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EFFECTS OF STRESS-STRAIN CONDITIONS ON
DYNAMIC PROPERTIES OF SANDS

By Eiichi Kuriavasur®, Toshio Iwasakr** and Fumio TATSUOKA®**

1. INTRODUCTION

In analyzing seismic behavior of soil deposits
and studying soil-structure interaction problems,
it is essential to evaluate dynamic properties of
soils. For this purpose, in situ measurements of
-elastic waves and various laboratory tests using
simple shear apparatus, triaxial apparatus or
resonant-column apparatus have been conducted
by many investigators. It is already known that
dynamic properties of soils such as shear moduli
and damping characteristics might depend upon
stress conditions, shear strain amplitudes, strain
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Fig. 1 Schematic diagram of the apparatus.
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histories, void ratios, saturation, particle charac-
teristics, inner structures of soils, etc. To clarify
the relationship between dynamic properties of
soils and those parameters, the authors have been
conducted extensive resonant-column tests on dry
and saturated specimens of various sandy soils.
This paper describes the instrumentation em-
ployped and some results obtained from the reso-
nant column testing.

2. APPARATUS

A resonont column procedure for soil was
initiated by lida® and the procedures are fully
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Sample.

described in the textbook authored by Richart,
Hall and Woods?. A precise equipment which
is able to control the stress conditions and the
magnitude of shear strain was developed by
Hardin and Music®. A more reliable apparatus
was developed by Drnevich®, where a hollow
cylindrical specimen can be equipped. The sam-
ples of Drnevich-type apparatus are 30-cm long,
4-cm inside diameter, and either 1-cm or 0.5-cm
in wall thickness depending on the grain size of
the sandy material tested. The principal of ap-
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paratus employed for the present study is similar
to Drnevich-type apparatus. The schematic di-
agram is shown in Fig. 1. Fig. 2 shows the
stress condition acting on a sample. The hollow
cylindrical specimens tested are 25-cm in height,
10-cm in outside diameter and 6-cm in inside di-
ameter. This arrangement permits a more uni-
form shear deformation in a section of samples.
The specimens are fixed at the bottom and the
oscillators which supply the system with the tor-
sional vibratory force are fastened to the rigid
mass on the top of the specimen. The confining
pressure equally applied to the outside and inside
of specimens is supplied by air pressure and the
axial load can be applied independently of the
confining pressure. Accordingly, the anisotropic
stress condition similar to the Kp-stress condition
in the horizontal ground can be produced.

The quantities measured during a steady state
vibration test are resonant frequency of the
oscillator-specimen system, vibration amplitude
at the top of the specimen, length change and
volume .change in the specimen, confining pres-
sure and axial load. Furthermore, amplitude
time decay curves are recorded after shutting off
the driving power at the resonance. From these
measurements, the shear strain amplitudes, the
shear moduli and the logarithmic decrements can
be evaluated for the testing materials.

3. PRINCIPLE OF TESTING

3.1 Shear strain amplitude
Shear strain y in the sample is expressed as

_ou_oro

Tox  ox
where u(x, ) is the displacement, 6(x,f) is the
angular displacement in radian, z is the axial
coordinate and # is the radial coordinate. The
configuration of the specimen with a large mass
at the top produces linear deformation and ac-
cordingly permits uniform shear strain condition
over the entire length of the specimen. Further-
more, an average shear strain in a horizontal
section would be expressed by the value at 4-cm
in radius. Accordingly, shear strain in the speci-
men is represented as

4
r=70
where [ is the length of specimen (cm) and 8; is

the angular displacement at the top of the speci-
men.

3.2 Shear modulus

The shear stress-strain curves of sandy speci-
mens subjected to cyclic loads have a property
shown in Fig. 3. In case of the hysteretic damp-
ing such as that of sands, the linear approxima-
tion could be used to simply simulate its dissipative

nature. Let the material constants of sands de-
fine as
G . equivalent shear modulus,
:  hysteretic dampin coefﬁcient”*ﬂV——
7 by ping =W

W . strain energy as shown in Fig. 3 and
4W . damping energy as shown in Fig. 3.
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Fig. 3 Stress-strain curve of sands.

For a equivalent linear isotropic material having
the same values as the above G and 7, a more
useful formation is that of a complex modulus.
Denoting that ¢ and y are shear stress and strain
in complex notation, respectively and G and G’
are complex shear moduli of the equivalent linear
isotropic material, the stress-strain relation is ex-
pressed as

t:(G—}—zG’)r .................................... (3)

Then, its hysteretic damping coefficient y could
be related with complex shear moduli G and G’
as

On the other hand, the wave propagation equa-
tion for the shear deformation of the continuous
medium will be

u_oe
P T oz

where p is the density and z is the displacement
in the orthogonal to propagation direction. Then,
replacing equations (1), (3) and (4) into equation
(5), the wave equation for the equivalent linear
isotropic material in resonant-column tests is
expressed as
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where @ is the angular displacement in radian in
complex notation. An analytical solution of this
equation was obtained by the previous investi-
gators®»®, In a steady vibration state, shear
modulus G is a complicate function of the density
and the dimensions of the sample, the apparatus
constants and the resonant frequency. The value
of G was evaluated by an iteration method by
using an electronic computer.

=G(1+i-2y)

3.3 Damping coefficient

By enforcing the system into the resonant state

and then shutting off the driving power, loga-

rithmic decrements 4; could be obtained. From
the logarithmic decrements, hysteretic damping
coefficients » could be obtained independently of
the sample’s dimensions and its boundary con-
ditions. For free vibration, a solution could be
assumed as

0= A(x) ellon=t
where A(x) is mode of deformation, w, is the
natural circular frequency of the system and 1 1is

an attenuation factor with respect to time. Re-
placing equation (7) into equation (6),
1=—;': [—1+ VIF @R lmwng eeeereees (8)

Then, the relation between logarithmic decre-
ment J; and hysteretic damping coefficient » will
be
2
4y=2-=
W,
Using equation (9), hysteretic damping coefficient
y» can be obtained from measured logarithmic
decrement 4.

4. TESTING PROCEDURES

Physical properties of the materials tested are
listed in Table 1 and their grain size distributions

Table 1 Physical properties of materials tested.

\\\\\ | G Dio (mm) | Dgo (mm) Ue emax eémin Grain shape
Toyoura-sand 2.64 0.12 0.175 1.46 0.96 0.64 Sub-angular
Sengenyama-sand 2.70 0.16 0.38 2.37 0.91 0.59 ”
Sengenyama-sand A 2.65 0.85~2.0 mm - 0.82 0.61 ”
Sengenyama-sand B 2.72 0.40~0.85mm -— 0.92 0.67 »
Sengenyama-sand C 2.68 0.25~0.40 mm - 0.98 0.65 ”
Crushed sandstone 2.73 2.0 ~5.0 mm — 1.09 0.80 4
Crushed limestone 2.74 2.0 ~5.0 mm — 0.93 0.64 Angular
Glass beads A 2.42 2.0 ~2.6 mm —_ 0.60 0.53 Spherical
Glass beads B 2.42 0.85~1.41 mm — 0.62 0.54 ”
Glass beads C 2.42 0.25~0.40 mm — 0.65 0.52 ”

are shown in Fig. 4. Toyoura-sand has uniform t0o% P ‘
. . 7 Toyourg-sand
grading and sub-angular particles. Sengenyama- . sy i ,
. ; Sengenyoma-son

sand from Sengenyama area near Chiba, Japan "

. . : . A
has well-grading and also has sub-angular par- = Ss:
ticles. This sand has diluvial origin and there- S se: ) .
fore includes some silty particles. Sengenyama- _ % .

. . wl 3 Crushed lime stons
sands A, B and C shown in Fig. 4 were prepared z and Crushed sand siane
by sieving sands obtained from Sengenyama area. .Z. GA: Gloss beads A
Crushed sandstone have angular particles and g [ 683 i 8

. . b GC; . ¢
crushed limestone have sub-angular particles. = _

Glass beads A, B and C have almost spherical
forms. As shown before, test results on granular
materials are discussed in this paper.
Resonant-column tests were conducted on sam-
ples having various void ratios. For Toyoura-
sand, both air-dry and saturated samples were

DIAMETER, D,mm

Fig. 4 Grain size distribution curves.

prepared and consolidated isotropically and an-
isotropically; namely, the stress ratios ¢:/os have
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values of 1.0 and 2.0, respectively. For the other
sands and glass beads, only air-dry specimens
were tested and stress ratio ¢,/0; was kept equal
to 1.0. Saturated samples were prepared by
spooning freshly boiled sands into a split mold
filled with de-aired water. Air-dry samples were
prepared by spooning air-dry sands into the mold.
Densification of the samples was achieved by
tapping the mold with a wooden hammer.

After the confining pressure and axial load
were applied to the sample, the stress condition
that is defined by ¢, and ¢; was kept constant
and the vibratory shear strain amplitude was
increased from about 5x107% to about 2x107%.
Both resonant frequency and logarithmic decre-
ment were measured at various values of shear
strain amplitudes. Next, another series of tests
was achieved for different stress condition and
the above mentioned procedure was repeated.
Confining pressure varied from 0.20 kg/cm? to 6.0
kg/cm?. In Fig. 5 one of test results using a
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Fig. 5 Shear modulus versus shear strain
amplitude of saturated Toyoura-sand.

Toyoura-sand sample is shown where p is the
. 1
mean principal stress equal to —3—(01+203) and e

is the void ratio which changed slightly during
consolidation. In one sample, it would be im-
possible to control all values of shear strain
amplitude, stress condition and void ratio. Then,
it is necessary to convert the measured values of
G into the values for predetermined values of p,
v and e. Meanwhile, Hardin et al.® showed the
experimental equation for round Ottawa-sand for
low strain amplitude as

(2.17—e)* .

1+4e
where G is the shear modulus (kg/cm?), p is the
mean principal stress (kg/cm?) and e is the void
ratio. Then, the values of G for y=10"° and
y=10"* were obtained from the curves in Fig. 5
and subsequently, using the postulate that G is
proportional to (2.17—e¢)?/(1+¢) as shown by equa-
tion (10), the values of G for the mean value of
void ratios of tested sample, say ¢=0.81 in Fig.
5, were obtained where the change in G due to
the change of void ratio in this procedure was
on the order of a few percent. In the next, the
values of G and p were plotted on full-log graph
as shown in Fig. 6, then values of G for ¢=0.81
for p=0.5,1, 2, 3, 4 and 6 kg/cm? were obtained
from the curves in Fig. 6.
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Fig. 6 Shear modulus versus mean principal
stress of saturated Toyoura-sand.

5. TEST RESULTS

5.1 Effects of mean principal stress on shear
modulus

As shown in Figs. 6 to 9, shear modulus varies
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Fig. 7 Shear modulus versus mean principal
stress of air-dry Toyoura-sand.
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Fig. 9 Shear modulus versus mean principal
stress of air-dry Glass-beads.

almost proportionally to the square root of mean
principal stress provided that the other parameters
keep constant. The relationship between shear
modulus G and mean principal stress p=

1
—3—(01+203) could be represented by

G=kpm
where k is a constant. By observing these figures
carefully, it is found that the values of m in-
crease slightly with increase in shear strain am-
plitude as shown in Figs. 10 (a) and (b) where
the legends are the same as those in Figs. 18 (a)
and (b). By these figures, the value of m at
7=10"* could be estimated to be about 0.5 for
all materials tested and m at y=10"% is about
0.44. Furthermore, the value of m at y=10"% is
obtained to be 0.38 by extrapolation.

5.2 Effects of void ratio on shear modulus

All data obtained are summarized in Fig. 11
where shear moduli and void ratios are plotted
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Fig. 11 Shear modulus versus void ratio of
all materials tested.

on a semilog graph for two cases: p=1kg/cm?
y=10"* and p=6kg/cm?, y=10"% As denoted in
Fig. 11, it is found that all data obtained almost
agree with equation (10) for y=10"* in the range
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of ¢1/o3=1~2 irrespectively of roundness of par-
ticles, grading and kinds of materials used in
these tests. It would be of interest that shear
moduli of various granular materials are not
dependent on relative density Dr, but on void
ratio e.

5.3 Effects of stress ratio on shear modulus and
damping coefficient

As shown in Fig. 11, shear moduli of aniso-
tropically consolidated air-dry Toyoura-sand under
01/03=2.0 agree with those of isotropically con-
solidated air-dry Toyoura-sand. To investigate
the effects of stress ratio on shear modulus in a
wider range of stress ratio, particular tests were
conducted where stress ratio was increased and
then decreased under constant value of p. Some
of the test results are shown in Figs. 12 to 14,
where stress ratio is denoted by
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Fig. 12 Shear and volumetric strains versus
stress ratio.
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Fig. 14 Logarithmic decrement versus stress
ratio of saturated Toyoura-sand.

Stress ratio  Y/p

where ¢4 and o mean the axial and radial stresses,
respectively and ¢ is 64—0r. As the value of p
was not constant precisely and varied between
2.047 and 2.205kg/cm? and the volume of the
specimen varied due to dilatancy during shear
deformation as shown in Fig. 12, shear moduli
for p=2.0kg/cm? and ¢=0.69 were obtained by
modifying the measured values by using equation
(10). On the other hand, logarithmic decrements
in Fig. 14 are measured ones as its change with
p and e is smaller than shear moduli. In Figs.
13 and 14, it is shown that shear moduli and
logarithmic decrements take nearly constant val-
ues irrespectively of the variation of stress ratio
g/p up to gfp of a certain value, say 1.0 (i.e.,
01/03=2.5). This has been indicated already by
Hardin and Black®. It would be noted that shear
strain 7=e¢,—¢& where g, and & mean axial and
radial strains, respectively, begins to increase
abruptly and dilatancy of specimen starts at this
stress ratio as shown in Fig. 12. However, be-
yond this value of stress ratio, shear moduli be-
gin to decrease and logarithmic decrements begin
to increase with increase in stress ratio. Further-
more, it is found that even after unloading shear



Effects of Stress-Strain Conditions on Dynamic Properties of Sands

gnodulus is smaller and logarithmic decrement is
farger than those before shearing. Similar results
are obtained also for other p-constant test. These
phenomena would be due to the anisotropic inner
sstructure in specimen which was caused by shear-
ing of the specimen.

5.4 Effects of shear strain amplitude on shear

modulus

Because of the nonlinear characteristics of
stress-strain relationship of soils, shear moduli

‘would decrease with
-amplitude.

increasing shear strain

So far, some curves representing

‘the G—7 relationship such as that by Seed and
Idriss®> have been proposed. Meanwhile, effects
-of shear strain amplitude on shear modulus
increase with decrease in mean principal stress
». This could be supposed from Figs. 6 to 9
where the ratio of shear modulus at y=10"% to
that at y=10"* gets larger with decrease in p.
Fig. 15 shows the effects of mean principal stress
on G-y relations, where the abscissa is shear
strain amplitude in log-scale and the ordinate is
the ratio of shear modulus G to that at =
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107%, G/{G} ;=10-6 . Furthermore, Fig. 16 shows that
G/{G} ;=100 —logy curves are little affected by
change in void ratios, stress ratios and kinds of
sands for cases of materials tested. Fig. 17 shows
average curves for various mean principal stress
obtained by the procedure shown in Fig. 16. From
this figure, it is found that the variation of shear
moduli with shear strain amplitude would be
smaller than that proposed by Seed and Idriss®
when p has a value larger than about 0.5 kg/cm?

5.5 Shear modulus at y=10-°

The shearing strain amplitude generated in
subgrounds during in-situ measurements of elastic
waves is on the order of around 1076 or less. To
compare shear moduli obtained from those in-situ
measurements with those from resonant-column
tests, the relationship between shear modulus at
r=10"% and the mean principal stress and the
void ratio in resonant-column tests would be neces-
sary. However, shear modulus at y=10"¢ could
not be obtained directly from the resonant-column
tests conducted by the authors. Therefore, those
values at y=10"¢ were estimated by extrapolating
the G—7 curves as shown in Fig. 5. Shear moduli

aty=

2.17—¢)?
10— obtained and the values of LT_l_e—e)-pm”

are plotted in full-log scale in Figs. 18 (a)-and

(b).

The power of p was obtained from Figs.

10 (a) and (b) where the value at y=10"% would

be estimated to be about 0.38.

From Figs. 18 (a)

and (b), it is found that the average curve for
sandy soils could be represented by the following
equation:

(2.17—e)?

G=900 e

p0.38

where G is shear modulus (kg/cm?) at y=107%, ¢
means the void ratio and p means the mean
principal stress (kg/cm?).
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5.6 Hysteretic damping coefficient

As stated before, damping characteristics of the
materials tested would be expressed by hysteretic
damping coefficients, which could be evaluated
from logarithmic decrements if the mechanism
of damping in soils is of hysteretic dissipation of
energy. A typical test result for air-dry Toyoura-
sand is shown in Fig. 19 where 4; means the
logarithmic decrement and » denotes the hyster-
etic damping coefficient. This shows that 3 is
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Fig. 19 Hysteretic damping coefficient versus

shear strain amplitude of air-dry
Toyoura-sand.
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shear strain amplitude of saturated
and air-dry Toyoura-sands.
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Fig. 21 Hysteretic damping coefficient versus
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sands.

strongly affected by the mean principal stress
and the shear strain amplitude. Saturated and
air-dry specimens of Toyoura-sand had almost
the same value of » as shown in Fig. 20. Fur-
thermore, it is found that the change in void
ratio does not affect damping capacities of Toyo-
ura-sand and Sengenyama-sand. Meanwhile, Figs.
21, 22 and 23 show that the scattering of the
values of 5 for different materials is rather larger
when comparing with that of G. Although it is
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hard to get a conclusion due to this scattering
of data, some remarks could be obtained as
follows: (1) In any case, y increases with in-
crease in shear strain amplitude and with de-
crease in confining pressure. (2) 7 of Toyoura-
sand have the values almost equal to those of
Ottawa-sand, for which Hardin® proposed an
experimental equation as

—_— a0, --0.5
o= *p

for the range of y=10"% to 10 and p=0.244 to
1.46 kg/cm? where 7o denotes a hysteretic damp-
ing coefflcient for Ottawa-sand obtained by divid-
ing logarithmic decrement by 2z. (3) While
the values of 5 of different materials tested could
not be represented by such a simple equation as
equation (14), all of data could be represented by
the following equation:

1=y0+4dp
where 7 means hysteretic damping coefficient of
respective materials and 7, is that of Ottawa-sand
expressed in eq. (14) and 4y is a constant which
is not affected by p, void ratio and shear strain
amplitude 47 has a different values for different
materials.

6. CONCLUSIONS

A procedure using a resonant-column apparatus
developed in the present study would be one of
the most effective ways to evaluate shear moduli
and damping characteristics of soils. The follow-
ing remarks would be concluded from the exten-
sive resonant-column tests conducted.

(1) By testing materials without finé particles
it is found that the equation (10) expresses the
experimental results of shear moduli at y=10"¢
and equation (13) fits with those at y=10-%. For
materials tested, water content, grading, particle
shape and grain size have little effects on shear
moduli of the value around 10-8~10—* of the shear
strain.

(2) While the value of mean principal stress is
kept constant, shear moduli and logarithmic de-
crements are nearly constant irrespectively of the
value of shear stress up to the stress ratio g/p
of a certain value, say 1.0. However, beyond
this value of ¢/p, shear modulus starts to de-
crease and logarithmic decrement starts to in-
crease with increase in ¢/p. The decreased shear
moduli and the increased logarithmic decrements
do not completely recover after unloading.

(3) The decreasing rate of shear moduli with
increase in shear strain amplitudes has larger
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value for the smaller value of the mean principal
stress.

(4) Damping capacities decrease with increase
in p and increase with increase in shear strain
amplitudes. However, damping capacities are not
affected by the change in void ratios under con-
stant values of the other parameters. For Toyo-
ura-sand, water content has little effect on damp-
ing capacities. Damping values of various ma-
terials could be represented by egs. (14) and (15).
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