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MULTISPAN SUSPENSION BRIDGES UNDER
TORSIONAL LOADING

By Takeo Fuxupa*

1. INTRODUCTION

The problem of torsion of suspension bridges
has become to be much studied and discussed
after the failure in 1940 of the first Tacoma Nar-
rows Bridge. Studies made associated with the
investigation on the causes of the accident, how-
ever, were mostly directed to the dynamic be-
havior such as torsional oscillation or flapping
motion and, strange to say, relatively few works
can be found on the statical analysis of suspen-
sion bridges for torsion. SihD presented in 1957
a paper on the torsional analysis of truss-stiffened
suspension bridges. This paper is devoted rather
to the stress analysis of stiffening trusses and is
very brief and cannot be said extensive. In 1960
and 1961, Baron and Arioto®»® presented com-
prehensive papers on the torsional analysis and
behavior of suspension bridge towers. Recently
(in 1974), Irvine® presented a paper on the tor-
sional analysis of suspension bridges stiffened
with box-girders as the Severn Bridge in Great
Britain and the Bosporus Bridge in Turkey. The
analysis was made by considering the main span
of a three-span bridge as a single-span, and that
loaded with a uniform torque or a point torque.
Besides, the analysis was based on equations that
include some approximations. But Irvine’s analy-
sis can be said rational and practical.

The Task Committee on Steel Superstructures
of Bridges Between Honshu and Shikoku orga-
nized in the Japan Society of Civil Engineers on
commission of the Honshu-Shikoku Bridge Au-
thority presented in 1973 a special report titled
“Torsional Analysis of Suspension Bridges,”>
compiling studies of some few researchers, one
of which is the one recently presented as a
separate paper®. Computations are made by first
assuming the value of horizontal cable tension,
i.e., by the trial-and-error method, and the ap-
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proximation method of Galerkin or Laplace trans-
formation is used to solve differential equations.
While the stiffening trusses were viewed as space
trusses, relatively little attention was paid to the
cables and towers.

In the following is presented a method of analy-
sis of multispan suspension bridges for asym-
metric vertical loads that cause torsion in the
bridge structure. The main features and assump-
tions of the present paper are as follows:

1. The structure is so constructed that all
dead loads are sustained by the cable and the
horizontal cable tension due to dead loads becomes
uniform throughout the bridge; and the state of
equilibrium under dead loads is taken as the
origin or the initial state of the analysis;

2. Suspenders are viewed as isolated members
which they are, and the analysis is made by
solving simultaneous equations instead of resort-
ing to differential equations;

3. Vertical and horizontal cable movements as
well as the changes in the cable slope are taken
into account in considering the cable equilibrium
after deformation, but the length changes of
suspenders are disregarded;

4. The bridge structure is symmetric about
its center line; stiffening trusses on either side
of the bridge are assumed each as a girder with
a constant moment of inertia in each span;
against torsion, however, the suspended struc-
ture is assumed to behave as a closed-box girder,
its equivalent St. Venant torsion constant being
constant in each span; and

5. The method presented can be applied to
bridges with any number of spans; the cables
may be free to move in the direction of bridge
axis or are anchored at tower tops; in the latter
case, the flexural and torsional stiffnesses of
towers are taken into consideration.

All live loads are considered to concentrate at
points where suspenders are joined to stiffening
trusses; these loads need not be uniform; they
may vary point by point. Let ;7 and Py/=live
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foads acting at opposite lying points, ¢ and ¢/, of
the stiffening truss. Instead of considering P;
and P/ as they act, the analysis |is carried out
by substituting them by a set of symmetric loads,

1 . .
P¢*=E(Pi+P¢’), and another set of antisymmetric

loads, Pi=%(Pi—Pi’). Computations are made

separately for the symmetric loading of P* and
for the antisymmetric loading of 2; and then the
results for Pi* and P; are added together to get
the final results.

This is nothing but a method of superposition.
It might be argued that the law of superposition
cannot be applied to suspension bridges in which
there holds no linear relationship between the
deformation and the applied loads. Theoretical-
ly, this cannot be refuted. In a long-span sus-
pension bridge, however, in which the dead load
is far in excess of live loads, insofar as the
analysis is made only for the live loads by taking
the state of equilibrium under dead loads as the
origin of the analysis, the linear relationship may
well be assumed. Besides, the deformation and
stress changes due to torsional loading usually
do not amount to so much as the maximums that
will arise from full-width live loads. It may be
said, therefore, that enough approximate results
will be obtained by the above-mentioned pro-
cedure.

2. BASIC EQUATIONS

(1) Displacements and Stress Changes of Cable
Segment

Referring to the cable segment left of panel
point ¢ shown in Fig. 1, let A;=initial panel
length; /; and 4/;=initial segmental length and
its increment; ¢; and 4¢;=initial angle of slope
and its increment; w#;=horizontal displacement
of 7 in the direction of bridge axis, positive to
the right; and v;=vertical deflection of i.

If Ng,: and Vy,;=cable tension and its vertical
component in the cable segment in the initial

1

tan ﬁi-rlhr.

25

Fig. 1 Displacement of Fig.2 Cable Tension
Cable Segment. After Deformation.

state, they are related to Hy by

Ng,i=Hzsec ¢, and Vyi=Hatangi----- (1)
in which Hg=horizontal component of cable ten-
sion (horizontal cable tension) due to deal loads,
assumed constant throughout the bridge.

When live loads are applied, the cable tension
will change. If the increments of Na,:, Va,i, and
H; are denoted by N;, Vi, and H;, respectively
(see Fig. 2), they can be expressed by the follow-
ing equations which were derived in the writer’s
previous paper™.

NizEcAc(Aui COS ¢ +dv; sin ¢z)/li ~~~~~~~~~~~~ ( 2)
Hi= EoAdasditit Bidvi)ly +eeveerereceveneceenne (3)
Vim=EcAdBidui+715dvi)[ly «-veevvveereviieniienn (4)

in which E;=modulus of elasticity of cable; A¢=
cable area;

dus=wus—u—y, and Aoy=p;—1Dgg ooreereree (5)
and

a;=cos? ¢; -+« sin ¢; tan ¢ ,

Bi=sin ¢i(cos g;i—x), and F ceceeeeereeens (6)
7¢ =sin?¢;-+x cos ¢; ;
in which
HatHe e
£= EsAe ) (7)

The parameter, &, is in no way constant; it
varies with H;. Therefore, the analysis becomes
nonlinear. For a long-span bridge, however, in
which the dead load is far greater than live
loads, the effect of the variation in the value of
£ is negligibly small so that, disregarding H; as
compared with Hy, © can be defined by

— Hd

"= EA
which is called the coefficient of horizontal cable
tension. Thus, the analysis has become linear.

It is a common practice to support stiffening
trusses by movable bearings and to install center
ties between the cables and trusses at midspan.
In this kind of construction, the stiffening trusses
will move in the direction of bridge axis along
with the cables and suspenders will remain nearly
vertical. Accordingly, the horizontal components
of suspender tension can be disregarded and the
horizontal cable tension becomes uniform through-
out the bridge, or throughout a span at least.
Therefore, H; will hereafter be denoted by Hum,
the subscript, m#n, denoting that a span between
m and » is referred to.

Now, if Hpmn is taken as one of the basic un-
knowns, du; and V; become, from Egs. 3 and 4,
as follows:

............................................. (72)
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H,
dui=a; E:Zbc Limbidlps  ooeevereseessenenianinnens (8)
4
Vie=ay X”f gt By <+ veeveeeerersrescsoseeneneas (9)
v
in which
a;=1]a;, and by=Pifay reerreerreerininn 10)

(2) Increment in Suspender Tension

If the increment in suspender tension at ¢ is
denoted by T3, it equals V;— Vi, Hence, from
Eq. 9:

T¢=[ dvg dvity

Ay — a4+
A

Ai

}Hﬁ(bi—bm)Hm

{3) Flexure of Stiffening Truss

The analysis is made by dividing the stiffening
truss into equal panels. Fig. 3 being referred
to, let Elmp—=flexural rigidity of the stiffening
truss in span mn; L;=vertical load to be sus-
tained by the truss at #; y;=vertical deflection
of panel point i; and Jimp=equidistant panel
length. Then, from structural mechanics:

n

A
i mn -
_.1 — EA n-1
m+? 3 e e
m A
i ET n
mn

—— {a-m) A ‘—j

Fig. 3 Span between m and n.

Myt —2Mi A+ Mgz — ALy eveeeenssereeeininns (12)

A n
Yim1—2Yi+ Y= ~ELm (Mis—y + 4 M+ Miy1)

which are to be applied to i=m-+1,.--,n—1.
But, in applying them to i=m-+1 and i=un-—1,
it must be noted that L;, M;, and y; vanish for
¢=m and i=n,.

Now, a new quantity, X;, which is proportional
to 4dyi=¥Yi—¥Yi-1, is introduced as the basic un-
known:

1 .
Xy=——dy:, or Ayi=pmaX; (i=m+1, -, %)

Omn
.............................. (14)
in which
Apn
omn SR s (15)

X; has the dimension of force and pmy is a con-
stant proper to span m#n, having the dimension
of length by force.

Eqgs. 12 and 13 are difference equations of second
order with respect to M; and ¥;, respectively.
If M; is eliminated from Egs. 12 and 13 and 4y,
is expressed in terms of X; by Eq. 14, noting
thereby the boundary conditions at span ends,
the following set of equations with respect to X;
is obtained:

2Xm+1—3Xmi2+ Xm+s=4Lms1+Limse ;

— X1 +3X:—3Xit1+ Xipo=Li1+4L;
+ Lyt (f=m+2, +ee, n-2) ;

— Xn—2+3Xn-1—2Xn=Ln—2+4Ln

Next, there occurs no vertical displacement at
both ends of the stiffening truss so that the total
sum of dy; from i=m-+1 to i=#»n must vanish.
As 4y, is proportional to X;, the sum of X;
must also vanish, i.e.,

n

X Xi=0

t=m+1

Egs. 16 and 17 are the basic equations derived
from the condition of the flexure of the stiffening
truss. They shall be applied to each span of the
bridge.

All the foregoing equations, Egs. 1 to 17, are
those derived with respect to either one side of
the bridge. They hold also on the opposite side.
To distinguish the quantities that vary according
to the bridge side, those on the opposite side are
marked with a prime, as u/, v/, H},, X, etc.
But, the structural data such as Ae¢, Imn, Ha,
pmn, etc., and the parameters, a; and b;, remain
the same for both sides.

3. ANALYSIS FOR SYMMETRIC
LOADING

As noted in Introduction, the actual loading,
P; on one side and P’ on the opposite side of
the bridge, is substituted by the symmetric load-
ing of P*=(F;+P’)/2 and the antisymmetric
loading of P;=(P;—P/)/2. In the case of the
symmetric loading, the deformation and stress
changes become equal on both sides and they
are indicated with an asterisk, as wus*, y*, HZ,,
X;*, etc. To determine these values, it suffices
to make the analysis on either one side.

In the case of the symmetric loading, there
occurs no twist and the cables and stiffening
trusses undergo the same vertical deflection, i.e.,
vi¥=y;*. Hence, from Eq. 14,

sz*=4'?/z*=Pman* ’ (Z:m+ly R n) '“(18)

substitution of which into Eq. 11 renders
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Ti¢=ki X* —kin XK+ —bir)HYE, ,

(Z:m—l—]_’ o..,n.—l) .................. (19)
in which k; is a dimensionless parameter defined
by

ki=pmnHoaif2:), (@E=m-Ll, coe,nm) coeeeens (20)
in which 1; shall be taken Am+ and 2, for i=
m-+1 and i=n, respectively, and Ams for i=m-+2,
oo, m—1.

T* acts upwards on the stiffening truss. There-

fore, the load to act on the stiffening truss at 7,
L;*, becomes:

L= PA—T/*
=P~k X* + kin XH, —(bi—bir)HYE
(i=m+1, R 2% ) JEELLITIE TR PP (21)

Now, if Eq. 21 is substituted for L; in Eq. 16,
the following set of basic equations for X;* and
H}¥, is obtained.

A1 XEn—Ap 12X kot BpysXE s+ CunHy

=4PF+ Pk

_Bi—lXtﬂil+AiXi*——Ai+1X7}t1+Bi+2Xit2+CiH7ﬁn

=Pl +4PF+PEy (i=m+2: cve,n—2)

_Bn—zXﬁk—z+An—1Xf—1_Aan+Cn—1H;r':n

=P¥,+4P}F,

in which
Api1=2+48kn ,
Ai=3(1+ky),
B;=1-Fk;,

An=2+4ky , W
(t=m+2, +-+,n-1);
(t=m+1, o, m);
Crn1=4bmt1 — Bbmezs—bmts
Ci=bi~1+3b;—3b;~1—bsz ,

(f=m+2, e, n—2);
Crp1=bp—2+3bn—1 —4by,

which are all dimensionless coefficients.
Next, from Eq. 17:

+(23)

Egs. 22 and 24 are applied to each span and
as many equations as X;* will be obtained. But,
these equations include yet unknown H¥,. There-
fore, as many more equations as the unknown
H}Y, are needed. These equations are derived
from the condition of cable movement at span
ends.

If 4dvi* of Eq. 18 is substituted for 4v; in Eq.
8, the result is:

1
Aui*==ﬂailiH,’,‘f,, — pmnb i X
cAe

(F=mAL, cee, 1) cverrrnnnnniiniiien, (25)

The sum of du* from i=m+1 to i=n equals
u¥—uk. Therefore,

Lmn_Hzn_Dmn % tht*zEcAc(uf—u,’,':)
t=m<+l

in which
Lun= 3 aili, and Dumn=EoAcomn (27)

i=m+1

Both Luyy, and Dy, are constants characteristic of

the span concerned, having the dimension of

length. Lmn depends on the cable configuration

and Dmy on the structural properties of the stif-

fening truss.

Eq. 26 corresponds to what is commonly called
the cable equation. It includes the cable dis-
placements at span ends, #} and #}, that depend
on the condition of cable support, as described
below.

(1) When Cable is Anchored at Tower Tops

When the cable is anchored at tower top m,
the cable movement, #X, equals the tower-top
movement that can be assumed proportional to
the unbalance of the horizontal cable tension
across the tower top. Let the span lying to the
left of tower top m be jm as shown in Fig. 4,
u¥ can be expressed as

u;‘:(Hzn—Hﬁn)/#:nk’ or urﬁ:”:nk(Hvﬁn_ jx;n)

in which p¥=the flexural spring constant of
tower top m, and 7x=the reciprocal of g¥. As
there occurs no torsion in the case of the sym-
metrical loading, these constants can be obtained
by analyzing either tower leg as a beam-column.

M
_I_{— EIjm EL
(m-j)?»jm—— (n-md},

Fig. 4 Three Consecutive Spans.

nr

An equation similar to Eq. 28 will be obtained
for u}. Substitution of these equations for u¥
and #f in Eq. 26 yields

Dum 3 B+ AR ~(Lpa+d3+dDHE,
i=m+
NS 5.3 7 - R | HOUIUOPIPRIOIN: (29)
in which
Ax=EoAonX, and dF=EoAenk «--ereree (30)

the dimension of which is length.
Eq. 29 is applied to each span and as many
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equations as the unknown HZ¥, will be obtained.
Thus, the total number of equations of Eqs. 22,
24, and 29 equals the total number of the un-
knowns, X;* and HZ,, and simultaneous solution
of these equations will render the unknowns.

(2) When Cable is Movable at Tower Tops

For example, let the three spans shown in Fig.
4 be viewed as a three-span bridge in which the
cable rests on movable saddles at tower tops m
and #. In this case, the horizontal cable tension
is always uniform throughout the bridge and its
increment is denoted simply by H*. Assuming
both anchorages immovable, the summation of
Adu* is extended from i=j+1 to i=7, and the
following cable equation is obtained.

m n r
Dijm 23 b:Xe*+ Dy 3% 0 Xi* 4+ Dy 35 0: Xi*
J+1 m+1 n+l

—(LJm+me+Lnr)H*:0 ...... (31)

in which Djm, Dpr, Ljm, and Ly, are the con-
stants to be obtained by applying Eq. 27 to spans
jm and nr, respectively.

Eq. 31 is what is to be solved simultaneously
with Eqgs. 22 and 24. It might be thought that
if H* is solved from Eq. 31 and substituted into
Eq. 22, H* will be eliminated and equations with
respect only to X;* will be obtained. But, this
results in very complicated equations and it is
rather practical to solve Eq. 31 simultaneously
together with Eqgs. 22 and 24.

(3) Displacements and Member Stresses

Once Xi* and H¥, are solved, the displacements
and changes in member stresses can be computed
in the following way.

a) Vertical Deflection of Cable and Stiffening

Truss

The cable and stiffening truss undergo equal

vertical deflection:

i
vi*—_—yi*:[)mn Z Xr*, (l=m+1, ey n—l)
r=m+1

b) Horizontal Displacement of Cable
From Eq. 25:

ui*zu;;_*___b{zn é arly— pyn ZZ: b Xr*
EOAG r=m-+1 r=m-+1
(Z:m-}—l’ ...’n) .............................. (33)

When the cable is anchored at tower top m, uX
is computed by Eq. 28; when the cable is mova-
ble at tower tops, #;* must be computed by ap-
plying Eq. 33 successively from the left anchorage.

c) Increment is Suspender Tension

For T;* holds Eq. 19.

d) Shear and Bending Moment of Stiffening
Truss
The shear, Si¥, in the panel left of ¢ of the
stiffening truss is

(- (BT
r=m+1

Setm—t
n—m

+"Z:;(r—m)(P¢*_Tr*)} , (i=m+1, e, 1)

Once S;* is known, the bending moment at i,
M;*, can be computed by
M*=lun 5 Si*, (=m+1, -, n—1)-(35)
r=m+1
Another equation for M;* can be derived from
Egs. 12 and 13 when Eqs. 18, 19, and 21 are
noted. The result is:

M= 220 [ (i bis) HE
+B:Xi*— Bin Xi¥i],
(z=m+1, .-.,n_l) ...... (353)
e) Change in Cable Tension
The change in the horizontal cable tension is
HE, itself. If dv;* of Eq. 18 and Ju;* of Eq. 25

are substituted for 4v; and du; in Eq. 2, respec-
tively, the following equation for N; is obtained:

Ni=a; cos ¢ HE,+ ki sin ¢: X%,
Gmmmtl, cen, B) oeeremneeaeenenaneeceea (36)

4. ANALYSIS FOR ANTISYMMETRIC
LOADING

In the case of the antisymmetric loading of
B;=(P;—P})/2, the structural deformation and
stress changes become also antisymmetric about
the bridge center line. In the following, the
structural quantities that depends on FP; are de-
noted with a bar, as 7;, ¥i, Hym, and X, et al.

It is assumed that the cables are spaced in a
width, b, that differs from the spacing of the
stiffening trusses, b. Accordingly, the cables and
stiffening trusses undergo unequal vertical dis-

placement, #; and ¥: respectively. They are
geometrically related by
Bit Gam=bo 1 Beveerrerriesmnniiii (37)
Following Eq. 14, let the basic unknown be

Xi=

L 4yi, or Aﬂi=mei
Lmn
E=mmLye e, B)veermennmeenes (38)
then, if Eq. 37 is noted,
A5;=(be/B)omnX s (Fm=mAL,e e, B)rerereecenes (39)
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Substitution of Eq. 39 for 4v; in Eq. 11 renders
Ti=(be/b) (k1 X s i1 X 141} + (Bi—ber) Hom
G=m1,eee, m—1)vrreveriinnns (40)
The antisymmetric loading causes twisting of
the bridge structure. As the loads act concen-
trating at stiffening-truss panel points, the twist-
ing moment to act on the suspended structure
becomes uniform in each panel. Let Z;=twisting
moment in the panrel left of 7, taken positive when
it acts counterclockwise on the right-hand side
of a section, it can be computed by, as derived
in Appendix,

Zi=vmaXib  (i=m+1,---,n),

GKmn zmn 2
i i bt L (R L R 41
in which vmn 3EIW,,< b > (41)

in which G=modulus of rigidity; and Kmz=equiv-
alent St. Venant torsion constant of the structure.
v 1S a nondimensional constant that expresses
the relative stiffness of the suspended structure
against torsion and bending.

The unbalance of the twisting moment across
section 7, Zi41—Z;, must be balanced by a couple
of reactive forces exerted by the stiffening trusses.
When these forces are taken into account, the
panel point load, I; the stiffening trusses on
either side must sustain becomes as derived in
Appendix:

Li=P;—kX:;+ ki Xisi—Gi=bit) Hom

G=m+1,eee, B—1)ereerenennin (42)
in which

Toi=(be/bYkitvmn (G=m+1,-+-, n) }

bi=(be/b)b: (f=m+1,-++,m)

If now Eq. 42 is substituted for L; in Eq. 15,
the following set of basic equations is obtained:

Ants Xmii— Anie Xmiz+ Bris Xmis

4 CotiHmn=4Pmr1+ Pmaa;
B Xoa+ AiX = Aps Xiia+ BrsaXine
+CiHpn=Piy4-4Pi+ Piyy;
(f=m+2,¢+- n—2)
— Bus X2+ Apr Xn1— AnXn+ CosH o

=Pps+4Py
.............................. (44)
in which
f-lm1=2+412m+1; An=2+4lE,.;
A=31+k), i=m+2,---, n—1);
1=3(1+ke) ( - (45)

Ei=1_Ei9 (i=m+1y"" n);
Ci=(be/b)C: , ((=m+1,---,n-1)
Eq. 44 corresponds to Eq. 22 in the case of the

symmetric loading. Another basic equation sim-
ilar to Eq. 24 is derived from Eq. 17. Namely,
B Rim0 e (46)
i=m+1
The cable equation in the case of the antisym-
metric loading is, in general,

LunHmn—Dnn 33 6:Xs=EoAdin—dim) -+ (47)
i=m

Lmn and Dpp in which are the same as used in
Eq. 26. #m and #, are determined according to
the condition of cable support as described below.

(1) When Cable is Anchored at Tower Tops

The tower top movement due to P; becomes
antisymmetric in any case. The antisymmetric
horizontal movement of tower top #, @m, can be
expressed by

ﬁm=(ﬁm,n—ﬁjm)//jm , Or ﬁm’—:ﬁm(ﬁm—ﬁjm)

in which Hjm and Hmy,=increments in the hori-
zontal cable tension in spans jm and mw#, respec-
tively; jim=torsional spring constant of tower top.
m; and 7m=reciprocal of gm. These constants.
must be evaluated by the torsional analysis of
the tower, for which Baron and Arioto’s paper®:
will be of help.

An equation similar to Eq. 48 will be obtained
for #,. Substitution of these equations in Eq. 47
renders the following cable equation:

Din i=§+1 51,Xz + gmﬁjm“(lfmn'i'(;m’l'd—n)ﬁmn

B N | N (49)
in which
dm=EcAcim, and dnp=F, AgTigeesvesereessesens (50)

(2) When Cable is Movable at Tower Tops

In this case, Hmn becomes uniform for all spans.
and is denoted simply by H. For the three-span
bridge shown in Fig. 4, the cable equation be-
comes identical with Eq. 31 except that &;, X,
and H* shall be changed to 5;, X:, and H, re-
spectively.

(3) Displacements and Member Stresses

The horizontal cable displacement, #;, as well
as the deflction, #;, bending moment, M;, and
shear, S;, of stiffening trusses can be computed
by the equations for the case of P¥ by changing
X, by, H,, and % to Xi, b, Hun, and 7m, re-
spectively.

The vertical cable displacement, #;, the incre-
ment in suspender tension, 7%, and twisting mo-
ment, Z;, shall be computed by Egs. 37, 40, and
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41, respectively. The angle of twist of the sus-
pended structure, ¢;, is

¢i= —yb—i', (i:m—}-l’...,n_l) ............... (51)

and the increment in the cable tension, N, is
Ni=a; cos ¢; A+ (be/b)le: sin : X+,
F=mt1,eee, m)eeererneeenns (52)

(4) Final Results

Take, for example, the vertical deflction of
stiffening trusses. Once the values of y¥ and ¥
are known, the actual deflections on each side
are computed by

Yyi=y¥+§,
respectively. This procedure shall be applied
also to other items except the twisting moment
and angle of twist of the suspended structure
that are unrelated to P and are to be computed
by Egs. 41 and 51, respectively.

and Yl yF—G ceeeerererns (53)

5. STRAIGHT BACKSTAY

In some cases, cables in end spans are not at-
tached to roadway structures and become to play
the role of backstay. As these cables are prac-
tically straight, the backstay spans can be con-
sidered each as a single panel.

- im
o
Ajm I (n—m)ﬂ,mn —] i

Fig. 5 Bridge with Backstay Spans.

Take Fig. 5, for example. Both side spans are
viewed as single panels with cable length of [n
and /-, respectively. The parameters, a; and b;,
to be computed by Eq. 10 as well as the incre-
ment of the horizontal cable tension in the panel
j-m are denoted as ajm, bjm, and Hjm, respec-
tively. Then, if Eq. 8 is applied to the panel
j-m and it is noted that uj, v;, and vy must
vanish, the following equation for #s, is obtained.

1 . .
Mm=ijmHjm, in which Ljyn=ajmlm
.............................. (54)
Eq. 54 holds also between u/, and H/,,. There-
fore, for u#* and dn:
1 1 -
* — * YA .
u¥ = A, LmH%, , and i B, LjmH jm
.............................. (55)

Similar equations will be obtained for #¥ and

iin. These equations are what are to be substi-
tuted in the cable equations, Egs. 26 and 47.
However, further details are not given to comply
with space limitation.

6. EXAMPLE I—FOUR-SPAN BRIDGE

To illustrate the proposed method and to know
the torsional behavior of multispan suspension
bridges, computations were made on a tentative
design of a four-span highway bridge, shown in
Fig. 6, planned for the crossing of the Kurushima
Straits in Japan.

~
=3 74,40m 62.15 &
@t - —— - e a1 14
2 e e 4 I d—— »
e 1 e
'§ il 20%4595:919.00 676 _ 20 x41,95:839,00 4’5 o
|.300m 930m 850 m 255m

Fig. 6 Example of Four-Span Bridge.

(1) Structural Properties

The general dimensions of the bridge are shown
in Fig. 6. The cables are assumed as fixed to
tower tops by the friction between the cables and
saddles. The cables and stiffening trusses are
spaced in a same width of 27m. The cables in
the end spans are not attached to roadway struc-
tures and so both end spans were assumed each
as a single panel. Although it was well possible
to make the analysis based on the actual sus-
pender spacing, it was done by dividing each
truss span into twenty equal panels. So, the
division points were labeled as shown in Fig. 6,
the left anchorage being labeled 0, the tower tops
1, 21, and 41, and the right anchorage 42, re-
spectively.

The cable area is: A;=0.4588 m?. The moment
of inertia of the stiffening trusses in both main
spans was estimated at 2.8m*. As regards the
St. Venant torsion constant of the suspended
structure, K, it was estimated at 4.0 m* from an
approximate analysis on an equivalent thin-walled
box section. Elastic constants were taken as:
E.=196x 10 kN/m?; E=206x10*kN/m?; and G=
80 x 108 kN/m?2.

The main tower was designed very stiff with
a spring constant of u}=7845kN/m for sym-
metric loading. Its torsional spring constant was
evaluated at f21=37 270kN/m. The side towers
are stayed by the end-span cables and their stiff-
ness scarcely affects the structural behavior of
the bridge so that their spring constant was as-
sumed as 1000kN/m for symmetric and anti-
symmetric loading alike.
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(2) Loading

The dead load to be borne by the cable on
either side was estimated at 141.1kN/m. This
causes H;=205 100 kN. The coefficient of horizon-
tal cable tension becomes: £=0.002279.

The bridge carries two separate 9-m-wide road-
ways. The live loading specified by the Honshu-
Shikoku Bridge Authority was adopted. The
analysis was made for the antisymmetric loading
shown in Fig. 7(a), in which the linear loading
is applied at each span center. The loads are
applied as shown in Fig. 7(b) and (c) and are
transmitted to the stiffening trusses on either
side as shown in Fig. 7(d), from which the panel
point loads, P; and P/, and then the symmetric
‘and antisymmetric loads, P;* and P;, were eval-
‘uated.

(a)
o 1! 21 31" ' L2

! 1
J 1 . : e i
4 /////////////Ilj . 5
o 21 1 b2

300m | 950 m | 8s0m |.255q]

49,0 kN/m
2k.5 kN/m

2,490 1N/n
1,245 kN/n

5.5 k.05 .
3.5 3095 3.5

27.0 k— —27.0 ——
(b) Uniform Loading

14.05
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102.5 kN

o

235.0 kN
12.85 kN/m 32
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21 31 41 G2

(d) Load Distribution on Each Side of Bridge

Fig. 7 Live Lording of Example I.

(3) Results of Analysis

The analysis was made by taking account of
the structural feature that the tower tops are
located at different elevations and the points of
support of the stiffening trusses lie 6m and 5m
distant from the main and side tower centers,
respectively.

As already noted, the equivalent St. Venant
torsion constant of the suspended structure, K,
was estimated at 4.0m*. However, in order to
know the effect of the torsional stiffness of the
suspended structure, comparative computations
were made by disregarding the torsional stiffness,
ie., by assuming K=0, as well as by assuming
K=2.0 and 6.0m*.

First, the increments in the horizontal cable
tension in each span and on each side as well as
the unbalances across the main tower top are

Table 1 Increments in Horizontal Cable Ten-
sion, in Kilonewtons.

Item K=0 K=2m4 K=4m4 K=6m*
Ho,1 17 029 14 611 13 985 13 643
Hi,z 16 099 14 673 14 044 13 701
Hoi, 41 8 685 10 322 10 956 11 289
Hi, a2 8 653 10 286 10 916 11 289
Hy,1 8 230 9 683 10 309 10 650
Hiz 8 265 9 724 10 353 10 696
Hiia 15 604 13 967 13 334 12 963
Hi1, e 15 549 13 918 13 289 12 915
4H31 —7 414 —4 349 —3 088 —2 374
4H1 7 339 4 242 2 981 2 267

listed in Table 1 in kilonewtons. These incre-
ments are all about 7% or less of Hg=205 100 kN.

In the present example, the cables were as-
sumed as fixed to tower tops by the friction be-
tween the cable and its saddle, and it was a
matter of concern that the unbalance of the hori-
zontal cable tension across the main tower top
might become to exceed the safe limit of the
friction, which, if the coefficient of the friction
is taken 0.15, lies in most cases at about one-
tenth of Hg, i.e., some 20 000kN in the present
case. The actual unbalance in the case of K=
4.0m¢, however, was found to amount to mere
3000kN or so as given in Table 1 and so it was
concluded that the antisymmetric loading présents
no problem whatsoever regarding the cable an-
chorage at the main tower top. Across the side
towers, there occurs scarcely any unbalance in
the horizontal cable tension as can be seen in
Table 1.

Of the various results of the analysis, the hori-
zontal displacements of the cables, vertical de-
flections and bending moments of the stiffening

K=0 0.191(X=0)
0.047(K=6) K=2
0.045(K=k) K=l 7\ 0.108(k=2)
0.043(x=2)  K=6 0.075(K=4)
0.036(K=0)-— " 0.055(k=6)
o~
N\
M S PReesiin NUR L
1 ; =
21
-0,046(K=k)
-0.048(K=6)
-0.050(K=2)
\ . ~0.056(X=0)
1L 21 41
. TN
o.og9(1<=07" AN S e
0.062(K=2) - T20.031(K=0
o-060(keh) o-o8s k-0l =0.037(k:2)
0.058 (K= N . ~0.039(K=!
=0.122(k=2)"\ //\ -0.0k1(K=h)
-0.204(K=0) K=0
Fig. 8 Horizontal Cable Displacement, in

Meters.



Multispan Suspension Bridges Under Torsional Loading 99

trusses, and the twisting moment to act upon the
suspended structure are shown in Figs. 8, 9, 10,
and 11, in which the values for the actual case
of K=4.0m? are plotted by thick lines and the
results when the torsional rigidity of the sus-
pended structure is disregarded, i.e., K=0, are
shown by dotted lines.

=0.140(K=0)
1T ——— 21 397 L1
" /
0. 124 (K=2) \\ + /2
0.229(K=4) N 7
4.288(K=06) 0.638(K=6)<" /
0.697(=k) s
0.809(K=2)—" \\J_//
1.095(K=0)
-0.215(K=0)
- i - T
N 721
\\ + 7 0.070(K=2}
N G 0.183(¥=4)
\\\ 6.696(K=6) 0.241(K=6)
S| 0755 (k=)
1.125(K=0)  0-B60(K=2)

Fig. 9 Vertical Deflection of Cables and Stiff-
ening Trusses, in Meters.
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/8 506 (x2n) 3357062)
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Fig. 10 Bending Moments of Stiffening Truss-
es, in Kilonewton-Meters.

K=6
17 040 (K=2) K=b 18 811(K=2)
24 581 (K=4) K=2 26 378(K=4)
28 770(K=6) 30 661(K=6)
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+

-28 736(X=6) -30 576(K=6)
-24 539(K=k) -26 273(K=k)
-16 989(K=2) -18 682(K=2)

Fig. 11 Twisting Moment of Suspended Struc-
ture, in Kilonewton-Meters.

One major item of concern in the present ex-
ample was the torsional deformation of the bridge
structure, in particular, the torsion of the main
tower and the twist of the roadway structure.
The main tower top moves together with the
cables resting thereon 0.088 m toward the 930-m

span on one side and 0.075m toward the 850-m
span on the other side. This means that the
tower top is twisted by (0.088-+0.075)/27=0.006
radians, a twist that may be considered practi-
cally insignificant.

The twist of the roadway structure is propor-
tional to y;—y}, or %i, and becomes maximum
at each span center as shown in Fig. 12. In the
actual case of K=4.0m4, the maximum twist is
about 2% which will hardly obstruct traffic on
the bridge. Thus, it can be concluded that the
torsional effect of the antisymmetric loading of
Fig. 7 need not be feared insofar as viewed in
the light of statics.

1.51(K=6)

1.95(K=4)

2.73(K=2)

4 4,67(K=0) 21 21 e
S 1. ~4,85(K=0)
N Kb ~2.67(K=2)
N Kok ~1.90(K=4)
~ PRGN -1.53(K=6)
~ ~ T
S P K=0

Fig. 12 Angle of Twist of Suspended Struc-
ture, in Radians x 102,

As regards the effect of the torsional resistance
of the suspended structure, the results shown in
Table 1 and Figs. 8 to 12 clearly show that tne
negligence of the torsional stiffness of the struc-
ture leads to quite erroneous results and that
once the analysis is made by considering the tor-
sional stiffness of the structure, there arises no
great difference even if the equivalent torsion
constant, K, varies from 2.0m? to 6.0 m*. There-
fore, it can be said that enough exact results will
be obtained by assuming an adequately evaluated,
equivalent torsion constant.

7. EXAMPLE II—-THREE-SPAN RAIL/
HIGHWAY BRIDGE

.In Fig. 13 is shown a three-span bridge to carry
a six-lane highway on the upper deck and two
double-track railway lines on the lower deck,
planned for the crossing of the Bisan Straits in
Japan. Analyses were made on a tentative de-
sign of this bridge for the one-sided live loading
shown in Fig. 14.

190m. 37m
5 /- 25
0 [ 30
+ S nolon
260m _toom_ | 2e0om 32m

Fig. 13 A Tentative Design of Three-Span
Rail/Highwry Bridge.
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The main span measures 1 100 m between tower
centers and both side spans 260 m from anchorage
to tower center. The cables rest on movable
saddles, sagging 100m in the main span in the
initial state. While the stiffening trusses are
spaced 32m apart, the cables are laid in a width
of 37m center to center. Therefore, 5,=37m,
b=32m, and b/b=1.156. But, for comparison’s
sake, comparative computations were also made
by assuming b;=56=32m.

The analysis was carried out, for approxima-
tion’s sake, by assuming equal span lengths for
the cables and stiffening trusses. Each side span
is divided into five equal panels of 52m and the
center span into twenty panels of 55m. Accord-
ingly, the division points, i.e., panel points, were
numbered 0,1, 2,---, 30, as shown in Fig. 14, the
towers being numbered 5 and 25.

On either side of the bridge, the cable area is:
A;=0.7705m?; and the moment of inertia of the
stiffening trusses: lo,s=1Is,25= 125,35 =10.31 m*. The
equivalent torsion constant of the suspended
structure was evaluated at 24.36m! in the side
spans, and 20.73m! in the main span. The anal-
ysis is unrelated to the tower stiffness as the
cables are free to move at tower tops.

The dead load to be borne by the cable on
either side was estimated at 205.6kN/m in the

T. FUKUDA

Case 2 on a 370-m section in the middle part of
the main span. The lines of action of the loads
and the parts to be transferred to either side are
shown in Fig. 14.

(1) Results of Analysis

In the present case, the horizontal cable ten-
sion is always uniform throughout one side of
the bridge and its increments on the loaded and
unloaded sides are denoted simply by H and H’,
respectively. The computed values of H and H’
are listed in Table 2 as compared with the results
when b, is assumed to equal 5. Table 2 shows
that there arises no great difference in the cable
stresses on the loaded and unloaded sides and
the unequal spacing of the cables and stiffening

Table 2 Increments in Horizontal Cable Ten-
sion, in Kilonewtons.

Item Loading Case 1 Loading Case 2
H 34 780 (34 900) 49 830 (50 100)
H 22 450 (22 250) 33 005 (32 740)
H-H’ 12 230 (12 730) 16 825 (17 360)

N.B.: Values in parentheses are for bc=b.

main span and 208.6 kN/m in the side spans. The
horizontal cable tension due to these dead loads
was computed as Hz;=311 040kN, from which x= ,
-0.059 .075
0.002058. (-0.062) L
Two loading cases shown in Fig. 14 were con- * o 0.059
sidered. In both cases, one-sided highway load- (0.075) (0.062)
ing of 21.2kN/m is applied on the main span. -0.611
& . ! 'pp P ~0.241 (~0.747) ~0.241
In Case 1, railway loading of 39.5kN/m per track (-0.222) T (-0.222)
. . . (b) = 10 o ]
is applied on two tracks spreading 370m from - 20
“+
tower 5 toward the main span center, and in \\ //
~o i
CASE 1 2.455(2.078) ~0.620
. o 2R . -0,2H0 . -0.250
9 3 23 30" (~0.221t) (-0.728) (-0.224)
N 39.5 kN/m 27.2 Ki/m | () fuemm 10 == |
N D P> 20
o] i 50 v
| 260m 370 m 730m 260 m " ///
CASE 2 =741 N T
o' v 25¢ 30" (~69.6) 2.430(2.103) (-69.6)
-54.0(-53.9)
R 1.2 Ki/m 39.5 kN/n = -
| 3 (@) i 9 - -
° 5 25 30 I 18 25 28 30+
260 m 65 m 370 m 365 m 260m +
o \. s Loaded side
N\ /
~d.  e——— t Unloaded side
21,2 kN/m 4.4 39.5kN/m 197.00161.9)
9.0, I/ 23.0 8.5 19.1 (a) Horizontal dicplacement of cables, in meters
. {b) Vertical displacement of cables, in meters
(c) Vertical deflection of stiffening trusses, in meters
32m 2m (d) Bending moments of stiffening trusses, in HHen
15.2 KN/m 6.0kN/m  52.6 kN/m 26.4 kN/m

Highway Loading Railway Loading

Fig. 14 Live Loading of Example II.

Fig. 15 Results of Analysis for Loading Case
1 (Dotted lines and parenthesized
values refer to the unloaded side).
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Table 3 Values of Some Items as Compared with Those in the Case of d.=b, Given

in Parentheses.

Item Loading Case 1 Loading Case 2
Horizontal cable displacement at tower top, in meters ZZ :(().(1)(’;: ig;g;i ZZ :gﬁg Egizg;
Maximum horizontal displacement of cable, in meters ::Z :gzzg Egzz;z :; :gfg: nggg
Maximum vertical displacement of cable, in meters Z;z:zgi g:zg :z::?;i? ggzzi
Maximum deflection of stiffening truss, in meters izz:;izg gégg z;::fzzz ggzz
Maximum bending moment of stiffening truss, in MN«m gz :i:g ggi; %E:Zizég 823(15;

Note:

%, vi, ¥i, and M refer to the unloaded side.

-0.086 (-0:389) | _0.150
(o0 \\Q-o.-mo)
P o
(2) \{ - = 3% 2
©.110% . | = 0.086
0.150 ; (0.090)
-0.348 -0.348
(-0.323) (-0.323)
(v) Cahe NP == -
N )7
~ +
§ 7
\\\ ///
—0.347 0.347
(CoiTahy 2.428(1.90%) (-0;324)
©) = P . &
-107.1 ~107.1
~87.0 2.392(1.936) -87.0
(-100.9)|  (Tei oy - (-8k.gy | (=100.9)
] N <
|- -\ - -
(O 5 [ 22 25 28 30
: Loaded side *
______ Unloaded side N\ Vi

134.5{120.8)

(a) Horizontal displacement of cables, in meters
(b) Vertical displacement of cables, in meters
(¢} Vertical deflection of stiffening trusses, in meters
(d) Bending moments of stiffening trusses, in MN+m

Fig. 16

Results of Analysis for Loading Case
2 (Dotted lines and parenthesized
values refer to the unloaded side).

trusses exerts almost no influence upon the cable

stress.

The vertical and horizontal displacements of

is not so insignificant as to be entirely disregard-
ed, amounting to 0.58 m at point 9 in Case 1. It
must also be noted that at tower tops the cable
on the loaded side move 0.10m in Case 1, and
0.15m in Case 2.

It goes without saying that the loaded sidelis
subjected to greater deformation and stress
changes than the unloaded side. But, the differ-
ence is not so large as might be expected. In
the stiffening-truss bending moments, in partiou-
lar, the difference is quite insignificant as can be
seen in Figs. 15 and 16.

To know the effect of the unequal lateral spac-
ing of the cables and stiffening trusses, in Table
3 are compared the exact values of some char-
acteristic items with the results obtained by as-
suming d,=b0=32m. It can be seen that the
unequal spacing of the cables and stiffening
trusses exerts almost no influence on the struc-
tural behavior of the bridge.

-1_03_.9(—108.5)

ease 1 ks bo=b=32n
~12.1 -12.2
{=1.11) (=11.2)
o 2 =]
L + 30
B 24.3(22.6)  22.8(29.9)
. -55.6
Cay e
CASE 2 eI nig -16.6
__—ﬁ (=152}
o 25 e
s s
6.6 M iy
(15:? —(15.2)
- *;—g-"’" _2.@
(6&.5) (33.8)

the cables as well as the deflections and bending
moments of the stiffening trusses are plotted in
Figs. 15 and 16. The horizontal cable movement

Fig. 17 Twisting Moment of Suspended Struc-
ture, in MN-m (Parenthesized: values

for be=b).
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Table 4 End Reactions of Stiffening Trusses,
in Kilonewtons.

Loading | Point g;gg;ng g)‘;%?(‘m Resultant
5 1 840 3 216 5 056
57 1576 -3 216 -1 640
Case 1
25 —460 713 253
257 —458 ~713 -1171
5, 25 ~960 1319 359
Case 2
5/, 25/ —922 -1 319 -2 214

The twisting moment to act upon the suspended
structure is shown in Fig. 17, in which the dotted
lines show the comparative values when b;=b.
The maximum occurs at span ends in Case 1,
and at quarter points in Case 2. The twisting
moment must be balanced by antisymmetric end
reactions of the stiffening trusses. As these tor-
sional reactions are far greater than what will
arise associated with the bending of the trusses,
there occur negative resultant reactions as shown
in Table 4. The end bearings of the trusses
must be designed for these resultant reactions.

Twist of the roadway structure is a matter of
concern related to the safety of railway operation.
As shown in Fig. 18, the maximum angle of twist
was found to be 0.0103 radians in Case 1, and
0.0142 radians in Case 2. These correspond to
changes in the cross grade of 1.0% and 1.4%,
respectively, and may be judged to cause no
trouble.

It has be stated that the unequal spacing of
the cables and stiffening trusses hardly affects
the flexural behavior of the bridge. On the
bridge’s torsional behavior, however, it exerts
certain influence as can be seen in Figs. 17 and

(~0.05) 1 (~0.05)
o 5 25 20
-
CASE 1 N b=37m, b=32m
NI bc=b=32m
.03(1.17)
-0.07 -0.07
(-0.06) 15 L—_O__g
o 30
CASE 2
e
~d - ,\ b=b=32m
1.42(1.65) ¢
Fig. 18 Angle of Twist of Suspended Struc-

ture, in radians x10—2 (Parenthesiz-
ed: values for b.=b).

18. To space the cables wider than the stiffening
trusses is definitely effective in reducing the twist
of the suspended structure. In particular, the
angle of twist is reduced approximately in inverse
proportion to the ratio of b, to &.

8. CONCLUSION

A method is presented for analyzing multispan
suspension bridges subjected to asymmetrical
loading that causes torsion in the bridge struc-
ture. Equations were derived by means of finite
differences, viewing suspenders as isolated mem-
bers which they are, with due consideration given
to the deformation of cables.

Examples are presented for a four-span high-
way bridge and a three-span rail/highway bridge.
By way of these examples it was found that
asymmetrical loading conceivable under ordinary
condition will present in general no serious prob-
lem insofar as statistically considered.

APPENDIX. DERIVATION OF EQS. 41 AND 42

From the theory of torsion, the twisting mo-
ment in the panel left of i, Z;, is related to the
angle of twist, ¢;, by

Zi=GKmi/’_i_"_¢i—_1 .................................... (56)
Amn
‘When Egs. 38 and 51 are noted,
4 -
¢i_¢i_1=2—g—‘=2pmxi/b ........................ 7)

Substitution of Eq. 57 into Eq. 56 renders Eq. 41.

The unbalance of the twisting moment across
section i, Zi4,—Z;, must be balanced by a couple
of reactions exerted by the stiffening trusses lying
on both sides of the suspended structure. If
these reactions are denoted by @; and taken posi-
tive when they result in vertical loads to act on
the stiffening trusses in the same direction as P,
the panel-point load, L;, to be sustained by the
trusses becomes

Li=Pid Qu—(bofb)Ti «+vveereveroeeemierivnmnennnnes (58)

The couple of @i, i.e., @b, must equal Z;4y—
Zi. Therefore, if Eq. 41 is noted
Zip1—Z; > =
Qi= z+1b i E3T 0 CINESD €) TS NPPPIPRPIS (59)

If Q; of Eq. 59 and T; of Eq. 40 are substituted
into Eq. 58, the result is

Li=Pi—[(bo/bks+vmal X
F1(be/b) k141 -+ vmn) X 141
F(be/bY(Bs—bitr)H g ++eevveeeemreeerennenns (60)

which is namely Eq. 42.
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NOTATION

The following symbols are used in this paper:
Ac=cross-sectional area of cable;
Asi, Bi, C;=coefficients in basic equations;
A, B;, C;=coeflicients in basic equations for anti-
symmetric loading;
ai, by, bi=parameters defined by Egs. 9 and 43;
b, bo=spacing of stiffening trusses and of
cables, respectively;
D, Lip=constants defined in Eq. 27;
d%, dm=constants defined in Eq. 30 and in Eq.
50, respectively;
E, Ec=Young’s modulus of stiffening truss
and of cable, respectively;
G=modulus of rigidity of suspended struc-
ture;
Hi=horizontal cable tension due to dead
loads;
H;, Hun=increment in horizontal cable tension

in panel left of 7, and in span m—mn,
respectively;
i, i’ =opposite lying panel points;
Inn=moment of inertia of stiffening truss
in span m—mn;
Kmn=equivalent torsion constant of suspend-
ed structure in span m—#n;
ki, Ei=parameters defined in Eq. 20 and in
Eq. 43, respectively;
L;=vertical load to be sustained by stiffen-
ing truss at i;
l;, 4l;=initial length of cable segment left of
1 and its increment;
M;=bending moment of stiffening truss
at ¢;

Na,:, N;y=initial tension in cable segment left of
i and its increment;

P;, P/=concentrated loads at ¢/ and ¢, respec-

tively;
Pr=(P;+P/)/2, symmetric load;
Pi=(P,— P})/2, antisymmetric load;
Q;=reactive force to counteract the un-
balance of twisting moment;
S;=shear in panel left of 7 of stiffening
trusses;
T;=increment in suspender tension at 7;

u;, Vi, =horizontal and vertical displacement

of cable;

Va,s, Vi=initial vertical component of cable ten-
sion and its increment in cable seg-
ment left of ¢;

X;=Dbasic unknown defined in Eq. 14;

yi=vertical deflection of stiffening truss.
at 7;

Z;=twisting moment of suspended struc-
ture in panel left of ¢;

ai, Bi, yi=parameters defined in Eq. 6;

7%, Am=reciprocals of g¥ and fim, respectively;
r=coeflicient of horizontal cable tension;
i;=panel length left of ¢;

Amn=constant panel length in span m—u;
p¥, gm=spring constant of tower m for sym-
metric loading and for torsional load-
ing, respectively;
vmn=constant defined in Eq. 41;
pmn=constant defined in Eq. 15;
&:, dp;=initial angle of cable slope and its in-
crement after deformation; and
¢i=angle of twist of suspended structure:
at 1.
Note: Displacements and stress changes due to-
P¥ and due to P; are identified as H},,
ﬁmn; Ti*: TZ) X]*’ Xl; y;k’ Yi; et al.
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