9), and (10) are used

to express f;,; and #,;— in terms of »;. Finally,
the expressions (S:,:+Si,:—1) are related to the
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buckling displacements v; .

(2) Boundary Conditions at the Edges of Plates

a) Geometrical Boundary Conditions

Consider two adjacent plates (¢) and (i+1)
which meet along the i-th edge. In general,
another plate may also join at this edge as shown
in Fig. 4 by the dashed line.

j+1

Fig. 5 Continuity of Displacements at the
i-th Edge.

The continuity equations of displacements at
the i-th edge are represented by

Vi+1,i=04,5 COS a;—Wq,; SIN ag ,

(G=1,2,3, «++, ), e (12a)
Wi1,i= 04,4 SIN az-+w;,; COS a; ,
(=1,2,3, «-e,m), «oree- (12b)

where «; is the angle between the i-th plate and
the (i+1)-th plate.

Since the two plates are rigidly connected,
they rotate through the same angle at the i-th

edge. The continuity equations are of the form
OWit1yi  OWiyi . .
L e =1,2,8,---,m—1).
0s 0s @ )
.............................. (13)

In accordance with the assumption of infinite-
simal deformation, the change of distance be-
tween the two edges of the i-th plate in the
buckled state is negligible, so that

(i=1,2,3, -, m).

V1,i=Vi,i-1
b) Statical Boundary Conditions

With reference to Fig. 6, the equilibrium equa-
tions of moments are expressed by

Miv1,s+Mi =0, (1=1,2,3,---,m—1),

where M;,; and M;+,; are the bending moment
of the i-th plate at the i-th edge and that of the
(¢+1)-th plate at the i-th edge, respectively. Here
anticlockwise moments are considered positive.

25

Fig. 6 Rotations and Moments at the i-th

Edge.
n
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Fig. 7 Equilibrium of Forces at the i-th
Edge.
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Eqgs. (15) take the simple form at free edges, i.e.,
M1,0=1Wm,m=0 L ereerereresieearaaesarenanae (16)

The equilibrium equations of forces at the i-th
edge are represented by

Qi+1,i=S4,i sin ;4 Q1,5 COS o, ~rveeeees (172)
(=1,2,3,---,m—1),
Set1,i =i, 81N a;—S5,5 COS g 5 +oreeees (17b)

where @4,; and Qi+,; are the transverse shear
of the i-th plate at the i-th edge and that of the
(i+1)-th plate at the i-th edge, respectively. Egs.
(17) take the simple form at the free edges, i.e.,

Q1,0=0, S1,0=0; Qnmn=0, Smmn=0.

(3) Boundary Conditions at both Ends of
Column

When the ends z=0 and z=L are simply sup-
ported, the boundary conditions may be written
as follows:®

a) As a plate: wy(0, s)=wq(L, s)=0,
w0, s)=w"(L, s)=0,

(i=1,2,3, ---,m), ---(192)

b) As a beam: (0, s)=vi(L, 5)=0,

v(0, s)=v/(L, s)=0,
(i=1,2,3, «++,m) . ---(19b)
(4) General Solution and Stability Criterion

The buckling displacements »; and w; are as-
sumed in terms of the following product func-
tions which satisfy the boundary conditions (19a)
and (19b)

vi(z, )= Vi(s) sin %z: Visiniz, -+« (20a)
(z=1,2,3, -+, m),
wi(z, $)= Wiy(s) sin JZE z=W;sin iz, ---(20b)

where Vi(s) and Wi(s) are unknown functions of
s, and k is the number of half waves. Since
two adjacent plates are rigidly connected, i=Fk=/L
has to be the same for all plates?. Substitution
of Egs. (20b) into Egs. (1) and canceling siniz
lead to

" (05,
Wi—zzZWi—< AR

)_2—24> wWi=0,
T

((=1,2,3, vor, ), -eveeee (21)
where a dot () denotes differentiation with re-
spect to s. The general solutions for Egs. (20)
can be put in the following form:

Wi(s)=Ci1 cosh yis+ Ciz sinh 7:5+ Cis cos §iS

+Ciusinfis,  (1=1,2,3,---,m),

where y; and $; are

/ P —
A [OF
ri= Az-)-\/ g0,
! \/ D,
. o (23)

/ @5, .
8= —12+\/L ia.
' \/ D,

Here Ci; to Cis are constants.

In view of the in-plane equilibrium equations
and the boundary conditions at edges, all the
equations from (2) to (18) may reduce to 4m
homogeneous equations with respect to the buckl-
ing displacements w;. Hence the 4m equations
for Cit, Ciz, Cis, Cis can be obtained from using
Egs. (21).

The buckled form of column becomes possible
only if the 4m equations for Cii, Ciz Cis, Cis
vield solutions different from zero, which requires
that the determinant of the coefficient matrix of
these equations must vanish.

3. APPLICATION OF PROPOSED
METHOD

(1) I-section
Consider first the [-sectioned column as shown
in Fig. 8. The boundary conditions may be given
by the following equations where the superscript
0 of normal stress is omitted for the sake of
simplicity.
a) Continuity of displacements:
1) wi(z, 0)=ws(z, 0)= —wvs(z, d»/2) ,
i)  wi(z, O)y=ws(z, 0)= —vs(z, —de/2) ,

Wb L

/ {b) Dimension of I-Section

THTTHT

g

{a} Column under Compression

Fig. 8 Layout of Column with I-section.
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iii)  ws(z, dof2)=0v1(2,0)=10:(2, 0) ,
iv)  ws(z, —dof2)=v4(2, 0)=us(z, 0) ,
v) sz, dx/2)=vi(z, —dsf2) .

b) Continuity of rotational angles:

1) iz, 0)=1ws(z, 0)=10s(z, d2/2) ,

i) wlz, 0)=1s(z, 0)=1s(z, —ds/2) .
¢) Equilibrium of moments:

1) Mz, 0)— Mx(z, 0)— Ms(z, d2/2)=0 ,

i) Mz, 0)— Mz, 0)+ Ms(z, —d2/2}=0 .
d) Moments at the free edges:

Mi(z, di/2)=My(z, —di]2)= M4z, d./2)

=Ms(z, —d1/2)=0.

e) Transverse shears at the free edges:

Qi(z, di2)=Quz, —d1/2)=Q«z, di1/2)

=Qs(z, —dq/2)=0.

f) Equilibrium of transverse forces:

1)  EL-+Lw!""(z, 0)= Qu(z, d2/2)
—E(A+ Aoz, 0)d.2/16
—0{A+ A2 (2, 0) ,

i) E.Lws""(z, 0)

=@z, 0)— Q(2, 0)+ CQu(z, 0)— Qs(z, 0)
—E (A4 Ao+ As+ A (2, 0)d:2/4
—aAsvs(z, 0) ,
i)  Er(li+ )" (2, 0)= — Qs(2, —da/2)
~E(As+ As)pd"(z, 0)d1?/16
— (At As)vd"(2,0) .

(2) Channel-section

The final results of calculations for the section
shown in Fig. 9 are,

x n A
d. |
o s
52___- n | r (2) A%
d 0o ¥ ; (3) 1)
(C) n
sY
81 81 0

{a} Dimension of
Channel Section

(b} Local Coordinate
System

Fig. 9 Sketch of Channel-section showing
Notations.

1) Wid)+ Wx0)=0,
2) Wild)—Ws(0)=0,
3) Walds)—Ws(0)=0,
4y DWi(d)—p2 Wildy)]
— Dy Wy(0)— 72 Wa(0)]=0 ,

5)  Dil Wilds)— 2 Wilds)]
— D Wy(0)— p22 W(0)]=0 ,
6) Di[ Wi(0)— uiWi(0)]=0 ,
7} Dol Waldy)— pi2 Wa(ds)] =0 ,
8) Di[Wi(0)—(2—p)22W.(0)]=0,
9) Do Wildy)—(2— p)i2Wy(dy)] =0 ,

At Ay dito, 2]
2A1+A2 4 2 UA1Z Wz(o)

10) [EJ@%ETAI
— B A W)

A dd
Eedig g ay a M)

- D W(0) (2~ ) 2T (0)]=0 ,

2
11) [Erlgif +2E,4, %2 M crAzZz] Wildy)
dy
4
— Da[ W(0) — (2— )W 5(0)]
— Dy Wi(dy) —(2— p)22W1(d1)]=0 ,
A+ A d?
4 P et
12) [ETIJ +EAL
A1 d12

_ [ 2L
ETAl 2A1+A2 4 A Wz(o)

—E A At VVz(O)‘}*ErAl“d%dZ*/?4 We(dy)

}.4—0A1/12} Wilds)

+E AP e

— Do Wa(do) — (2— ) 22W o(d)] =0 .

4. NUMERICAL EVALUATION

(1) I-section

Figs. 10 (a), (b) show the results of calculation
of coupled buckling stresses g for the section
shown in Fig. 8. Here the critical stresses ocr
are plotted against the ratio a/d; of the half wave
length a to the web width dz, in which a=L/k

(k=1,2,3,-++). The flexural buckling stresses
or, and or, are, respectively, defined by*
E L2 E L
ory= A;}ZL . O_FI:__A%_ RETTTTIS (24)

where I, and [, are the moments of inertia about
the weak and strong axes, respectively, and A
is the total cross-sectional area. The torsional
buckling stress or is defined by®

_ Ema*+Ga
= -———————Ip
where E,I, is the warping rigidity, GJ4 being St.
Venant’s torsional rigidity and I, being the polar
moment of inertia with respect to the shear
center. The local buckling stress or is calcu-

o y e ST (25)
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Fig.10(a), (b) Relations between Critical Stress
oer and Half Wave Length—Web
Width Ratio a/d: (E=2.1x108
kg/cm?; £=0.3).

lated from the assumption that there is no out-
ward deflection at the junction of plates. It will
be observed that the effects of interaction be-
tween column and local buckling are pronounced
only for the case of columns with intermediate
half wave lengths. However, considering the
coupled buckling stresses g of columns with
one or more half waves, as indicated by the fine
dotted lines in Figs. 10, yields the conclusion
that the interaction between column and local
buckling is practically negligible for columns with
I-sections. This agrees with Bijlaard’s results®.

To illustrate the features of local buckling, the
results of computation are compared with those
of Bleich® and presented in Fig. 11, where the

[02]

’ N I

/ /Bleich3>
s \ - s

\ ~+This paper

a .
da T

Buckling stress coefficient, K
N
|
\
rd
: //

G 0.2 0.4 0.6 08 1.0

Value of di/2d;

Fig. 11 K—d;/2d, Relationship for ds/d:=50;
51/52:1.

buckling stress coefficient K is plotted against
the ratio di/2d;. The coefficient K is determined
from the formula®

.

12(1—u?) \ d2

The significant discrepancy will be found between
the exact results of this paper and the approxi-
mate ones of Bleich®. For a small ratio di/2ds,
the I-section is considered as a web plate with
stiffeners at both unloaded edges. As a particular
case, when di/2d; equals to zero, the section
reduces to a web plate only so that the value K
of the present analysis amounts to that of a
plate having free longitudinal edges. This case
corresponds to the flexural buckling (Euler buckl-
ing) of the plate. For a large ratio di/2d., the
value K of conventional local buckling analysis®
gives conservative value. It is to be inferred
from the fact that the conventional approximate
analyses®»1®) are based on the local buckling
analysis of a single plate with simulated bound-
ary conditions and an assumed half wave length
a. For example, Bleich® introduced a “‘coefficient
of restraint” at the unloaded edges, and sup-
posed the half wave length a=co for the buckl-
ing of outstanding flanges.

Gor

(2) Channel-section

The results of computation of coupled buckling
stresses o¢r are given as a set of curves in Figs.
12 (a), (b), (c). Here the torsion-flexural buckling
stress orr, is defined by®
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Fig. 12 (a), (b), (c) Relations between Critical
Stress ¢ and Half Wave Length—
Web Width Ratio a/de (E=2.1x108
kg/em?; ©=0.3).

OTF

_(0r,+00)=V(or,—0ry+405,01aAllp
= 2(1—aAllp) :

where @ is the distance from the centroid to the
shear center. It will be observed that, if one of
the three buckling stresses (¢r,, ¢rr,, ) is much
smaller than the others, the coupled buckling
stress oo is nearly equal to it. On the other
hand, if two or three of the three (oy,, orr., 0z)
are close to one another, the difference between
the coupled buckling stress o¢ and the smallest
one of the three becomes large. It must be re-
marked, however, that the consideration of all
possible interactions between modes results in
significant reduction in column buckling stresses
in which torsion-flexural buckling mode governs.
On the other hand, the interaction between
column and local buckling is pronounced for the
case of flexural buckling mode.

The values of buckling stress coefficient K are
plotted against the ratio di/d: in Figs. 13 (a), (b),
(c), for three values of a/d;. For comparison,
the corresponding curves are taken from Ref. 27)
and Ref. 28). Note that the number of half
waves k is shown at the top of Figs. 13. Dis-
crepancy between the exact results of this paper
and the approximate ones of Ghobarah and Tso??
is due to the fact that their analysis excludes
the possibility of torsion-flexural buckling. How-
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Fig. 13(a), (b), (c) K~—d:/d: Relationship for
dz/52:50; 51/5211

ever, the results of Wittrick and Williams?> show
excellent agreement with those of the present
analysis except for the case of @/dy=15. The
difference in the case of @/ds=15 arises from the
fact that the buckling modes of Wittrick and
Williams are always symmetrical or antisym-
metrical, while the buckling modes of the pre-
sent evaluation do not decompose into the two

distinct modes. This lack of symmetry yields
the conclusion that there exists an interaction
between the torsion-flexural buckling g7z, and
the flexural buckling op,, as long as all possible
interactions between column and local buckling
are considered in the analysis. The validity of
the present analysis is also confirmed by com-
parison with the approximate values of the finite
strip method (FSM)3", as shown in Fig. 13(c).
Note that Wittrick and Williams used nonlinear
theory of plane elasticity for the in-plane defor-
mation, however, the present analysis is based
on the linear beam theory.

5. CONCLUSIONS

The following conclusions may be drawn from

this study.

For theoretical study:

1) The present analysis based on Kirchhoff’'s
hypothesis and Euler-Bernoulli’s hypothesis
involves all possible interactions between
column and local buckling.

2) The unified approach is applicable to a
buckling analysis of arbitrary plate assem-
blies under compression.

. 3) The systematic derivation of basic equations
for a plate assembly is helpful in pointing
out wider theoretical application of the
theory of folded plates.

For numerical study:

4) Comparison between the analysis and the
numerical evaluation reveals that the unified
analysis is adequate to predict coupled
buckling stresses.

5) In the buckling of I-sectioned columns, all
possible interactions between column and
local buckling are negligible. Therefore,
only the smallest buckling stress is needed
for design purposes.

6) For the case of columns with channel-
sections, the consideration of all possible
interactions between modes results in sig-
nificant reduction in column buckling stress,
in which torsion-flexural buckling mode
governs. Thus sufficient stiffeners are re-
quired to increase the torsional rigidity.

7) Although the present stability matrix con-
tains transcendental functions, the compu-
tational procedure requires little time to
achieve satisfactory accuracy. The pro-
cedure is especially effective and advantage-
ous for a column consisting of a few plates.
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