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ITERATIVE OPTIMAL PLASTIC DESIGN OF
STEEL FRAMES*

By Nobutaka Isoixawa**

1. INTRODUCTION

It is well known that the three basic conditions
to be satisfied by any plastic design of a steel
structure are [1] equilibrium, [2] mechanism and
[3] yield. A number of optimal plastic design
methods have been developed that take these
three conditions into account in a variety of
ways. For example, some methods?»19~19 based
on the static theorem simultaneously satisfy the
equilibrium and yield conditions in the design
process, with a subsequent check of the mecha-
nism condition. Conversely, other methods®»8)
9,12,19 hased on the kinematic theorem simul-
taneously satisfy the equilibrium and mechanism
conditions, with a subsequent check of the yield
condition. There are still other proposed meth-
0ds®»® where, in a highly efficient technique, all
three conditions are simultaneously considered.
While all of these methods have no intrinsic dif-
ficulties, they become increasing difficult to apply
as the complexity of the structure increases!®.

This study presents a kinematic approach to
the optimal plastic design of framed structures
using linear programming. Here, the design pro-
cess involves the minimization of an objective
criterion (i.e., total steel weight) while satisfying
the equilibrium and mechanism conditions i.e.,
the limit equilibrium condition that the structure
may not fail in any of the all possible collapse
modes prior to the specified design ultimate load
level.

Theoretically, the constraints to the design
should include the complete set of limit equilib-
rium equations pertaining to all possible collapse
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modes for the structure. While the design of
simple structures poses no problem in this re-
gard, there are considerable difficulties with the
condition of limit equilibrium in the case of com-
plex structures having a large number of possible
collapse modes. Not only is the determination
of all such modes a tedious task, but the total
inclusion of the corresponding limit equilibrium
equations as constraints to the design often makes
the problem size prohibitive. It is said!® that
the number of all possible collapse modes for
a five-story, five-bay frame is about 70,000. In
attempting to overcome these problems, it has
been recognized!?»14 that it is not likely that all
collapse modes will be critical for any one de-
sign and, therefore, that only a limited number
of equilibrium constraints need be considered.
Even then, aside from the difficulties in finding
these critical modes, the question still remains
as to how many and which modes to take as
constraints to the design.

The present paper develops an iterative optimal
plastic design technique!® that overcomes the
above noted difficulties with the limit equilibrium
condition. Essentially, the procedure involves the
performance of a series of minimum weight de-
sign where, at any one stage, the limit equilib-
rium equation pertaining to the critical collapse
mode for the previous design is added to the
constraint set for the next design. The initial
constraints to the first optimal design pertain
to the elementary mechanisms excluding joint
mechanisms. Upon succeeding iterations, the
final design is achieved when a subsequent
strength analysis finds the collapse load for the
design to be greater than or equal to the speci-
fied design load level. Both the plastic design
and strength analysis processes are formulated
as linear programming (LP) problems. The opti-
mal plastic designs for three example frames are
presented. Results are achieved using a special-
ly devised computer program (Fig. 1) that deter-
mines the optimal design and its active equilib-
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rium constraints, and, in addition, also identifies
the sequence in which the various active collapse
modes become critical to the design. In every
case, convergence to the final design is very
rapid and the number of equilibrium constraints
considered by the design is considerably less
than the total number of possible collapse modes
for the structure. Larger and more complex ex-
amples that all possible collapse modes can not
be determined by a hand work are readily pos-
sible, but it is believed that those presented are
sufficient to illustrate the simplicity and efficiency
of the approach!®,

2. OPTIMAL PLASTIC DESIGN

Based on the kinematic approach, the optimal
plastic design of a steel frame with flexural
members may be stated as the following LP
problem?®,8:

minimize:

Z=hf=;l MpnLp,  veeeeerevmnneniennncnisennins (1a)
subject to:

L CaMmzter  (r=1,2,-:+,p) -(Ib)
and:

e | S N (1c)

where Eq. (1a) represents the selected objective
criterion of minimum total weight of the frame,
Eqgs. (1b) define the limit equilibrium conditions
pertaining to all possible collapse modes. A=in-
dex referring to the number of design variables
in a structure; z=number of design variables,
Mpn; Crn=coefficients indicating the contribution
of My in the r-th equilibrium condition; Mpy=
the unknown design plastic moment; Lp=the
member length over which My, is constant; Z=
the total weight of the frame at some scale; p=
total number of possible collapse mechanisms;
er=measure of external work by service loads in
a collapse mechanism 7; 7 =index referring to
possible collapse mechanisms; A,=specified de-
sign load factor on the service loads (i.e., pro-
portional loading assumed).

It should be noted, however, that Egs. (1b) are
classified by limit equilibrium equations pertain-
ing to elementary mechanisms excluding joint
mechanisms and combined mechanisms, respec-
tively. That is,

M

@inMpn = Aot
1

bnMpn > Aoex
1

TTL\'J:

where i, k=indexes referring to elementary
mechanisms and combined mechanisms, respec-
tively; ain, bxn=coefficients indicating the contri-
bution of My, in the i-th elementary mechanism
and in the k-th combined mechanism, respective-
ly; e;, ek=measures of external work by service
loads in a elementary mechanism ¢ and a com-
bined mechanism k; g=total number of elemen-
tary mechanisms excluding joint mechanisms,
i.e., beam and panel mechanisms.

The problem posed by Egs. (1a), (ic), (1d) and
(le) involves the determination of the optimal
set of design plastic moments My (h=1,2, ---, n).
Here, all possible collapse modes are considered
and, as such, the need to check the yield condi-
tion is eliminated.

3. COLLAPSE LOAD ANALYSIS

Based on the kinematic theorem!®, the collapse
load analysis of a flexural frame may be stated
as the following LP problem!®:

minimize:

,1,c=§ (M0, 4+ Mp7,))  weovervenseeenenne (2a)
subject to:

01=0%= 5 tubiy=0  (7=1,2,--,9)

.............................. (2b)

lg Bii@im= ] eeeereneeneieeeeeneaie et (2)
and

OFps 075320 ereevveemmminnineentisinianas (2d)

where Eq. (2a) defines the internal energy dissi-
pated in forming the critical collapse mode for
a unit value of external work, Egs. (2b) express
the condition that the relative rotations of the
plastic-hinge sections in the critical collapse mode
are each a linear combination of the relative
rotations associated with the elementary mecha-
nisms for the frame, and Eq. (2c) defines the
condition that the external work is equal to
unity. The quantities in Eqs. (2) are defined as
follows: j=index referring to critical sections;
m=number of elementary mechanisms; s=num-
ber of critical sections; Axz=collapse load factor
corresponding to collapse of the frame in critical
collapse mode k; ;j=relative rotation of section
j in elementary mechanism ?¢; fx;=factor defin-
ing the way and extent to which elementary
mechanism ¢ enters the mechanism combination
forming the critical collapse mode k. Because
a standard LP constraint is that the variables be
non-negative, fx; is transposed as fx;=t};—¢. ;=
value of f4: in positive solution space for trans-
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posed LP problem; #=positive constant used to
transpose LP problem into positive solution space.
My, M;;=the plastic moment capacities of the
positive and negative direction at the section j,
respectively; 0%;, 87,=absolute values of relative
rotation of the positive and negative direction at
plastic-hinge section j in collapse mode k, re-
spectively. All other quantities are as defined
for Egs. (1).

Here, the set of plastic moment capacities M3,
(j=1,2,--+,5) are known and the analysis in-
volves the determination of the collapse load
factor, A&, the set of relative rotations defining
the critical collapse mode k, 6%; (7=1,2,---,5),
and the set of factors defining the combination
of elementary mechanisms forming the critical
collapse mode k, fx: (1=1,2,-+-, m).

4, ITERATIVE OPTIMAL PLASTIC
DESIGN

The iterative optimal plastic design is perform-
ed as follows (see Fig. 1):

READ:
: elementary mechanisms ; e;,8;
(i=2,..,m; 1=12...,8)
. specified load factor ; Ag
i

structure dimensions; s,m, n

SET : limit equilibrium costraints
pertaining to elernetary mechanisms
excluding joint mechanisms
k=1
i
PERFORM : L P optimal plastic design tfor current set
] of timit equilibrium constraint equations
SOLUTION :  Mph{(h=12,...,n) = design moment
capacities
'
PERFORM : LP collapse load andalysis for current set
of plastic moment capacities
1
SOLUTION : Ay =collapse load factor for criticat mode  k
0y; = relative plastic hinge rotations for mode k

7\k§7\0?IY

111

(1) Construct the elementary mechanisms with
05 and ¢ (i=1,2,---,m; j=1,2,---,5) as the
input data.
(2) Initially take the limit equilibrium equations
pertaining to the elementary mechanisms exclud-
ing joint mechanisms (i=1, 2, - - -, ) as the equilib-
rium constraints and perform an optimal plastic
design to determine a set of Myn (B=1,2,+--, 7).
That is, the first optimal design may be ex-
pressed by the following non-dimensionalized
matrix form.

minimize:

subject to:
a1x>lo
ax Ay
agx>2

x>0
where Egs. (3b) correspond to Egs. (1d), respec-
tively., L=[L.L,---Ly)/L; 2=Z|WL?; ai=[aqai

sh
cecagm)Wlhies; am= 3, (05+607) (=12,
J=sn~1+1
ceeym; 1=1,2, ---, g); sp=the maximum num-
ber of critical sections which are controlled
by the design variable Mpn, for instance, s;=
4, $2==7, s3=11, s,==14 in the frame as shown
in Fig. 6. Therefore, so=0 and sp=s; W, L
=3a standard service load and a standard
member length;

Xy Mpl
e x| 1 Mps
AN
Xy Mpn

Solving Eq. (3), the set of initial solutions
Xo is found to be the set of the lowest values
among the design moments because of adopt-
ing independent elementary mechanisms as
the equilibrium constraints.

(3) Perform a collapse load analysis to de-
termine the collapse load factor and the
critical collapse mode corresponding to the
set of plastic moments found in the previous

IlS:

ul
I N

AMPLIFY : equilibrium constraint set by limit equitibrium
equation pertaining to current critical mode k

design.

That is, the collapse load factor A and the
critical collapse mode by corresponding to the
set of plastic moment xi-; found in the k-th
optimal design are determined by the k-th
collapse load analysis as follows:

STOP i—

Fig. 1 Flow Chart: Iterative Optimal Plastic Design.
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8
where b= f 0F;+6%;) (h=1,2,--., m);
+1

F=sn—-1
&y Mpl
X2 1 | Mpe
Xi—1 = . =ﬁ/f . s
Xn ) r—1 Mpn k-1
Mm:M;j: 1Y (j=17 2,0, 81),

Mp=M=M;;  (j=sit1,+:+,83),

Mon=Mp; =My, (F=Sn-141,++-,9),

It should be noted that Eq. (4a) expresses a

hyperplane with the slope by passing through the
point Xxp-; in the xi, &2, -+, Xn-space, geometri-
cally and that Eq. (4b) defines a collapse in the
weakest part of the structure.
(4) Depending on the values of I found in
step 3, proceed in one of the two following ways:
(a) if 2x<A, the structure may fail in the col-
lapse mode by prior to the specified ultimate load
level, as the hyperplane expressed by Eq. (4a) is
located in the outside of the k-th feasible design
region even if it passes through the extreme
point Xxz-1 on the boundary lines of region.
Therefore, in order that the structure may not
fail in the collapse mode by, add to the previous
set of equilibrium constraints a new limit equilib-
rium equation pertaining to collapse mode found
in step 3 (i.e., bxx>2) and perform another op-
timal design to determine a new set of design
moments xx. Return to step 3.

That is, the (k+1)-th optimal design may be
formulated as the following LP problem.

minimize:

z=Lx
subject to:
aix>2

axx>>Ao
agx>Ao
bix>2
b2x>20

bp-1x>12
BLX A cvevvvrerrrreranaianaaaeasiiiiniinienaes (5¢)
x>0 ............................................. (5d)
where Egs. (5b) express the previous set of
equilibrium constraints and Eq. (5c) defines the
new limit equilibrium condition.
Here, it should be noted that Eq. (5¢) repre-
sents an active constraint for the (k41)-th opti-

mal design.

As it is obvious that the values xi found in
Eqgs. (5) satisfy the new limit equilibrium con-
dition Eq. (5c¢),

DX s Qo wevveversnnseeeeersreneererrnrisiirns (6a)
On the other hand, from Eq. (4a) and %<2,

BiXiag < Ap +ovverrenrrnrrnreniininnienienneasennes (6b)
Therefore,

[ T T S (6¢)

Eg. (6c) means that the previous hyperplane
with the slope by passed through the point Xz
is lifted up in parallel to the new hyperplane
passed through the point xx in the feasible de-
sign region. Because it is found that zy, xs, -+,
Zy-intercepts of the new hyperplane defined by
the left-hand side of Eq. (6c) are greater than
those of the hyperplane expressed by the right-
hand side of Eq. (6c), respectively.

Repeating step 3 and 4 (i.e., k=1,2,-.-.), the

required feasible design region excluding inactive
constraints is finally formed by adding to the
previous constraints Egs. (5b) the new active
constraint Eq. (5¢).
(b) if 2x>2Ae, the structure may not fail in any
of the all possible collapse modes prior to the
specified ultimate load level. Geometrically, the
hyperplane Eq. (4a) determined by the k-th col-
lapse load analysis is located in the inside or on
the one of boundary lines forming the feasible
design region defined by Egs. (5b). Actually, A
=Jp, i.e., the collapse mode bx coincides with
the one of the previous collapse modes a;, az,
eee,dq, by, by, + ¢, bp—y and the set of final optimal
design moments x; has been found to be the set
of correct solutions.

To prove the iterative approach mentioned
above geometrically, a simple example as shown
in Fig. 2 that has been investigated elsewhere!®)
is examined in detail.

It is required to find the design moments x;
(=Myp [WL) and x: (=Mp:/WL) which minimize
the objective function z=3x;+ 22, while satisfy-
ing the limit equilibrium conditions correspond-

min.: Z = 3x+* 2%z

Fig. 2 Frame Geometry and Service Loading.
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(@) 4x /31 (D) 4xy3>1

(c) x/2+x, 1 (d) 2x,/3+2%/3 1

() xi+x2/2 =1 () 2%+ 2x2 =1

Fig. 3 Possible Collapse Modes
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033=1
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Fig. 4 Elementary Mechanisms

ing to all possible collapse modes shown in Fig.
3 (=1 is assumed). Although the solution to
this problem may be easily found by only one
LP application as shown in Fig. 5 (c¢), the pro-
posed method is firstly started with selecting the
elementary mechanisms as shown in Fig. 4 with
their #;; and e¢; values (it is assumed that posi-
tive moments and plastic rotations are associated
with tension occurring on the side of the frame
closest to the dotted line shown in Fig. 2).

Performing the first optimal design by adopt-
ing two elementary mechanisms in Fig. 4 (a), (b)
(or Fig. 3 (a), (b)) to be the initial constraints,
i.e., the lines @, ® in Fig. 5 (a), the solution is
found to be the extreme point A (x1=0.75, ;=
0.25) as shown in Fig. 5 (a). The first collapse
load analysis is then performed with 6;; and e;
values in Fig. 4 and the straight line ©’ that
passes through the point A is determined as fol-
lows:

11=—%~x1+x2=0.625

It is noted, however, that the straignt line ©’
in Fig. 5 (a) is located in the outside of the

M 2 A
FWL 2
o,
05} O
A2 02.0
. > .
0 0510 15 20 My
(a) WL
% b o
Zy
10 |
@\
N\
05 N
~ T Xy NN ©
O YIIIX:
0 05 10 15 20 x
(b)
X z, @
10 GN
NG
‘ XX
05 RN
5 N X \\ \\\\~ © ®
\\@l N\ \@I <:\-\-:-\-. '
0 05 10 15 20
(c)

Fig. 5 Geometrical Interpretation

feasible design region, i.e., 11<2 and therefore,
the frame will fail in the collapse mode shown
in Fig. 3 (c) prior to the specified load level.

Adding to the previous constraints, i.e., lines
@), ® in Fig. 5 (a) a new constraint x1/2+x.>1
to strengthen the weakness of the frame in the
second optimal design, it is found that the dot-
ted line ©’ in Fig. 5 (b) has been lifted up in
parallel to the line (© which represents an active
constraint. The second collapse load analysis is
then performed and the line @’ in Fig. 5 (b) that
passes through the point B (2:=0.75, 2:=:0.625)
is found to be:

2 2
22~—?’—x1+—3—$2—0.917 ..................... (8)

Eq. (8) indicates, however, that the line @' in
Fig. 5 (b) is still placed in the outside of the
feasible design region, i.e., A3<Z. The dotted
line @’ in Fig. 5 () is again lifted up to the line
@ to perform the third optimal design. It is
confirmed that a new straight line As=2x/3+
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2x2/3=1 determined by the third collapse load
analysis coincides with the line @ in Fig. 5 (c),
i.e., s=X and that the extreme point C (&=
0.75, x,=0.75) is the final optimal solution.

As evidenced by the geometrical interpretation
as shown in Fig. 5, the set of final results of this
approach is necessarily found converged to the
set of correct solutions. Because the approach
represents a design by finding and strengthening
the weakest part of the structure, i.e., the criti-
cal collapse mode.

5. EXAMPLES

(1) Example 1

In order to illustrate a fairy complex frame,
the two-story, one-bay plane frame® made of
perfectly plastic prismatic bars as shown in Fig.
6 is to be designed to resist a given set of ulti-
mate loads (here, a specified design load factor
A=1 is assumed). In this example, the con-
straints to the design should include theoretical-
ly sixty limit equilibrium equations corresponding
to all possible collapse mechanisms as identified
in the reference®.

The frame has s=14 critical sections, N=6
statical indeterminacies and, therefore, m=s—
N=8 elementary mechanisms that are taken to
be as shown in Fig. 7.

Initially taking four elementary mechanisms

3w

2w

e e

SIS

m
ot

9,

’

8]

777
2L—*l

Fig. 6 Example 1: Frame Geometry and
Service Loading.

) Ol

@, =9WL
-1 (4) 1 Bg=E4= ©4=€4=0
/ / 77 /L

Fig. 7 Example 1:

Elementary Mechanisms

(i=1, 2, 3, 4) excluding joint mechanisms shown
in Fig. 7 to be the limit equilibrium constraints,
the first optimal plastic design problem can be
formulated using Egs. (1a), (1c) and (1d) as fol-
lows:

minimize:
Z=(3+3)MpL+4Mpe L+(3+3)Mps L+ 4 Mps L
.............................. (9a)
subject to:
4AMp>6WL (i=1)
AMp212WL (z:=2) ............... 9b)
AMps>3WL (1=3)
4Mp =>9WL (i=4)
Mpr, Mps, Mpg, Mpg=>0  «ovvveviviiniinnnnnn. 9c)

By using the simplex algorithm, the solution to
the above problem is found to be: My =2.25WL,
Mpe=3.0WL, Mps=0.75WL, Mp=1.5WL and Z=
36.0WL2. Therefore, taking the Mpm (2=1,2,3,
4) found above to be the plastic moment capaci-
ties of the critical sections, M3 (j=1,2,..-, 14),
and adopting the elementary mechanisms given
in Fig. 7 with 0;5 and ¢; (¢.=1,2,---,8; j=1, 2,
-++, 14) values, a collapse load analysis is per-
formed to determine a new limit equilibrium
constraint for the second optimal design. The
critical collapse mode so found is k=1 in Fig. 8.
It is noted that from Fig. 9 for k=1 that the
first design violated the condition of limit equilib-
rium since Ax<Zo for elementary collapse mecha-
nisms excluding joint mechanisms (i.e., A=
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0.667%). From Fig. 8 for k=1, the correspond-

ing limit equilibrium equation is:
AMps+2Mp >9WL

Therefore, a second optimal design is then per-

k | Collapse Modes

2
-2

1 ~1 i

Fig. 8 Example 1:
Modes (k)

Critical Collapse

ZGwWR
54
52
48
44
40
36

Fig. 9 Example 1: Relative Safety (Ax/Ao)
and Total Weight (Z) versus Col-
lapse Modes (k)

formed with Eq. (10) added to the initial equilib-
rium constraint set expressed by Egs. (9b). Sub-
sequent collapse load analysis of the resulting
design to determine the current critical collapse
mode k=2 indicates, however, that the limit
equilibrium condition is still violated, as shown
in Fig. 9 for k=2 (i.e., 22=0.7502).

The iterative procedure is then continued and
the limit equilibrium condition is eventually found
satisfied for the fifth optimal plastic design, as
evidenced in Fig. 9 for k=5. It is noted that i
=2, for the collapse mode k=5 found to be cri-
tical for the final design, and from Fig. 8, that
this mode corresponds to the limit equilibrium
constraint k=2 found in the design process. In
fact, performance of an alternate collapse load
analysis!® for the final design determines that 2
=2, for all modes shown in Fig. 8, thereby indi-
cating a design with a great deal of plastic
adaptability and, hence, optimality. The set of
final design moments and the total weight of the
frame are found to be: Mp=3WL, Mp=45WL,
Mps=Mp=1.5WL and Z=51WL? These solu-
tions agree with the values found in the refer-
ence® and thé procedure considers only eight
collapse modes among sixty possible collapse
modes.

(2) Example 2

An optimal plastic design is required for the
one-bay, four-story frame as shown in Fig. 10 for

833 W
Wo® O ®
@| Mpg ol
1 |
w88 _@_i_"_____@'@»—
©| Mp7 @
I;M” 833W MP3E L
2W @2'® @L @'@___
@}______F/lp’;—_"" ®
Mp2 833W Mpzi L
2w QU@ _{ 90,
of T My T @
iMp Mi L
1 pr i
@l €]
T WWL

b— 1251 —f— 1351 —

Fig. 10 Example 2: Frame Geometry and
Service Loading.
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which W=1.6ton and L=4m. A design load
factor 2,=1.8 is specified for adequate ultimate
safety. The m=s5s—N=28—12=16 elementary
mechanisms selected for the structure are shown
in Fig. 11 with their 6;; and e¢; values.

-1 -1 1

The first optimal design is performed with
eight limit equilibrium equations corresponding
to beam and panel mechanisms in Fig. 11. The
condition of limit equilibrium is then checked
for the set of design moments resulting for the

' first optimal design by performing

0\3/0 7 1 —]'
Gg= WL
-1

©,=1042WL 1

collapse load analysis. The corre-
sponding critical collapse mode is
1 ¢1 k=1 in Fig. 12. From Fig. 13 for

-1

1
‘\3/' 1 ] 1
@,=3WL
-1 1

L essl0aawL

-1 k=1, it is noted that the design
violates the condition of limit

‘\3/0 1 g R
_10.42W G;=5WL
1 €,=10.42WL A 4 : 1

equilibrium since A<y for its
critical collapse mode (i.e., ;=
1,47 0.543%). The limit equilibrium

— 2 1 4 af

- equation pertaining to mode k=1

€ =1042WL 4 mTWL ] €i=0(i=910,--16) in Fig. 12 is then added to the

4 T 4 7 77}7/ constraint set, and the design pro-
BEAM (4) PANEL (4) JOINT (8) cedure is continued until the limit
Fig. 11 Example 2: Elementary Mechanisms equilibrium condition is found sat-

isfied for the ninth optimal design,

k | Coltapse Mode |k | Collapse Mode | K | Collapse Mode

as evidenced by the fact that ix=

2o for the collapse mode k=9 found
to be critical for this design as
shown in Fig. 13.

It is noted that Fig. 13 shows

a slight decrease in the collapse
load factor 1; and no increase in

{ the total weight Z for k=7, al-
though the seventh optimal design
has been performed with the new
constraint corresponding to mecha-
nism k=6 in Fig. 12 added to the

previous constraints. This pheno-
menon is due to the degeneracy®
in the LP problem, which is de-
fined by forming the weight com-
patible mechanism'® without con-
tribution of mechanism k=6 in
Fig. 12. Because it is confirmed
that the weight function Z=2(Mp:
+ Mpe+ Mps+ Myps) L+2.5(Mps+ Mps
+ Mp+ Mps)L agrees with the com-

posed mechanism of mechanisms
i=3,4,5 in Fig. 11 and k=2,3,4,
5,6 in Fig. 12 multiplied by the
coefficients 1/4, 1/8, 3/16 and 1/2,
1/8, 3/8, 5/8, 0, respectively and
that those mechanisms are satis-
fied as equations of limit equilib-
rium conditions in the seventh op-
timal design. However, although
the degeneracy has been arised in
the seventh optimal design, the

set of seventh optimal solutions is

Fig. 12 Example 2: Critical Collapse Modes (k) correct? and therefore, the set of
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Fig. 13 Example 2:

Relative Safety (z/i) and

Z(xw12)

Total Weight (Z) versus Collapse Modes
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analysis of this design determines that ;=4
for the three beam mechanisms denoted by
broken lines in Fig. 16 and, therefore, it is
very close to being a truly optimum strong-
column weak-beam design (i.e., all four beam
mechanisms having the possibility of form-
ing). The set of final design moments and
the total weight are found to be: Mpi=Mys
=1.250WL, Mp=2.083WL, My=1.667WL,
Mps=Mps=0.833WL and Z=30.938WL:2.

(b) Case II: The frame shown in Fig. 14
is to be designed with the added requirement

(k). that the beam and column sizes prevail con-
final optimal solutions is independ- 3w LW 3w LW
ent of the degeneracy in LP prob- w @___L—_@.@__—_l__‘—@_“_]_'__@@____l__—“@
lem. @ : Mp6@ @: Mps @ @ : Mg @ ) @ :- Mps @ : @T
The set of final solutions is found Moy W 1Mps oW : oW :Mp5 8 Moy, L
to be: Mp=3.835WL=24.54t-m, | | | |
M4 176 WL=26.73 t-m, M= w2 o | _ele | o D 4 oo __| __glo
1350WL=8.64t-m, Mu=d.689WL O} W@ OOM®  @EM® ©o%w: @ O
i ] i
=30.01 t-m, Myps=8.010WL=51.26 N oo ! Moo Mg Mo 1| 2L
t-m, Mpe=5.526 WL=35.37 t-m, My, \ \ ! ] |
=5, =37.21t-m, =4, @ ® O] @ J__
5.814 WL==37.21t-m, Mys=4.689 o e A2 W@ O
+WL=30.01t-m and Z=88.197 WL?
"™ . I.EL,I._§L+_§L_+§L_.I__§L_+§.L+_§_L_+ EL
=2 257.84t-m2.  Equilibrium con- 8 8 3 6 8 8 6 6
straints corresponding to mecha- Fig. 14 Example 3: Frame Geometry and Service Loading.

nisms i=4, 7 in Fig. 11 and k=2,
4,5,6,7,8,9 in Fig. 12 were satis-
fied as equations in the final de-
sign.

(3) Example 3

The four-bay, two-story frame
shown in Fig. 14 is to be designed
to resist applied load for the two

following cases (lo=1 is assumed).
(a) Case I: The relative de-

sign moment capacities for the
frame have been selected such
that the resulting optimal design
will represent a strong-column
weak-beam design, ie., Mp=1.5

1
_1/
717,

'Mp, Mp2=2.5Mp, Mp3=2Mp, Mp4=Mp, Mp5=
1.5Mp, Mps=Myp (My: a standard design moment

capacity).
The frame has 20 elementary mechanisms

shown in Fig. 15. Therefore, the first optimal
design is performed with 10 limit equilibrium
conditions corresponding to beam and panel
mechanisms (=1, 2, --+, 10) in Fig. 15. The col-

lapse mode becoming critical for the resulti

first optimal design is found to be the beam
mechanism denoted by solid lines in Fig. 16 with

Ar=2o.

Performance of an alternate collapse load

-1
(9) JW
7 / Vi/4 d
t -1 1 -1t <11 -1
-1 1] 12) -1103) 21704 (5N
R 14! RN -
[ 1 1 ! s alt B -1 §
(16) (17} (18) (19 (20
WZ “0)74 7/
wm Mm Mm dmwm wm wr W T
Fig. 15 Example 3: Elementary Mechanisms
-1 -1 - -
2 e ‘\2 ‘_,1
-5~ .-
as 1, y -1
v \‘\.‘_ -
4 /4 7 m 4
ne M/Ao =1.0

Fig. 16 Example 3: Critical Collapse Modes

(k) (Case )
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stant at each story, i.e., Mpi=Mp=a1, Mps=as,

Mp4=Mps=a3, Mps=a4 (a’1, Qgy, A3y A2 the design

moment capacities as independent variables).
The iterative design procedure is conducted,

k Collapse Modes

L1l 1

2
I T
3
L J
{1
5

6 ] J
Fig. 17 Example 3: Critical Collapse Modes
(k) (Case II)

Ml ho ZGWE)
23
21
H9
H7
115

1 2 3 4 5 6

Fig. 18 Example 3: Relative Safety (ix/4o)
and Total Weight (Z) versus Col-
lapse Modes (k) (Case II)

and the final design satisfying all limit  equilib-
rium conditions is found to correspond to the
sixth optimal design. The colilapse modes be-
coming critical at the various stages of the de-
sign are shown in Fig. 17, and the correspond-
ing convergence to the required limit equilibrium
conditions that x> for all possible modes is
indicated in Fig. 18. The final design is such
that A&x=2 for five of six modes (i.e., k=1,2, 4,
5, 6) shown in Fig. 17. The set of final solutions
are given as follows: Mp=Mp:=0.279WL, Mp;
=2.082WL, Mpi=Mps=0.143WL, Mps=1.063WL
and Z=20.804 WL2.

6. CONCLUSIONS

The paper has presented an iterative approach
to the optimal plastic design of steel frames
wherein the limit equilibrium constraint set is
progressively enlarged by means of a series of
analysis and design iterations until the condition
of limit equilibrium is found satisfied for all pos-
sible collapse modes. The procedure identifies
and considers only those collapse modes that are
critical to the design, and, therefore, circumvents
the need to consider a great many of the total
number of possible collapse modes. In fact, the
maximum number of collapse modes that need
ever be considered is equal to the number of in-
dependent elementary mechanisms for the frame.

The proposed method represents a design by
tracing and reinforcing the weakness of the
structure. The analysis and design phases are
both formulated as linear programming problem
and, as such, the procedure readily lends itself
to efficient computerization and may be of great
advantage to the larger and more complex frame
in which all possible collapse modes can not be
easily idendified by a hand task. It is of inter-
est to note that at most (#+1) or (#+2) comput-
ing cycles have been required for all examples
worked to date. Using an IBM 360/195 computer
of Japan IBM Company, the solutions for the
three examples presented were achieved in 11 sec,
18 sec, 12 sec (Case I) and 21 sec (Case II), respec-
tively.

‘With but minor revision, the method has direct
application to the optimal plastic design of struc-
tures subjected to variable repeated loading®,6),11
and may be extended to the designs allowing for
the effect of axial forces!»?,
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