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SOME CHARACTERISTICS OF RAMP CONTROL ON URBAN
EXPRESSWAY NETWORK

By Sho Mvyorin*, Hamao SaxkAmoro*™ and Shunsuke Iwamoro***

1. INTRODUCTION

Several methods of ramp  control have been
proposed and devoted to traffic control system
on urban expressway network. It is noticeable
that ramp control in normal conditions is differ-
ent in principle from that in emergency. In case
of emergency when any incident is detected on
expressway, the quickest possible recovery from,

if any, traffic congestion should be aimed at by -

the control. On the other hand, in normal con-
ditions that there exists no accidents on express-
way, we set our sights on preventing any traffic
stagnation due to excessive inflow of vehicles.

In general, ramp control in normal conditions
requires any forecasting of traffic conditions on
the whole network before and/or after its coming
into operation. Some forecasting techniques have
been developed. The following are some of them;
preparing contour maps of vehicle concentration,
speed, occupancy and so onP, simulation run®
or a direct forecasting of traffic volume in every
section on expressway?®.

In this paper we are concerned with LP (Linear
Programming) control®’, which is one of the ramp
control methods in normal conditions. The pre-
requisite to LP control is a direct forecasting
mentioned above. It has been shown that the
direct technique ensures a successful description
of traffic volume on urban expressway?.

2. SOME COMMENTS ON LP CONTROL

LP control is stated as follows®); determine a
vector U=(Uh, U, +++, U;) so as to maximize the
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function 3 U; or 3 U;l; subject to UQ+e=<C and
0ZULUY, where U and U? are vectors, whose
entries express acceptable and forecasted inflow
volume at entrance ramps, respectively, C is a
capacity vector, e is an error vector defined by
Y—UQ, where Y .is an actual flow, and is intro-
duced for eliminating prediction error®, @ is
called the unit inflow matrix and 7; is the aver-
age trip length of users from ramp i on express-
way network. The first inequality shows a con-
straint that traffic flow should not exceed the
capacity in any section on network. The reason
why we call this method LP control will be obvi-
ous from the foregoing.

In the foregoing, the objective function }; U
means the total acceptable number of vehicles
and Y] Uil; the total amount of trip length made
by them on expressway. Some of the operational
characteristics of LP control, using ), U; as the
objective function, were made clear by simula-
tion®, according to which LP control is of the
most successful applicability to steady flow, that
is, to the flow that makes no transiently sharp
change. At the same time, a problem was pointed
out that LP control would lead to keeping toll
gates on some specified ramps suppressed (closed)
for a long period.

A measure was proposed to meet the situation
by use of inequality U'SUZLU? instead of the
second one stated at the beginning. The vector
U? represents the lowest limit of inflow and all
of the factors are not zeros. It, however, is
noticeable that the countermeasure gives rise to
suplementary problem how U! is to be deter-
mined.

LP control as stated firstly is accompanied by
another problem of not a little importance that
the waiting line of vehicles grows on approach
to the ramp under steady suppression, and may
disturb traffic flow on street. This problem may
be relieved to some extent by the countermeasure
mentioned above, because inequality U'SULSU¢
has some effect of suppressing a rapid growth of
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waiting line even though it can not always pre-
vent the line from growing to be obstacles to the
street traffic. A more direct and effective meas-
ure to meet the case is to put some restraint on
waiting line so that its tail end should not reach
street. This is dealt with in the next section.
In the following sections we call the LP control
stated at the beginning the original LP control.

3. MODIFICATION OF LP CONTROL

By putting constraint upon queue length, the
original LP control is modified as follows;
Determine an inflow vector Uy=(U.,s, Usyss =+,

Ur,s) so as to maximize 3 Ui, or 3 Uiyl; subject

to ‘ '
UQ+e=C
Li+UL—U;=N

and 02U, L, +US

where U; : inflow vector between time # and

t+4t, )

Ly : queue length vector, whose factor
represents the number of vehicles
waliting at each ramp at time ¢,

Ui: arrival vector in which each entry
expresses the number of arrivals
forecasted to occur at each ramp in
interval 4 immediately after time #,

4t @ time interval while a control is in
operation,

N : allowable queue length vector, of
which each entry represents the
upper limit of the number of vehi-
cles waiting at each ramp,

and the other notations have the same meanings
as mentioned in the last section. The first and
the second inequalities may be called capacity
constraint and queue length constraints, respec-
tively. Considering that inflow vector U; is de-
termined every time interval 4f, it is easy to
understand that the queue length Lppu=Ls+
Ug—U, is sure to be kept less than or equal to
the upper limit N. This is the reason why the
second inequality be called queue length con-
straint. Vector NN has to be settled by taking
both the geometric rampway conditions and traffic
conditions on street into consideration.

The second and the last inequalities can be
combined into the form

Li+UA—-NSULSL+US
under nonnegative constraint 0<U;. This ex-

pression will be used later in section 5. It has
been shown that operating time interval 4f may

as well be settled at shortest 5 minutes®. In
the above description of modified LP control,
traffic capacity of booths is assumed to be infinite.

4. SOME CHARACTERISTICS OF MODI-
FIED LP CONTROL

Some considerations are taken into as to the
dynamic behaviors of modified LP control. For
simplicity, arrival vector U, is assumed to be
time invariant and every factor of allowable queue
length vector N to be large enough as compared
with the corresponding one of U,. Time ¢ is
represented discretely by 0,1,2,.--, each of
which is the time to perform a control operation.
Starting at {=0 with the initial condition L,=0
that there exists no waiting vehicle, control is
performed successively as follows (Fig. 1);

(DFor the first step inflow vector U, is given by
the original LP control, that is subject only to
UQ+e<C and 0=UwsUS4 (Lo=0) because
queue length constraint does not act in fact by
assumption that UgZ«N. We have a set of
entrance ramps under suppression, in which
queue length grows to be

Li=Li+UL—U=U;—-Us
at the end of control interval 4f. At this stage,
L, is small enough as compared with V.

(®Control is performed successively in the same

way as long as we have
L4 =L+UfsN, (Uf<LN by assumtion)

where L%, is an imaginary queue length vector
that will be attainable at ¢+1 if every arrival
in the interval is forced to wait, since queue
length constraint does not act in fact while we
have the above inequality. By assumption that
Ug is time invariant, waiting lines grow by
respective constant rates only in the fixed set
of entrance ramps under suppression.

®New inflow vector U, will be determined at
time ¢ when we have firstly an imaginary queue
length

Lt(tl—lth+UA%>N

at a single ramp or more included so far in
the fixed set of suppressed ramps, for, other-
wise, we should have an excess of queue length
over the allowable. It is obvious that we have
at time ¢ Up=Ln+ UA%—N and LH-1:LL+ Uﬁ—Ue
=N at those ramps where L%, >N. Inflow is
fixed hereafter equal to arrival vector U as
well as Lyy; to N at those ramps where L% >
N because of queue length constraint, which
means that those ramps are forced to allow just
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as large as the number of arrivals to flow in,
keeping queue length fixed to each upper limit.
Inversely, even at those ramps users can be
released out of the waiting lines into express-
way in time.

@Some time later, queue length on the other
ramps reach each upper limit, and the rest of
the ramps are newly placed under suppression
in order. In course of time we will come to
find no feasible inflow vector, which means
that we can not go forward with LP control
modified by queue length constraint.

Start at t=¢ with
initial condition;
queue length vector

L,=0

Assumption U,i« N

Imaginary queue length
no at time £+1

 S—
o= Lt UL = N

no Is there feasible solu-
yes

r—{tion of modified LP
control?

Inftow vector Uk determin-
ed by original LP control
without queue length con- E
straint

yes

Inflow vector Uk de-
termined by modified
LP control

Gueue length vector at e+3
= a4
Ltﬂ‘ Lt Uit —Us
control alternative

Fig. 1 Sequential step of Modified LP control.

The foregoing gives a simplified sequential ex-
pression of behaviors of the modified LP control.
This control will be accompanied with the follow-
ing problems;

(1) What is the desirable control alternative
when the modified LP control gives feasible
solution no longer.

(2) The merit of the modified LP control will
be lost in some parts as the ramps under
suppression continue to be large in number.
Especially in case that comparatively large
number of ramps are obliged to keep the
waiting line length fixed to each upper limit,
the optimization procedure may be little sig-
nificant. Such a case is shown in the earlier
part of the last step in the foregoing.

As for the first problem, there may be a scope
left for further study on the following alterna-
tives; a) the same control by relaxing capacity
constraint (by shifting capacity vector on the
right-hand side of capacity constraint) to such an
extent that no heavy traffic congestion is caused
on expressway, regardless of a little lowering of
level of service, b) uniform control®’, which gives
inflow vector U, by aUg where «a is a scalar

constant given by the ratio of an excess of traffic
volume over the capacity to the forecasted volume
in the section on expressway. Queue length con-
straint is naturally disregarded. It is pointed out
that uniform control operates with just a small
depreciation of utility of expressway when applied
to flow nearly saturated all over the network, c)
proportional control®, which suppresses those
entrance ramps alone that feed the bottleneck
sections with traffic. This control may as well
be adopted only when locally saturated and d)
control by sequential ramp closing®, which shuts
off the necessary and sufficient number of
entrance ramps upstream nearest to each
bottleneck section. Similarly to the second
alternative, queue length constraint is can-
celled in the last two.

The modified LP control will prove its
worth especially in the following case; a)
arrival - intensity at each entrance ramp is
rather light as compared with its waiting
capacity, b) heavy arrivals have, if any, a
rather short period of duration.

5. NUMERICAL EXAMPLE

Some characteristics of the modified LP
control are illustrated by numerical ex-
amples together with the original one. As
shown in Table 1, four cases are dealt with

by use of practical data. The area under study
is shown in Fig. 2 which is a part bound for
Osaka city along Osaka-lkeda Routes on the
Hanshin Expressway Network.

Table 1 A variety of LP control under study.

Case No. Objectiye function Conditions
max. the sum total of U.Q+esc
1 the number of vehicles .
<<
max % Uz ==L+ UG,
3
U:Q+esC
2 do. Li+US,—~NSU/SLy+ U5,
0l
max. the total amount v.Qtre<c
3 of vehicle-kilometers g
max 3 Ui 0L+ UG,
T
U,Q+escC
4 do. L+ U, —~ NS L+ UY,
Ol

(1) Input data

Unit inflow matrix @ is shown in Table 2 that
is stored in the traffic control system of Hanshin
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Table 2 Unit inflow matrix.

— T T
T Section number i i
T 103 105 107 109 111 |
Name of entrance ramp (No) '\’\\ i i
Tkeda D) 0.9999 0.9999 0.9781 0.9282 0.9282 0.9282 0.9282
Toyonaka-kita @ 0 0.9999 0.9884 0.9555 0.9555 0.9555 i 0.9555
Toyonaka-minami | o
(Shimada-guchi) (€} 0 0 0 0 0.9999 0.9999 0.9999
Toyonaka-minami
(Meishin-guchi) (€] 0 ' 0 0 0 | 0.9999 0.9999 0.9999
Kashima ) 0 0 0 0 0 0.9999 0.9999
Tsukamoto (&) 0 0 0 0 0 0 0.9999
- Table 3 Allowable queue length and average
Toyonaka-minami |
Meishin- trip length.
Tkeda Toyopaka-  Shimada-guchi, 9uchi \K:Shima Tsukama&o
kita
103 = o7 109y 111 113 117 Osak | i
= TN N\ < aty Wm' Lz s e s s
Toyonaka-  Toyonaka- Fukushima T :
minami minami Allowable queue \
* GSection 115 does not exist. l(f,’é%?c‘le]g)’ 406 | 66 | 130 ‘ %6 | 66 | 130
Fig. 2 Study area (Osaka-lTkeda route, bound R T "‘\
. e trip ;
for Osaka city). verage 16.22| 16.01 | 13.99 1 12.55| 12.03 | 10.82
0 ¢ Y) length /; (km) ‘ i

Expressway as of the end of December, 1973.

Allowable queue length is shown in Table 3,
which was given by actual surveying of the space
available on each rampway.

Average trip length of users from each entrance
ramp is also given in Table 3, which is also used
in the existing system.

The number of vehicle arrivals in the interval
4t was observed at each ramp under study be-
tween 7:00 am. and 10:00 am., March 13, 1973,
where 4t was set 5 minutes. Fig. 3 shows the
sequential data observed at Toyonaka-minami
(Meishin-guchi) entrance ramp, one of the big-
gest ramps on the whole network.

Traffic capacity is set as 2,160 vehicles per hour
per lane in every section under study, that is
changed into 180 vehicles per 5 minutes per lane.
By the way, we have two lanes in every study
section and so we have 360 vehicles per five
minutes as its capacity.

It is assumed that error vector € is equal to 0.

(2) Results of calculation

Of the cases shown in Table 1, sequential solu-
tions were obtained and compared each other as
well as queue length, waiting time, traffic volume
in a few sections and cumulative number of ve-
hicles accepted to flow in.

In practice, an occurrence of traffic congestion
due to an excessive inflows is observed in the
study sections (most likely in section 117) regu-

200

(vehicles/Snin. )

05 [

Arrivals

o 2 I 4
7:00 5:00 9:00 10:00 ¥

Fig. 3 The number of arrivals (Toyonaka-
minami, Meishin-guchi, ramp 4).

larly between 7:00 am. and 10:00 am. every
weekday, and 'so this numerical examples may
be regarded as nearly honest reproductions of
the practical behaviors which would be brought
about when each case of control was put into
practice.
(a) Sequential solutions
The sequential solutions mean the time sequence
of inflow vector. Fig. 4 shows schematically a
change in performances of each. case of control
in time and space. In Fig. 4, the meanings of
modes 1, 2 and 3 are as follows;
mode 1: Vehicle is allowed to flow in without
any suppression and further waiting.
This mode is expressed by

Uiy=Li+ Uy,
where suffix 7 is the ramp number.

By the way, it is obvious that in this
mode we have U;,;=U;%, at ramp ¢



mode 2:

mode 3:
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where no waiting line exists.
Either no vehicle is allowed to flow
in, or just an excess of the number
of waiting vehicles over queue length
limit is allowed to flow in. They
are expressed either by

Uit =0
or by

Ui,::Li,H‘ i,dAt““Ni (>0)
where suffix ¢ is the ramp number.
The other solutions. This mode is
expressed either by

0< Ui,n<Li,H‘ Uz,dm
or by

max (0, Ls,e+ Uy, — Vi)

< Ui 1< Lo+ Uy,

both of which mean that not all but
none of the inflow demand (Li:+

U;%,) are allowed to flow in in the
succeeding interval.

By the schematized presentation (Fig. 4) we

ramp
no.

U RwWN— RSN RI N YL ENYRE R

oo w N

udie)

ujre)

Fig.

4,0001

3,000}

Cumylative arrivals and inflow (vehicles)

Urban Expressway Network

tc) Gueuelength iy,

Cumulative number of arrivals coincides
with cumulative amount of inflow by
cases 1 and 3.
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-

Waiting time of vehicles
arrived at ¢
Ti(t)l= gk

) )

Queue length
Lo =udrt)-ug(t)

Time
5 Queue length and waiting time.

case no.

Waiting time {minutes)

o
3

2,000
have an outline of the control benavior in time ;
and space. 3
(b) Queue length and waiting time 1,000 ! 10
These two quantities are also measures of ef- Waiting time
fectiveness of ramp control as well as the objec- AR A X - s
tive functions. 0 et : 0
The quantities are evaluated with the cumula- 7:30 8:40 9:00 9:30
tive amount of arrivals and inflows, as shown in Fig. 6 Cumulative number of arrivals, cumu-
lative amount of inflow and wait-
7:00 10:00 &M ing time (Ikeda ramp, ramp 1).
€ase no.
1 Fig. 5.
Average number L; of waiting ve-
hicles at ramp ¢ is given by
NN Li= & LidF
I r
= 2 [wl®)—uw(}/F
where
Li;; : the number of vehicles
3 waiting at ramp ¢ at time £,
ui(t): the cumulative number of
arrivals before time ¢,
ui(t) : the cumulative amount of
. inflow before time ¢,
and
O ] ) F : whole study time (by de-
mode 1 node 2 mode 2 mode 3 screte expression).
(open) {closed) (lgw::el;mit (others) Average waiting time is given by
constraint)

Fig. 4 Schema of the level of control.

Ti= 3 Uk T (F)
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where
E
U;%.(f): the number of arrivals between # and
t--4t, that was represented by U,%, in 375 |
the earlier part,
T«(?) waiting time of vehicle arriving at time

t. We have Ty(f)=#—1¢, where ¥ is the
time of flow-in when we have u;(t')=
(). Note that # is uniquely deter-
mined because of the monotonic in-
crease in cumulative number.
Tables 4 and 5 show the average number of
waiting vehicles and the average waiting time,
respectively.

Table 4 Average number of waiting vehicles

(vehicles).
Ramp no.
1 2 3 4 5 6
Case no. 1
1 0 0 59.9]119.4 72.8 | 67.8
2 1.1 | 17.3 63.4[142,9 39.9 | 64.5
3 0 0 0 | 41.0)54.9 | 238.3
4 12.2 | 18.3 |40.0 | 137.6|22.8 | 91.9
Table 5 Average and the longest waiting time.
(minutes)
o Rampeo )L |
Case no, "
1 0 o | 11.58| 8.12)|10.87| 7.31
(33.0) |(26.0) |(36.0) |(21.00
9 0.66| 3.57|11.88| 9.00| 5.47| 5.76
(4.0) [(18.0) |(35.5) |(24.0) 1(15.0) |(18.0)
2.66| 7.05|22.90
3 0 b 00 a5T8 |2l0) (66.0)
1 0.66| 3.63! 8.07| 9.10| 5.50| 8.82
(4.0) [(18.0) 1(35.0) {(20.0) [(12.5) {(18.0)
:
{ ): the longest time

Fig. 6 is a numerical example,
corresponding to Fig. 5, that was
obtained at lkeda entrance ramp.

(c) The sum total of inflow
Fig. 7 shows a transition of the
total number of vehicles accepted to
flow in in each interval. Obviously
the sum total of the number ac-
cepted throughout the whole time
is equal to that of the arrivals in
every case because we have a
sharp decrease in arrival at most
entrance ramps after peak hour.
(d) Sequences of inflow and
queue length at Toyonaka-
minami entrance ramp

3007

{vehicles/5min.)

Inflow

100 -

IwamoTO

w

<

S
T

w

&

&
T

Sum of inflow {vehicles/Smin.})

case no.
00 i
LN 2
- 3
*—K 4

1 I ]
8:00 9:00 10:00 "

Fig. 7 Sequence of the sum total of inflow.

Fig. 8 shows a sequence of solutions (inflow)
of the four cases, and Fig. 9 that of the number
of waiting vehicles, both at Toyonaka-minami
(Meishin-guchi) entrance ramp. The reason why
this ramp is specified is that it seems to show
some typical behaviors of control.

(e) Sequence of traffic volume in sections on
expressway

They are shown in Figs. 10 and 11, which
specify section number 111 and 117 respectively.
Section 111 is picked out since it shows a wide
range of fluctuation in traffic volume, which is
one of the characteristics of each case of control.
Note that section 111 is located immediately
downstream to Toyonaka-minami (Meishin-guchi
and Shimada-guchi) entrance ramp that has the
largest number of vehicle arrivals of the ramps
under study. Section 117 is the most downstream
section in the study area, and it has during peak
hour a regular excess of traffic volume over the
capacity first of all sections under study. Fig. 11

case no.

o—o0 1
P —_}
*~—e 3
X &

7:60

Fig. 8 Inflow at Toyonaka-minami (Meishin-guchi, ramp 4).
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case no.
OO0 1

2
3
4

!

o Lo
7:30

A 4 1
8:00 9:00 10:00 &7

Fig. 9 The number of waiting vehicles (Toyonaka-minami,

Meishin-guchi, ramp 4).

400
<
g
2
5
o
= 300 F
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@
5 e
S
2
(8]
2
% 200
=
case no.
O 1
. Fa N N4
100 | 0 3
Y *—% 4
o] 1 1 ']
7:00 8:00 9:00 10:00 &
Fig. 10 Traffic volume in section 111.
S a00[
<
E
Ly
6
>
(5]
o
5
> 300}
L
1=
5
4 case no.
-:_i O 1
b
s 200} At 2
= Gl 3
X 4
100 F
L 1 J
7:00 8:00 9:00 10:00 am

Fig. 11 Traffic volume in section 117.

shows that section 117 will be one
of the bottlenecks throughout peak
hour unless any ramp control is
applied.

(3) Detailed examinations of the
four cases of control

In this sub-section, we have some
examinations of the performances
of the four control cases separately,
which will be summarized in the
last section.

Case 1

(a) Fluctuations in inflow in

space and time

Fig. 4 shows that entrance ramps
are grouped into two sets; a set
without suppression and another
under suppression. The former in-
cludes ramps 1 and 2 and the latter
ramps 3, 4, 5 and 6. Note that the
former is located upstream to the
latter and that the former’s unit
inflow factors to section 117 are
smaller than the latter’s (Table 2).
Throughout almost whole peak
hour we have a control pattern in
the second set that a single ramp
is under mode 3 while the other
ramps under mode 2.

It is remarkable that mode 3
shifts from one ramp to another
in the second set. Remember that
mode 3 is defined by 0< U< Ls,s
+ U;%,; in this case and that to the
second set should be assigned a
volume given by

2 Use=(Crr— 3 U;%,@4,117)/0.9999
i€sy

LESy
where
Ci17 @ traffic capacity in section
117, ;
Q:,117: unit inflow factor of ramp
i to section 117,

St : the first set of ramps,
which are under no sup-
pression,

then, between 7:35 and 9:00 ex-
cept a single interval, we find to
be 0< 3 Use<Lis+ U;%, at least

i€8y
for those ramps 7 of mode 3 in the
second set s; of ramps that are
under any suppression.

In this case, however, the opti-
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mum solution is essentially arbitrary in some
set of solutions, since the ramps in the second
set are all identical by unit inflow factor to sec-
tion 117 (Table 2). That is, the optimum solu-
tion is arbitrary under the constraints
z Ui,&=(C117—i:L,.: U,;%Qi,117)/0.9999
1

i€sy
02 Us,e=Lie+ Uiy,

The reason why a solution could be determined
really in our example is that we stop further
calculation when our algorithm has reached firstly
an optimum point in the set of solutions above
mentioned, and the reason why mode 3 shifts
one ramp after another in the set s, is that the
set s; fluctuates in arrival rate with time.

From viewpoint of level of service to users, it
will never be preferable that the openning and
shutting of the gates are repeated alternatively,
moreover such an alternative operation of gates
is troublesome in case of operation by manpower.
A transition of suppression from one ramp to
another, on the other hand, is desirable because
of the possibility that queue may not grow to
street.

(b) Queue length and waiting time

No waiting line exists in the set s;, while queue
grows in the set s, with fluctuation at each ramp
till 8:30 when the cumulative amount of inflow
is equal to the cumulative number of arrivals.

It is noticeable that we find a wide range of
fluctuation in queue length (that is because of
shifting of the modes).

Average waiting time in the sef s; is between
7 and 12 minutes and the longest happens to be
more than half an hour. The fluctuation in
waiting time is over so wide range that it will
be difficult for users to know in advance how
long they have to wait.

(c) Traffic flow in sections on expressway

In section 117 traffic flow is kept constantly
equal to the capacity by control, while section
111 has a very wide range of fluctuation accord-
ing to the opening and shutting of gates at ramps
immediately upstream to itself. A similar be-
havior was found in section 113.

(d) Sum total of the inflow volume

The behavior of fluctuation in the sum total
of inflow is nearly similar to that in the number
of arrivals at ramp 1. The reason is as follows;
throughout peak hour, no suppression is forced
in the set s; because we have in this example

4=Cur— 3 Uy, @i,1:>0
eSSy

which should be allocated to the set s;, and the

sum of inflow is given by
2 Ul +4=Curt+ T U8y {(1— Qi 1u1)
‘LESI

1E€8y

that is dependent largely upon U,%, because
U,%, is much larger than U,%, in our example.
Case 2

(a) Fluctuations in inflow in space and time

Every ramp is suppressed by either mode 2 or
3. Especially between 8:00 and 8:35 all ramps
but ramp 1 are filled up by waiting vehicles.
Note that in this case there will be no feasible
solution if ramp 1 happens to get filled up by
waiting vehicles as well. Our example, however,
happened to be equipped with enough waiting
space at ramp 1 (Table 3). From Fig. 1 it is
easy to understand that control modes in this
case are similar to those in case 1 in the earlier
and the later parts of peak period. Control
modes shift in this case as well in case 1 in both
parts of peak hour.

(b) Queue length and waiting time

Waiting line exists at every ramp (Table 4) and
so does waiting time. A longest waiting time is
shorter in this case than in case 1 as to ramp
4, 5 and 6, which should be because of queue
length constraint (Fig. 9 for example). Each
ramp, however, has in this case its proper fluc-
tuation in waiting time in the middle of peak
hour. The characteristic fluctuation is supposed -
to depend on [(allowable queue length)/(arrival
rate minus inflow rate)]. For example, the reason
why Toyonaka-minami (Shimada-guchi) entrance
ramp (ramp 3) has the longest waiting time of
all ramps is supposed -that allowable queue is
very long relative to the rate of arrival at ramp
3 while the one is not so long relative to the
rate at the other ramps.

(c) Traffic flow in sections on expressway

It is noticeable that section 111 shows a wide
range of fluctuation in traffic volume in the latter
half of peak hour. A similar aspect was seen in
section 113 immediately downstream to section
111.

(d) Sum total of the inflow volume
In the middle of peak period, the sum total
fluctuates in the near reverse of the fluctuation
in arrival rate over all the ramps but number 1.
The reason is as follows; in the middle period
queue length constraint forces ramp ¢ (i+1) to
flow in by each lowest limit
Uip=Li+U% . —Ni ,
= i,'lm
(.© Lit=N; in the middle period)
The rest of the capacity in section 117 is given

1=2,3,4,5,6
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8
by Cur— )] Ui%,@i,117, which is allocated to
i=2

ramp 1 by increased volume of
6
Ure=(Cun— 3 Uidae@ipur) / Quyie
The sum total of inflow volume is given by

6
é}z Ui+ Usye

3 6
=<};2 U;%,@1,117+Cur— Z]z UiflMQi,117>

X /Ql, 17

6
'=.<C117—(1—Q1, 117) 2;2 Uﬂﬂ)/Q;, 17,

1—-Q1, 117 >0
where notations are similar to the ones before
and €,11x may be put nearly equal to unity for
1=2,3,---,6.
Case 3

(a) Fluctuations in inflow in space and time

From Fig. 4 it seems that the objective func-
tion to maximize the total amount of vehicle-
kilometers has such an effect as to keep control
mode at each ramp stabilized in time. Needless
to say, objective function ZZ] Uily is easily
changed into a form 3 Xi;, by transformation

that shifts unit inflow matrix by I;, which is
similar to the form }; U;; in appearance.
[

It, however, should be empasized that we could
have a unique solution in this case (in case 4 as
well) because by transformation the unit inflow
factors turn out to be different from each other
in most practical cases. Obviously, the shorter
average trip length a ramp has, the more likely
the ramp is to be put into suppression. This is
similar to the performance of Sequential Ramp
Closing Control®, especially on the radial routes
on expressway network.

(b) Queue length and waiting time

From Table 4 Tsukamoto entrance ramp _(ramp
6) has the largest average number of waiting
vehicles, it has also the longest waiting time of
all ramps both on the average and in the long-
est. Having the shortest trip length of all ramps,
Tsukamoto ramp is most likely to be suppressed
by modes 2 and 3 stationarily for a long period.
Some of the users from Tsukamoto ramp happen
to wait for one hour or more.

(c¢) Traffic flow in sections on expréssway

Traffic flow in section 111 fluctuates not so
sharply as seen in cases 1 and 2, but undergoes
a rather stationary transition (Fig. 10).

(d) Sum total of the inflow volume

Transition of sum total is similar to that in
case 1 (Fig. 7).

Case 4

(a) Fluctuations in inflow in space and time

Control modes are distributed separatedly clear-
ly over space and time (Fig. 4). This state of
distribution seems to be a compound of those in
cases 2 and 3. Solutions are obtained uniquely
as in case 3.

(b) Queue length and waiting time

Tsukamoto ramp (ramp 6) has the shortest trip
length together with the largest unit inflow factor
of all rams, which is the reason why longest
duration of the waiting line is found at this ramp.
On the other hand, the longest waiting time is
yielded not at this ramp but at Toyonaka-minami
(Shimada-guchi, ramp 3), which is because of a
dependence of waiting time on both allowable
queue length and arrival rate as mentioned be-
fore.

(c¢) Traffic flow in sections on expressway

Traffic flow in section 111 fluctuates similarly
to case 2 in the former half of peak hour, but
it undergoes a transition between cases 2 and 3
in the latter half.

(d) Sum total of the inflow volume

Transition is nearly similar to in case 2 (Fig.
7.

(4) Further discussions

Some comments are given to objective function
in this sub-section.

As mentioned previously, we happen to have
an arbitrary solution in some set of solutions in
case of adopting the total acceptable number of
vehicles 3 U; (suffix ¢ is suppressed) as an ob-

7
jective function. In practical case an arbitrary
solution will take place most likely on radial
routes on expressway network, because unit in-
flow factors of some entrance ramps to a certain
section are likely identical to each other on radial
routes. In our example we realized an accidental
shifting of control modes due to an arbitrariness
of solution, which is likely to cause a sharp and
wide range of fluctuations both in traffic flow in
some sections on expressway and in level of
service at some entrance ramps. This perfor-
mance of control is never favorable to users.

A proposal has been made as follows?.

Combine objective function 3 U; with 3 Uil
in such a way that maximizes ’ *

Zi] Uil;

after having maximized
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3 U
subject to .
UQ+ex<C and 0ZUZL+4U¢
or to
UQ+exC,
and U=0

(suffix ¢ and 4¢ are neglected).

A rather detailed description is given in the
following.

Suppose that we have, after control that maxi-
mizes 3 U; subject to the first constraints, a set

L+U—N=U=ZL-+U*®

%
J of such sections on expressway that, putting
error term equal to zero,

Zif UiQij=Cs, jeJ={Jjujo =+ s ju}

where the set {U;} is the one of the solutions,
obtained not always uniquely by the first control.
A set sj is defined, if any, of two or more
entrance ramps with a non-zero unit inflow factor
Qj, that is,
Qi=Q; (x0), jeJ
i€ Sj= {Z'l, iz, ..

')inj} ’ %322

Concerning section j alone for the present, we
have a nonunique set {U;’}, i€s;, of solutions
under the following constraints

0O/ EL+UE, 1€s;5
Y Ui= Y Ui=4,/Q;

tesy tesj
4;=C;— 3 UiQu;
ieEsy

if and only if
0< ¥ Ui L (Ls+ UY)
iesj i€8F
Note that we have a unique set {U;}, {€sj, in
case either 3, U;=0 or X Ui= X (Li+ U?) since

1€8) tes; tEsj
we have a unique set {0} or {L;+U?}, f¢esj,
respectively.
Our problem is now to determine {U;’}, i€sjy,

so as to maximize the objective function 3 U;’l;
i€8)

subject to 0L U/ <L+ U¢, ies;, and ), U/=
tesy

37 U;. Obviously the unique solution is deter-
iesj

mined only by ranging (L;+ Ug), i€s; by trip
length when 73l (i3h).
Similarly considering all possible sections, we
have only to solve the problem that maximizes
n Uids
iengSj
under the following constraints

0L UYSLi+US,  i€;dss;

Z Ui,: Z Uizdj/Qj ’ .7 € ]

tesy 1e8;
in which
0< ¥ i< S (Le+ U2, je]
1€8; tes;

The unique solutions are obtained similarly
when I;=1I5 (i%h) as is the practical case.

[llustration is made by use of the foregoing
numerical example without queue length con-
straint, concerning section 117 alone.

Nearly between 7:30 and 9:30 we had a set {U}
of solutions that

2 UiQyy=C;, j=117
0< X Ui X (Le+ U
€8y i€3q

where s, is the set of rams 3, 4, 5 and 6 which
have an identical unit inflow factor to the sec-
tion 117, that is, Q;;=@;==0.9999 (f€s) (Table 2
and case 1 in Fig. 4).

Since Iz>1i>1:>1s, max }, Uy/l; under con-

. € 82
straints of

0ZU/SLi+UE, des
X U= 3 U;=4;/0.9999

T€sg T€S8y
45=Cs= 3 UiQuy,  j=117
=12

is given by
(1) G'=3U; and U/=U/=Us=0 when

tESg

3 UisLo+ Uf

i€8g

(2) Uy=Li+U#, U/=3 Ui—Uy and Us'=

i€sy

U’ =0 when Li+ Ug< X, Us< 2 (Li+ Uf)
i 3 4

1E8y =3,

(3) Ua':Ls‘}‘Usdy U4/:L4+U4{l: U= 2% Ui—

1€8y

(U +U) and Us’=0 when 3, (Li+ UZ)
i=3,4

5
< T Ui 3 (Lt US)
P2

1€y

and so on.

6. CONCLUSIONS

Four cases of ramp control methods were ex-

amined and compared each other by numerical
example. Some characteristics of their dynamic
behaviors are summarized in the following.
(1) Case 4 is the most desirable control of the
four cases since it may cause the least fluctu-
ations both in traffic flow in the sections immedi-
ately downstream to some controlled entrance
ramps and in the waiting line length at some
controlled ramps, and since it would also give
the least fluctuation in the level of service to
users especially at big entrance ramp.
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(2) Objective function Y Usl; has such an effect
to give a higher priority of inflow to the ramp
of longer trip length. Accordingly Case 3 would
give a set of controlled ramps similar to sequen-
tial ramp closing control, especially on a radial
route, since both would suppress those ramps
located nearer upstream to the section where
traffic volume is forecasted to exceed the capa-
city. A nearly similar behavior takes place in
case 1 as well.

(3) In practice the original control, that maxi-
mizes the total acceptable number of vehicles,
does not always put a fixed set of ramps steadily
under certain modes of control. Both a fluctu-
ation in the rate of arrival at each ramp and
the characteristics of our algorithm used for
calculation are the sources of transition from a
certain set to another.

(4) LP control with objective function Y] Usl;
is sure to settle a unique set of solutions since
average trip length are seldom identical to each
other.

(5) LP coatrol modified by queue length con-
straint can achieve not only optimum operation
of urban expressway network but also undisturb-
ed traffic flow on the street near the entrance to
expressway. We, however, have to pay attention
to the fact that the modified LP control is de-
preciated in the cost-performance as compared
with the original one, since the calculating cost
of the modified control increases rapidly with an
increase in the number of queue constraints
added, while the performance is decreased by an
increase in the number of entrance ramps where
queue length reaches the upper limit.

(6) From the fact that it took a little less than
one minute to solve our case study, the modified
LP control is supposed to be applicable to an
on-line-real-time control system of a rather small
network (for example, a single radial way of
usual length). In applying to a larger network
it will be required to devide the network into
some appropriate sub-networks, which is a prob-
lem left for further study.

(7) A ramp control with waiting time constraint
is worth studying since the most users of urban
expressway are sensitive to the whole travelling
time on expressway, especially on toll express-
way.
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