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FINITE ELEMENT ANALYSIS OF STEADY FLOW OF VISCOUS
FLUID USING STREAM FUNCTION

By Mutsuto KawagArRA* and Takashi OkamMoTo™™*

1. INTRODUCTION

A number of finite element methods are avail-
able in the field of incompressible viscous fluid flow
with nonlinear convection term. Huebner? has
discussed a wide and useful review of the finite
element anylyses. These investigations can be
classified into three categories. The first category
includes the finite element analyses which em-
ploy the values of the velocity and pressure at
nodal points in the flow field as unknown vari-
ables. Oden and Wellford?, Taylor and Hood®:
4, Argyris and Mareczek®, Gartling and Becker®,
Nickel, Tanner and Caswell?”, Kawahara, et al.®~
10 and Usuki and Kudo!!> presented finite ele-
ment method using polynomial interpolation func-
tions for velocity and pressure, respectively. The
selections of interpolation functions have been
discussed in 3), 4), 6), etc., free surface problem
has been treated in 7) and thermally coupled
problems are found in 10). These methods are
wholly called velocity pressure method in this
paper.

The second category is the group of finite ele-
ment methods employing stream function and
vorticity function. The basic equations of fluid
flow can be described by the second order non-
linear simultaneous differential equation taking
stream and vorticity functions as new unknown
variables. The investigations by Tong!'®, Baker
13)~15), Cheng'® and Bratanow, et. al.!”~1 belong
to this second category. However, these methods
seem to be rather unsuitable to describe vorticity
boundary conditions. Taylor and Hood® present-
ed a useful method to consider vorticity condi-
tions. Eliminating vorticity function from the
aforementioned basic differential equations, the
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governing equations are transformed into the
fourth order nonlinear differential equation where
stream function being the only unknown vari-
able. This approach is called the stream func-
tion method and comes under the third category.
Olson?9:2 Lieber, et al.??) presented finite element
analyses, which are classified into this stream
function method. Among these papers, boundary
conditions for pressure and shearing stress are
discussed as the natural boundary conditions of
the basic variational equation. The formulation
by Wu®® is noteworthy as it discusses the treat-
ment of the boundary conditions of infinite re-
gions. In the investigation by Carlo and Piva?®,
the mixed finite element method is used to solve
thermal convection problem.

In this paper, a two dimensional finite element
method will be presented based on the stream
function method. Contrary to the conventional
stream function method, the formulation in this
paper will consider the conditions for surface
force and momentum flux on the boundary con-
ditions. To cover these two conditions, two dif-
ferent types of variational equations derived by
multiplying both sides of the basic equation by
weighting function and integrating over the whole
field will be introduced. Introducing definition
equation of stream function into these variational
equations, the equations can be rewritten in
terms of stream function. Employing the inter-
polation relation of stream function and the vari-
ational equations obtained above, finite element
governing equation can be derived. For inter-
polation function, Olson?®:2 has used the com-
plete polynomials of the fifth degree considering
the analogy of plate bending problems. Lieber,
et al.?® has employed the polynomials of the
third degree and also referred to the polynomials
of the second degree originally introduced by
Morely?®». In this paper, to save computational
time and to preserve conforming condition, in-
complete polynomials of the third degree will be
applied. This interpolation function was intro-
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duced by Zienkiewicz?® and discussed by Zlamal?®.
To solve discretized equations, Newton-Raphson
method will be employed. Several sample prob-
lems and comparisons with the results obtained
by finite difference method will be shown to il-
lustrate the validity of the formulation.

2. BASIC EQUATIONS

Throughout this paper, equations are described
by using inditial notation and wusual summation
convention with repeated indices. The analysis
is restricted to two dimensional steady flow of
incompressible viscous fluid. Spatial description
with rectangular coordinate system z; (i=1, 2) is
employed. Notation ( ),; means partial differ-
rentiation with respect to x;. With the use of
conservation of linear momentum, the equation
of motion is expressed as:

pujui,j—nj,jzpfi ........................... 2.1)

where #;, and f'i mean velocity and body force,
and p is density. In case of incompressible vis-
cous fluid, the constitutive equation for stress 7;;
is written as follows employing Kronecker delta
fuction ;5.

TLJ:—pEU-FZ‘ud” ........................... (2'2)

where p denotes pressure and g is viscosity coef-
ficient. Deformation rate d;; is derived from
velocity as:

1
dij=~2—(ui,j-l—uj,i) ........................... (2.3)

The equation of continuity of incompressible fluid
is obtained in the following form.

Bi,i =20 ereneenren e (2.4)
Introducing equations (2.2) and (2.3) into equation

(2.1) and using (2.4), the wellknown Navier-Stokes
equation can be derived:

‘OMjMi,j-f*p,i—#ui,jj:Pf-i .................. (2.5)
Let ¢ be the stream function, i.e.,
WG g, jorereereenrnenesnannannasrane e (2.6)

where ¢;; means Edington’s epsilon function.
Substituting equation (2.6) into equation (2.5) and

eliminating pressure p, the governing equation -

is written in the following form.

U, it f— B3P i Br g =0 wroverimreniiiens 2.7

where v is dynamic viscosity p/p. In equation
(2.7), body force pfq; has been neglected. The
conventional finite element analyses'®~2> have
used equation (2.7) as the basic equation. In-
stead, the present paper uses the variational
equations described in section 3 as the basic

equations.

Regarding boundary condition, the velocity is
assumed to be prescribed on boundary Si, i.e.,
ON S, crrreeerereeeenriemnninin (2.8)

surface force S; to be on boundary S:, i.e.,

=y

Si=tim;=5:
and momentum flux €; to be on boundary S;,
i.e.,

Qiz(—pumj+fij)nj:(§i on Sz (2.10)
where superposed " means prescribed values on
the boundary and #; is the components of the
unit normals to the boundary surface. The pre-
sent paper discusses the following two cases.
Case I assumes:

SiUSH=S e (2.11)

SiNSem=h  cerrreerrimmee (2.12)
and case Il assumes:

S1USS=S " crerereerrrriiniirnri e (2.13

SiNS:=¢
in which S means the whole boundary surface
of the flow field to be analyzed and ¢ is the null
set.

3. VARIATIONAL EQUATIONS

To apply the finite element method, variational
equations are required based on the conventional
discretization procedure called Galerkin method.
Consider the variational equation in case I, i.e.,
corresponding equations (2.1), (2.2) and (2.3) with
boundary conditions (2.8) and (2.9). Let u* be
the weighting function, the value of which is
arbitrary except on boundary S:, where it takes
the value zero. Multiplying both sides of equa-
tion (2.1) by wu*, integrating over the whole
volume V and using Green’s theorem, then,

KV (ou*usus, ;) dV+ SV (i i) dV

= g (P”l*fAz) av+ g (ui*rim5)dS ---(3.1)
Iy s,

Introducing equations (2.2) and (2.3) into equa-
tion (3.1) and rearranging it,

S (pui*uui,5)dV — S (uitp)dV
v 14

|, sz av 4| wusm0av=r

- where

ﬁ=S (pui*fz)dVJrS (*30)dS - (3.3)
v N
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In the variational equation (3.2), the surface force
condition on boundary S; is considered as.the
natural boundary condition. Using stream func-
tion equation (2.6), variational equation (3.2) can
be reformulated in the following form.

SV oeinejieim( P x* P mi)dV
+ SV ek, ¥ a5 dV

—I—Svyemsﬂ(gb,fjgﬁ,u)dV:f ............ (3.4)

This equation is called variational equation I in
this paper.

On the other hand, variational equation for
corresponding equations (2.1), (2.2) and (2.3) with
boundary conditions (2.8) and (2.10) is obtained
in the subsequent manner. This paper refers
this as variational equation II. Applying Green’s
theorem to the first term of the left side of
equation (3.1) and rearranging it, then:

| sz pmyave| wrziav
=| wrpfnay
v

+ §s (u*(—puiuj+Tij)ns)dS - (3.5)
Rt ]

Introducing equations (2.2) and (2.3) into equa-
tion (3.5), the following equation can be obtained.

—S p(u;{‘jujm)dV—S (w#p)dV
14 v
| sz pav
+S U gy AV=5 e (3.6)
v
where

f= S (pui*f3)dV + g (u*Q:)dS - 3.7)
v S

Using stream function, alternate equation of

equation (3.4) for case II can be derived as fol-
lows:

— S . oleineneimd,§ ;000 m)dV
+ SV peinealp,t,;0.3) AV

+Svﬂeik5ﬂ(¢:3‘§j¢:u)dv=f """"" -++(3.8)

4. FINITE ELEMENT ANALYSIS

Assume that the flow field to be analyzed is
divided into small regions called finite elements,

and that both trial and weighting functions for
stream function are expressed by

where @, denotes interpolation function. Nodal
values of the stream function and corresponding
weighting function are described as ¢. and ¢%.
Introducing equations (4.1) and (4.2) into equa-
tion (3.4) or (3.8) and considering the arbitrari-
ness of ¢* lead to finite element governing equa-
tion,

Aaﬂr¢ﬁ¢r+3aﬁ¢ﬁ:f)a ..................... (4.3)

where coefficients Aqg;, B.p and D, are derived
in the following forms when using (3.4), i.e.,
equation I.

Aagr = SV oleneicim®Pa, ks ,1P;,m3) AV

Bop= SV leinei@a,eiPp,15) AV
+ S , HenealexfPp 1) AV woeees (4-5)

fzazgv oleisla,iF)AVH  (eisa 389 dS
2

In case of using equation (3.8), i.e., equation

11, Aep, and [5,, are expressed as follows.

Anpr=— S , olemeneim®Pa,xsPp,1@r,m)dV

9= oteuosfaav | (utedods
3

Referring to Figure 1, it may be convenient to use
&—7 coordinate system to compute the coefficients
Aupr and Bas. To apply the conventional finite
element superposition procedure for the whole
flow field, local £€—7 coordinate system of equa-

N\
Y (9,95, Pa)

{%s,Ys)

(4, P, fa)

(x1,y1) (#: ,foz , Fon)

X

Fig. 1 Triangular finite element and coordi-
nate system,
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tion (4.3) is transformed into global z—vy coordi-
nate system common to the whole finite elements
in the flow field.

Expressing coordinate transformation in the
form:

Pa=Camib <vvvrerereemarrriniinna s (4.9)
equation (4.3) becomes:

Avmnpmpn~+ Bun@m= Dy oo (4.10)
where

Apin=CatAag;ComCop wveeeeererrenions (4.11)

Bin=CatBapCpm ++errorerermemessronnns (4.12)

Di=Catlle reererereeinineeenienceians (4.13)

Superposing equation (4.10) for the whole flow
field yields nonlinear simultaneous equation sys-
tem, which is called finite element governing
equation. The finite element governing equation
can be written in the same form as equation
(4.10) and be denoted as:

Fl:Alvygb»pr'*'Blvgbu_Q,{EO ............ (4.14)

where A;., and B; can be constructed using
Awmn and By, for each finite element. To solve
equation (4.14), Newton-Raphson method is com-
monly used which seems to be one of the most
efficient iteration schemes. The algorithm is as
follows:

G, =, ) [ K OO0 (4.15)
where
Kxu("):Az»;zg[)#(m-f-Az,“;b#("‘)—{—Bxu -'-(4.16)

To solve nonlinear simultaneous equation system
by Newton-Raphson method, large scale non-

symmetric linear simultaneous equation must be
solved by repetition. For this purpose, unit
partition method is employed in the numerical
examples described in section 6.

5. INTERPOLATION FUNCTION

To save computational time and to preserve
conforming condition, incomplete polynomials of
the third degree are employed as the interpola-
tion function for the numerical computation in
this paper. The interpolation function has heen
originally introduced by Zienkiewicz?®. It is as-
sumed that stream function is expressed by the
polynomials of the following form in each finite
element,

¢=a1+af +asn--aé?-asént+an?
+ai&¥+askt)t+aknttawn® e (5.1)

where a;~ai;; are unknown coefficients deter-
mined below, and & and % are local coordinate
system shown in Fig. 1. Let the nodal unknown
values be chosen as:

Pa=[P1, P1,e, 1,95 P2, Does P2
D3 Ba,er Py Bl oereeeerennen e(5.2)

where ¢1, ¢, ¢3 mean nodal values of the stream
function at node 1, 2, 3, quantities ¢i,¢, 1,5, ¢2,¢,
D2,ms P36y 3,y are the values of their derivatives,
which correspond to nodal velocities and ¢¢ is
the value of stream function at centroid of the
triangular finite element. Unknown coefficients
are determined by the relation:

(a1 1 —b (—b) (—b) o

ay 1 2(~b) 3(—5)? Pi,e

as 1 (=5 (—0) P1,9

as 1 a a? a® [

% 1 2a 3a? L (5.3)

as 1 a a? P2,y

az 1 c c? ct s

as 1 ¢ c? Dae

a9 1 2c 3c? b3,y

Qo 1 f e f2 fe e f* f2 fer gt de
where @, b and ¢ in f=(a—b)/3 and e=c/3 are P= i? ﬁ WpaEMPLD hy wververersnssnnns (5.4)
the coordinates of each nodal point of the finite a=1 p=1

element (see Figure 1). Denoting inverse matrix
in the right side of equation (5.3) as Wy., equa-
tion (5.1) can be described as follows.

where
mp=[0102103210]

np=[0010120123]
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In practice, it is convenient to eliminate the value
¢¢ from the unknown values of the whole finite
element field. For its elimination, the procedure
of Zlamal?” is employed:

1 1.
¢c:§‘ (¢1+¢2+¢3)+‘1‘8'“ ((Ga+Ea =281

+(n2+7s—201) 1,y (E1+E3—282)Pse
+ (108 —202) e, +(E1+E2— 283) s, e
(i Ga—2j5) P ] ereeereeeeeeeenees (5.7)

Equations (5.4) and (5.7) lead to interpolation
function in the form:

10
@a: Z g{pnfmp nnp ........................... (5_8)
p=1

Using equation (5.8), equations (4.4) and (4.5) are
reformulated as follows.
10 10 10
Aspr= 2 5 20 UpaUgpUr,
p=1g¢=1r=1
X pl {nprgnrmy —npmghy(ne—1)
+NpheNgMg— NpMrtig(ng— 1))
X F(mp+mg+mr—1, nyp+ngt+n,—3)/2
+ {mpngme(my — 1) —mpmgmeny
+mypnemig(mg— 1) —mpmiriigng}

X F(WLP—]—?%q-FWlT—S, np+7lq‘)‘n7'_l)/2]

10 10
Bag= 3 2 UpaWgs
p=1g=1
x pl {dmpnggng—np(np—1)my(me—1)
~—Mp(tp—1)ng(ng—1)}
X F(mp+mg—2, np+ng—2)
+ {np(np—1)ng(ng—1))
X F(myp+mg, np+ng—4)
+ (mp(mmp—)mg(mg—1)}
X F(mp+mg—4, wp+ng)] «-orereeees (5.10)

where

min!

B0 = o gy 20

F(m, n)= S EmgndV
v

Equation (4.7) is also formulated in the form:
10 10 10
Aggr=— 21 2 22 UpaWqpr,
p=1 ¢g=1 r=1
x el {np(np—1)mgnr—npmpngny
+ (g — 1)merng — npMpneng)
X F(mp+mg+mr—1, np+ng+n-—3)/2
-+ {(mpnpmome — my(mp— V)ngmy
Mg Mg — mp(p—1)nrmg)
x F(mp+mg+mr—3, np+ng+n—1)/2]
Transformation matrix in equation (4.9) is as
follows.

1
Cu= cosf sind
—sind coséd
......... (5.13)
(&, 1) Mz, y)
e r=[ClH s
9b’ﬂ 9b17
where
cos 0:—(&'2—1‘1) , sin 024(?/2;%)

r= v (Zs— &1+ (Y2 — Y1)

6. NUMERICAL EXAMPLES

To illustrate the adaptability of the present
finite element method, several numerical examples
will be discussed in this section. Reynolds num-
bers in these examples are calculated by Re=du/v,

B

1 20

130 160 150 )60

——> Velocity by Velocity-Pressure Formulation
————— > Velocity by Stream function Formulation
------------ Stream function

Fig. 2 Computed velocity and stream function at Reynolds number of 120.
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where d and u, are the fundamental units of
length and velocity, respectively, Their values
are shown in the figures, and dynamic viscosity
is pfp. The hatched boundary indicates rigid
wall on which both components of velocity are
taken to be zero. Arrowed lines show the com-
puted velocity. Stream lines are illustrated by
contour lines. These stream lines are calculated
by interpolating relation, i.e., equation (4.1), on
the basis of the computed nodal stream function.

The first example is the computation of flow
through a channel having sharp corners. Figure 2
is an illustration of the finite element idealization,
computed velocity and computed stream function
calculated by the present stream function method
based on variational equation I. The computed
velocity is compared with the velocity obtained
by the velocity pressure method, i.e., the finite
element method using velocity and pressure as
the nodal unknown variables®~1®, The boundary
conditions used are as follows.

A-B: ¢=0.6666u0, ¢,5=0, ¢,y=0

C-A: ¢=<2y2—%y3>uo, ¢2=0,
¢y={E—4yDus
C-D-E-F: ¢=0, ¢,.=0,

B-F: §,=0

where x and y denote horizontal and vertical
coordinates and S, is horizontal surface force.

SZ’JZ/:O

! d |
{ 1
Uo Uy Uy Uo Uo
D

B A % /.C
Fig. 3 Finite element idealization and com-
puted velocity at Reynolds number
of 100.

Dynamic viscosity is taken as 1.0. Solid arrowed
lines denote velocity by the present method.
Broken arrowed lines indicate velocity by the
velocity pressure method. Dotted contour lines
show the computed stream function. The com-
puted results by both methods are well in agree-
ment.

The second example is the computation of flow
in a cavity. Figure 3 represents the finite element
idealization and the computed velocity at Rey-

Fig. 4 Computed stream function at Rey-
nolds number of 100.

Fig. 5 Computed stream function at Rey-
nolds number of 400.
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nolds number of 100. Boundary conditions used
in this computation are as follows.

A-B: ¢=0, =0, y=0
B-C: ¢=0, ¢,z=0, ¢,u=0
CD: ¢=0, =0, ¢y=0
D-A: ¢=0, ¢2=0, ¢y=—u

Variational equation I had been employed as the

Fig. 6 Computed stream function at Rey-
nolds number of 1000.

Fig. 7 Computed stream function at Rey-
nolds number of 100 and aspect ratio
1.4.

basic variational equation. Figure 4 shows the
computed stream lines at Reynolds number of
100 (solid line) as compared with the results by
the finite difference method of Bozeman and
Dalton®® (dotted line). Figure 5 is the computed
stream lines at Reynolds number of 400 as com-
pared with the results obtained by the finite
element method of Marshall and Van Spiegel?®.
For the last two numerical results by the finite
difference methods, 50 x50 or 40x40 mesh size
has been employed, respectively. In the compu-
tation by the present finite element method, only
52 nodal points and 156 degrees of freedom have
been used to obtain the comparable results as
shown in Fig. 3. Figure 6 is an illustration of
the computed stream function at Reynolds num-
ber of 1,000. Three forms of circulated flow can

7 700

Fig. 8 Computed stream function at Rey-
nolds number of 100 and aspect ratio
2.0,
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be observed in the figure in addition to the main
circulated flow. Figure 7 shows the computed
stream function at Reynolds number of 100 in a
cavity with aspect ratio of 1.4 as compared with
the results by Bozeman and Dalton?®. Figure 8
illustrates the computed stream function at Rey-
nolds number of 100 in a cavity with aspect ratio
of 2.0. In the figure, two circulated flows can
be seen flowing in the opposite direction to each
other. The position of the Oth stream function
is calculated to have a common place in the
various computed results for a cavity with dif-
ferent aspect ratio.

The last numerical example is the computation
of flow over cylinders. Figures 9 and 10 show the
finite element idealization and computed stream
function at Reynolds number of 40 and 240, re-
spectively. Total numbers of nodal points and
elements used are 274 points and 428 elements.
Boundary conditions employed are as follows:

A-B: ¢=4uy, ¢,o=0

C-A, H-B: ¢=upy, ¢=0, ¢y=up
C-D, E-F, G-H: ¢=0, ¢,,=0

D-E, F-G: ¢=0, ¢,2=0, ¢,,;=0

Completely different types of vortices can be re-
cognized as circulated flows after the cylinders
in Figures 9 and 10. As the basic formulation in
this computation, variational equation I has been
employed. Figure 11 is the comparison of com-
puted stream function between by variational
equations I and II at Reynolds number of 80.
Boundary conditions employed here for flow over
three cylinders are the same as in the example
of Figure 9. Total numbers of nodal points and
finite elements are 525 points and 872 elements.
Figure 12 is the illustration of the finite element
idealization and the computed momentum flux.
The reactions of the momentum flux are observed
as asymptotically decreasing for the second and
third cylinders.

7. CONCLUSION

In this paper, a finite element method of two
dimensional steady flow of incompressible viscous
fluild has been presented. The finite element
method is characterized by the following.

i) The method is based on variational equa-
tions in terms of stream function.
i1) The conditions of surface force and mo-
mentum flux on the boundary are con-
sidered.
iii} Comparable numerical results are obtained

by using fewer total degrees of freedom
than by the finite difference methods.

iv) Compared with the velocity pressure meth-
od, the present method is more stable in
the sense of numerical computation.

v) Polynomials of the third degree are em-
ployed for the interpolating function of
stream function.

In the previous papers®~1%, one of the authors
has presented a finite element method using
velocity and pressure as unknown variables. The
coefficient matrix of the final governing equations
in this finite element method includes zero terms
among its main diagonal elements. This may be
one of the main reasons for numerical instability
especially in the computation of flow with ex-
tremely high Reynolds number. This is attri-
butable to the fact that equation of continuity
consists only of the function of velocity. Thus,
if the formulation of velocity which automatically
satisfies the equation of continuity would be em-
ployed in the analysis, a numerically stable finite
element method could be obtained. For this pur-
pose, it is concluded that it would be convenient
to employ stream function as unknown variable.

In the present formulation, considering the
conditions of surface force and momentum flux
as natural boundary conditions, and upon formu-
lating variational equation in terms of velocity
and pressure, basic variational equation for stream
function has been derived by substituting difini-
tion equation of stream function into this velocity
pressure variational equation. Two types of vari-
ational equation have been obtained correspond-
ing to the conditions of surface force and mo-
mentum flux, respectively. It has been shown
in the numerical examples that the conditions
for the discharge to another fluid and for the
momentum flux on the solid boundary are con-
sidered in the analysis by the present method.
As has also been stated by Olson®®, comparison
with the numerical results by the finite difference
method has shown that the finite element method
employing extremely fewer total number of un-
known variables for computation yields accuracies
comparable to the finite difference method.
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by variational

by variational

Fig. 11 Computed stream function at

:
\ - i :
/ v E 7R G - - -

Fig. 12 Finite element idealization and computed



Fintte Element Analysis of Steady Flow of Viscous Fluid Using Stream Function 133

equation (1)

—0.0

--0.008
s

/ —~—0.008 / ~-0.016
//A—o.ms ///ﬁ 0.624
// —0.024 ///—o.uzs
'/ ~0.028 / —0.032

=00

equation (2)

Reynolds number of 80.

momentum flux at Reynolds number of 80.
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