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ELASTO-PLASTIC BEHAVIOR OF THIN-WALLED STEEL
TUBES UNDER COMBINED FORCES

By Sadao Komarsu* and Tatsuro SAKIMOTO**

SYNOPSIS

An incremental force-deformation relationship
under combined forces including uniform torsion
is derived about thin-walled closed cross-section
based on the flow theory of plasticity and von
Mieses yield criterion. Thin-walled tubes of
welded box cross-sections were tested under com-
bined forces of axial compression and torsion.
Some influences of residual stresses and loading
path on the inelastic torsional behavior of com-
pression members are discussed and the theo-
retical predictions are shown to be in good agree-
ment with the test results. On the basis of
these discussions, comments on the contradic-
tions between the flow theory and the defor-
mation theory of plasticity, appeared in the in-
elastic buckling problem, are presented.

1. INTRODUCTION

Shear moduli of structural materials stressed
beyond the proportional limit have aroused special
interest of many investigators, and their evalua-
tion has been regarded as an fundamental matter
in various structural problems. This problem
appeared, at first, in the experimental studies!’~®
which were performed to verify the validity of
the mathematical theories of plasticity, often
called flow or deformation theories?. These
tests were carried out with small test specimens
in uniform plastic state. The differences be-
tween these theories of plasticity were very dif-
ficult to examine and appeared slightly only
when the loading varies abruptly its path after
the specimen overstrained into deep plasticity.
In addition to the agreement of the theoretical
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estimation with . the experimental results, by
reason of mathematical consistency and physical
validity®, the flow theory of plasticity are con-
sidered to be rather effective than the deforma-
tion theory of plasticity.

Besides these experimental results, many in-
vestigators attempted to determine the magnitude
of inelastic shear modulus only at the beginning
of inelastic buckling, which was considered as the
bifurcation problem. For example, Bijlaard®»?
used the deformation theory, Haaijer® tried to
estimate it both by the flow theory and by local
buckling tests, while Lay® used slip theory. In
these studies, the discrepancies between the theo-
retical estimations and Haaijer's experimental
results are regarded as caused by the existence
of shear stress and initial imperfections. De-
tailed discussion is reported in Ref. 9. On the
other hand, Neall?> carried out experiments about
the elasto-plastic lateral instability of mild steel
beams and examined that the initial torsional
rigidity remains unaltered at its elastic value
under constant planar bending when partial
yielding has occured. This fact is to be neces-
sarily predicted by the flow theory of plasticity!®.

In order to analyze not only above mentioned
buckling problems, but also inelastic behavior
of space structures or planar structures with
initial imperfections, the force-deformation rela-
tionships of a member with partially yielded
cross-section need to be established. Particular-
ly, the absense of precice estimation of torsional
rigidity of partially yielded cross-section seems
to hamper the theoretical developments in these
fields'®. Hill and Siebel!®:19 tested thin-walled
circular tubes under proportional loading of com-
bined bending and torsion from elastic state to
fully plastic state and also showed that the ex-
perimental force-deformation curves coincide with
the prediction of the flow theory of plasticity
very well.

The purpose of this investigation is to examine
the torsional behavior of structural steel mem-
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bers with residual stress due to welding in the
elasto-plastic range under interaction of combin-
ed forces. Thin-walled tubes of welded box cross-
section and thin-walled circular tubes without
residual stress were tested under two sorts of
loading path, one of which is proportional load-
ing and the other is torsion under constant com-
pression. Attention was mainly paid to the di-
rection of deformation vector, initial and succes-
sive torsional rigidity, the yield criterion, the
influence of loading path on the torsional rigidi-
ty and so on. Some influences of the residual
stress on the inelastic torsional behavior of
compression members are discussed and the theo-
retical prediction of the flow theory of plasticity
are shown to be in good agreement with the
experimental results.

2. THEORETICAL STUDY

(1) Assumptions and Approximations

It is much important to make clear the incre-
mental force-deformation relationship for the cross
section subjected to axial force, bending moment
as well as uniform torsion. Such kind of sub-
ject is discussed under the following assumptions
and limitations:

1) The cross section is thin-walled, closed and
doubly symmetric one.

2) The material has the elastic-perfectly plastic
stress-strain curve and the yield criterion of
von Mieses is valid in it.

3) The stress-strain relation of Prandtl-Reuss is
valid in the plastic range.

4) The cross sectional shape is such that warp-
ing torsion may be disregarded and St. Venant
torsion is dominant.

5) The shear flow due to St. Venant torsion
must be distributed uniformly in the cross
section at any stress state.

6) The deformation is small and its additional
influences on the equilibrium are ignored*.

(2) Derivation of Tangent Stiffness Matrix

Consider a partially yielded cross-section sub-
jected to combined forces as shown in Fig. 1.
The coordinates &, ¥, z of a member, which form
a right-handed system, originate from an arbi-
trary fixed point O, which is, for example, the

* Influences of additional torsion due to twist
of the longitudinal fibers may not be negli-
gible for an open cross section as reported
in recent paper of Ref. 15.
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Fig. 1 Positive Vectors of Forces and De-
formations.

centroid of the cross section. Normal strain ¢
and shear strain y at any point in the cross sec-
tion are given by

2 2.
= (F0) (T8 )
_ 0 i)

0s dx
in which #=displacement of the point O in the
x direction; v, w=displacements of the section’s
shear center in the % and z direction; s=re-
sidual strain; ew=warping of the cross section;
s=curvilinear coordinate along the component
plates of the cross section; 7s=normal distance
from the section’s shear center to a tangent
drawn at any point of the cross section; and ¢
=rotation of the cross section. Accordingly, the
strain increments are expressed by the incre-
ments of the deformations as follows:

Aazdeo—ﬂwz.y_}-dwy.z ..................... (3)
04
Arz—a:’ g B e (4)

in which the symbols with 4 denote the incre-
ment of each values and

odu &4y

deo="g M= ar (5)
_ ®dw _ %

Mry=="", M=k

The incremental stress-strain relations in the
plastic range are given from the equation of
Prandtl-Reuss and the yield criterion of von
Mieses. That is!'®,
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and in the elastic range,

Ar
AT:-—~G—-— ......................................... (8)
Ado=mE e reeveiieiiiiiiiiiiiiiiiiiiiiiiiiiinnn, (9)

in which G=shear modulus; r=shear stress; ¢
=normal stress; and E=Young’s modulus. In-
tegrating Eq. (4) around the whole cross sec-
tion and substituting Eq. (6) for the plastic zone
and Eq. (8) for the elastic zone yield

0dw
L ds+40.§rsds

_LS
==\,

1
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G szh-ds

g ﬁaaderS 3% geds
» d » G

where the suffixes ¢ and p denote an integration
over the elastic and plastic zones respectively.
Since the warping of closed cross-section must
be continuous at each moment, the first term of
the left hand side of Eq. (10) will vanish!®.
Substituting Eqs. (3) and (7) into Eq. (10) and
considering a uniform shear flow dg={.dr yield

Aﬁfrsds
—Allfzg —3L-de+A1I/,,S 3—TzdS.
p o » 0
.............................. 65))
Then,
-1
“=TFe
X (Cs+deo— Cy- AU o+ C5+ AUy + Ce- 49)
.............................. (12)
where
1 (dS 1 3z \2dS
=g e=x (7T
where
Af =[4P —4M, A4M, A4AT]IT
Add=[dey —4V, 4V, 4017
EA ES, ES; 0
ki EI, EI, 0
sym. EL 0
GJ
G ) CsCy _D, GCsCs —Ds
Ci+C; Ci+C Ci+C
H CiCs
ko= Cl-;Cz_D4 Cl+cz—D5
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»

and f=thickness of plate.

If none of plastic zone exists in the cross sec-
tion, Eq. (12) coincides with the elastic equation
of the Bredt-Batho!®, That is,

§ redS

as
5

The incremental equations of equilibrium are:

G40 .

dq=

AP:S AodA—l-—S dodA
e »

=F S AedA—S 3 grda
e g

»
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e ?
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e p O
AMy:S Ao'ZdA+S dozd A
e »

=F S Aesz—S %T-Arsz
e

»

AT = f derdA

in which 4P=increment of axial force; 4M,, 4M,
=increments of bending moments about z and y
axis; 4T =increment of torsional moment; and

S dA,S dA=integrations about elastic area and
e »

plastic area. Substituting Egs. (3) and (12) into
Eq. (15) yields the tangent stiffness matrix of a
cross section as follows:

AF =[ky+Eo]-dd oo (16)
C3Ce ....................................... (17)
Ci+C
CiCs
Ci+C
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C3

C+C
sym.

A=SdA, s,,:SydA, syzgsz,

Iz:Sysz, Iyzzgysz, 1,,=Szzd,4, J=

D;ZS dA, D2=S ydA, D3=S ZdA,
b4 » »

22dA .
»

D4=S ysz 5 Ds—:S ysz, D6=S
» »

When the axes y and z coincide with the prin-
cipal axes of the cross section, the values S; Sy
and I, in Eq. (18) will vanish. In Eq. (16), the
matrix k, is an ordinary elastic stiffness matrix
and the matrix k;, which consists of the terms
of integration over the plastic zone, plays a role
in the reduction of stiffness due to yielding.

(3) Numerical Procedure

Since no closed form solution has been pos-
sible, it is inevitable that the elements in the
tangent stiffness matrix derived above are evalu-
ated numerically by dividing the cross section
into discrete sub-elements as often used in the
elasto-plastic analysis!?»17,22),28),  Though above
stiffness matrix was formulated by means of the
flow theory, numerical results based on the de-
formation theory can be also obtained using the
fact that the prediction of the flow theory will
coincide with that of the deformation theory in
the case of proportional loading. A brief flow
chart of the computation is shown in Appendix.
The iterative procedure is executed as follows:
1) An increment of deformations 4d is comput-

ed for an assumed increment of external
forces Af.

2) Calculate corresponding increment of stresses
at each sub-element.

3) Check the condition of the yielding and elas-
tic unloading and distinguish the plastic sub-
elements from the elastic sub-elements for
the next loading step.

4) If some sub-elements will attain to the yield
stress state in the midst of a force increment,
the force and the deformation which are just
great enough to cause yielding of those sub-
elements are considered to be effective!®.

5) The above steps are repeated until ) 4F
equals a specified f in value or until fully
plastic state.
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By means of this iterative procedure, it is pos-
sible to analyze an elasto-plastic behavior of a
member subjected to axial force, biaxial bending
and uniform torsion. Numerical examples shown
later are about the test specimens subjected to
axial compression and uniform torsion. The
number of the divided sub-elements are 48.

3. EXPERIMENTAL STUDY

(1) Test Specimen

The test specimens were classified into four
series ST, SB, HT and HB according to the
materials and fabrications as shown in Table 1.
The materials used herein have a stress-strain
curve which may be approximately represented
by an idealized elastic-perfectly plastic one with-
in tested range of strain. The nominal dimen-
sions were determined not to collapse by column
buckling as well as local buckling until a fully
plastic stress state would be reached. All speci-
mens were not annealed, however test specimens

Table 1 Nominal Dimensions and Mechanical
Properties

name off

nane ol materian

fabrication tldfnfoy | & ] € 4

ST STK-41 [seamless tubes on the market |5.0/88|500|3490|1630{2.29[0.86

B $5-47 |built up by welding 5.0{80[400[2770[1450/2.10(0.78

0]

0
HT HT-80 pboring from thick plate 4.0[80/400/7010|5000]2.14]0.83
HB HT~80 |built up by welding 3,5] 70}400]7980]4040/2.03:0.78

]

velding n
< — P
k=

— X
ST and HT series

remarks

3

SB and HB series
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of series ST and HT may be still considered to
have none of residual stresses. Longitudinal re-
sidual stresses of the specimens in series SB and
HB, which were built-up by welding, were meas-
ured by the sectioning method with Hiiggenberger
contact-type strain-measuring apparatus. For in-
stance, the distributions of residual stresses were
obtained as shown in Fig. 2 including an ideal-
ized pattern of its distribution. Thus, the maxi-
mum compressive residual stress is nearly esti-
mated at 0.4¢y for SB-series and 0.25¢y for HB-
series.

—-o~~ MEASURED VALUE

~=--— IDEALIZED PATTERN

SB-sERIES HiB-ser1ES

Fig. 2 Residual Stress Distributions.

(2) Testing Apparatus?®

Testing apparatus is illustrated in Figs. 3 and
4. Both compressive force and torsional force
were applied by hydraulic jacks. Two equal and
parallel forces with mutually opposite directions
were converted to a torsional moment through
a circular turn table made of thick steel plate.
Both normal strain and shear strain were meas-
ured by wire strain gages bonded at the mid-
height cross section. Average values of four or
eight strain gages were used as measured values
of normal strain or shear strain of the specimens.
Two calibrated load transducers, one of which
was for compression and the other for torsion,

Fig. 3 Combined Compression and Torsion
Testing Apparatus.

i A
Fig. 4 Testing Apparatus under
Experiment.

were used to determine and control the applied
combined forces. The forces are monitored and
recorded in a X-Y recorder and a magnetic data
recorder together with the deformations simul-
taneously.

(3) Test Procedure

At first, a test specimen was carefully set to
obtain fairly uniform distribution of strains under
preliminary loading of compression and torsion,
independently. Then, the combined forces were
increased stepwise until the proportional limit
of stress was attained, and thereafter increased
continuously and slowly until an ultimate state
was attained. The loading was finally stopped
at the state that the strains increase without any
increment of force. The strain measurement was
restricted to the range where the plastic and

Table 2 Loading Conditions

Speci- | Load- Stress Speci- | Load- Stress
men ing Ratio men ing Ratio
1{ PL. | z=0.50 1| PL. | r=0.5¢
2 (| P.L. t=0.30 2 P.L. r=0.25¢
ST HT
3| C.C. | ¢=0.750y 3| PL. | z=1.00
4 | C.C. | 6=0.870y 4| C.C. | 6=0.70y
1| CC. | ¢=0.930y 1§ C.C. | 6=0.830y
2 | P.L. | r=0.240 2 | PL. | z=0.260
SB HB
3| CC. | ¢=0.8l0y 3| C.C. | 0=0.690y
4| PL. | t=0.43¢ 4 | PL. | t=0.460

Remarks: P.L.=Proportional Loading
C.C.=Torsion under Constant Compression
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elastic components of the strain increments are
comparable to each other. Loading conditions
for each specimen are summarized in Table 2.

(4) Test Results* and Considerations

1) Torsional Moment—Rate of Twist relation

When the specimens with such residual stress
as shown in Fig. 2 are subjected to torsion and
axial compression, the yielding first begins at
the middle of each component plate and then
spreads to the whole cross section with the in-
crease of load. In order to show the influence of
the residual stress, the test results of ST .and SB
are illustrated in Fig.5. The pattern of the curves
in Fig. 5 shows that the residual stress reduces
the torsional rigidity considerably after elastic
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Fig. 7 Relationship between Torsion and
Rate of Twist (C.C.).

limit. Test results are compared with the theo-

retical estimations in Figs. 6 and 7, where
Ll it should be noted that the specimens SB-1
07+ T, s | gapom and SB-3 have partially yielded zone due
08 F7 . o to axial compression already before they
/ / receive the torsional moment. The differ-
05 ! ence between the prediction of the flow
/ e theory and that of the deformation theor
/ / [, 5810080, y a y
04 # —+ )/V/"/‘r appears in the case of torsion under con-
/ /f/’ stant compression (Fig. 7), and the former
03 // 7 coincides with the test result more closely

0.2 ——x—— ST-SERIES (WITHOUT RESIDUAL STRESS} than the latter.

/ / ——o0—— SB -serIES (WITH RESIDUAL STRESS) 2) Tangent Torsional Rigidity

ol The slope of the curves in Figs. 5, 6 and
% 7 may be considered to be equivalent to
00 % m s S5 the tangent torsional rigidity (GJ), and its

Fig. 5 Influences of Residual Stress on Torsion.
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,
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| L &
00 o2 04 06 08 10 12 14 16 I8

Fig. 6 Relationship between Torsion and

Rate of Twist (P.L.).

*

Test results shown here are mainly about
SB-series and detailed data of other test
series are appeared in Ref. 19.

variation concerning SB-series are shown
in Fig. 8. The curves in Fig. 8 show two
different shape patterns according to the
two types of loading conditions, but the theoreti-
cal estimations based on the flow theory are in
good agreement with the test results. It is note-
worthy to point out that the initial torsional
rigidities of SB-1 and SB-3, which have partially
yielded zones, remains unaltered at their elastic
value as predicted by the flow theory (Table 3).
In Table 3, it will be recognized that the predic-
tion of the deformation theory may be a func-

Table 3 Initial Torsional Rigidity

State at . .
tadiv, Initial Torsional
the beginning of L 2O
Torsion Rigidity
Specimen co/ey GIW/GT
P/Py
Theory] Test D.T. | F.T. | Test
SB-1 0.93 1.3 1.5 0.67 1.00 1.00
SB-3 0.81 1.1 1.2 0.85 1.00 1.00
Remarks: D.T.=Deformation Theory

F.T.=Flow Theory
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Fig. 8 Relationship between (GJ); and
Torsion.

tion of the magnitude of plastic strain?, but that
of the flow theory will not be affected by the
depth of plasticity.

3) The Variation of the Incremental Deforma-

tion Vector

Test results regarding the variation of the de-
formation vector, calculated as the average strain
vector in the cross section, are shown in Figs. 9
and 10 including the theoretical ones calculated
for the identical loading condition. The magni-
tude of deformation does not necessarily show
good correspondence between the test results and
the theoretical ones, but the following coinci-
dence in tendency may be recognized. That is
to say, in Fig. 9, with the increase of torsional
moment and spread of yielded zone, the direc-
tion of the deformation vector, which has been
oriented to the same direction as the force vector
at the very beginning of twisting, seems to take

¢~ STrRess PatH

—o— StraIN PatH (TesT)
—--- Srrain Pami (THEORY) 10
—-— Rapra Direcion

3G¥n
‘—@— von Mises
%//[NITIAL Yiewp Live 9
1.0 \\7& ! P
N 1Y/ %
AN \D’ / 6 /(
N rE/ 5.,' 67
0.5 N 7 P5
,\‘ Y d
i g 9. E€o
! g [} G
0.0 0.5 1.0 1.5 2.0

Fig. 9 Variation of Averaged Strain
Vector (SB-3).

—*—  STRESS PaTH
=0~ STRAIN PaTH(TEST)

Plex von Mises —-s-= STRAIN PaTH(TEOR
Y —-— RapraL Direction
{%/_T /IN[T!AL Yiewp Ling

o 8

i

.d

0.5

t

Y,
2.0 2.5 3.0

0.0 0.5

Fig. 10 Variation of Averaged Strain Vector
(SB-2).

the direction of the outwardly directed normal
to the yield surface as predicted by the theory
based on the flow theory of plasticity. On the
other hand, in the case of proportional loading,
the direction of the deformation vector does not
change and keeps its original one of the out-
wardly directed normal to the yield surface
throughout loading.

4) Influences of Loading Path

One of the important differences between the
flow theory and the deformation theory of plas-
ticity is that the former is dependent on the
stress and strain history and the latter is inde-
pendent. In order to investigate the influences
of the loading path, the deformations are calcu-
lated for four different loading paths as shown
in the lower part of Fig. 11 and illustrated in
Figs. 11 and 12. The flow theory as used here-

T
T Loading | Frow Ao,
05 Path Theory | Test '/ .
ABD i 02
ABE |————|o_4 47
ACBE | —-— g
ACBD| e P
0-4 o Ei——1 E2 —
P e e
e
¢~ |82
03
0-2
05
Ol
L
IR W B
o | L 05 L0
0-0 ol

02 03 04 05 06 07 %_
i

Fig. 11 Influences of Loading Path.
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in can predict two different states of de-
formation corresponding to the single load-
ing condition after different loading history. o
That is, the curves B;-D; and B;-Ds, for \5\1
example, may be predicted for the loading <p7py§+mm:1
path B-D according to the loading histories >\
N

A-C-B and A-B, respectively. While, the
deformation theory will predict the only 0.5

9 LOADING TiON

I
Ty« 8y ATH INef -Pave| Line| N

TN Yiew Line

special state of deformation B for the iden- Lo B \
tical load condition B regardless whether the - oot '
loading history is A-B or A-C-B. The values et i

A

of the deformations and the tangent torsion-

al rigidity at the point B, where the loading ° 0.5
path bifurcates, are summarized in Table 4. Fig. 12 Variation of Deformation Path and Loading
The test results about the deformation cor- Path.

Table 4 Deformations and Torsional Rigidity at Point B

Tangent Rigidity Deformation at B

. Direction
Loading | "¢y oo (GTn/GJ 6/0 Eep/o
history | yncrement d ooy

D.T. | F.T. | Test | D.T. | F.T. | Test | D.T. | F.T. | Test
B-D 0.6 0.8 —

A-B 0.46 0.46 0.52 1.1 1.1 1.6
B-E 0.3 0.3 0.3
B-D 0.6 0.8 0.9

A-C-B 0.46 0.37 0.35 1.1 1.1 1.2
B-E 0.3 0.3 —_

Remarks: D.T.=Deformation Theory
F.T.=Flow Theory

responding to the load condition B show not only may have dominant effect on the magnitude
different values according to the different load- of the tangent rigidity. Accordingly, the tangent
ing histories, but also a significant correla- rigidity of the cross section are supposed to be
tion with the prediction of the flow theory. dependent on the manner how the redistribution
Furthermore, it can be seen that the tangent of stress will occur within the cross section corre-
torsional rigidity at the loading state B is de- sponding to the variation of the force vector.
pendent on the direction of force vector rather During the redistribution of stress, of course, the
than the loading history*. As for the tangent stress state of any point in the cross section will
torsional rigidity, the estimations of the flow be in one of the state of loading, neutral-loading
theory are also in good agreement with the test or unloading.
results. Generally speaking, since the individual 5) The Yield Criterion
rigidity of the cross section, for example,
the tangent torsional rigidity, 47/46, is a : %y I
function of other three deformations e, EF\\\\ l o Mrses
AV, and 4V, besides 49, it is dependent 0.5 i ¥ / [
not only on the current loading state, but s *\‘\\\\\\K\l
also on the direction of the incremental ,\\ - "
force vector. As for the tangent torsional ™ & :\'
rigidity at B discussed above, the magni- : SR
tude of the incremental axial force 4P + Test By TavLor & Quinney (Tension-Tors1on,1931) \\‘{.
] * TesT By SieeL- (Benping-TwisTING,1953) N
* In the former report of Ref. 19, the | . SB_SER‘ES} feor v Aummors N
* ’ @ HB-seriEs (Torston-CoMPRESS 108, 1974) 3
difference of the tangent torsional r I I \ J ’ \‘ g
rigidity at the same loading condition 0.0 o5 Y %

misinterpreted as caused by the dif-
ference of the loading history. Fig. 13 Critical Stress State.
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The critical stress states, in which an overall
yielding begins to occur, are shown in Fig. 13
for SB-series and HB-series together with the test
results of Taylor and Quinney?® and those of
Siebel!®, The critical equivalent stresses ¢g are
calculated and shown in Table 5. It is recogniz-
ed - that the yield criterion of von Mieses can
give a good approximation to all test results ex-
cept HB-4 which was observed not haveing at-
tained to fully plastic state owing to local buckl-
ing failure.

Table 5 Critical Stress State

sion under constant compression, since the tan-
gent torsional rigidity given by the flow theory
is the same as the elastic value, the buckling
load predicted by the flow theory will be larger
than that of actual column which necessarily
have initial imperfection. If, in above case, the
torsional rigidity which is predicted by the de-
formation theory and is smaller than the elastic
value are used, a buckling load which is close
to but rather smaller than the actual buckling
load will be obtained. When the welded compres-
sion members collapse owing to torsional buckl-
ing failures, the initial imperfections must not

Specimen /oy /g or/oy be disregarded?®. In such a case, the variation
) of force vector composed of stress resultant P
0.929 0.249 1.024 and stress couple 7 may be supposed to follow
SB 2 0.947 0.230 1.028 the path O-D-E as illustrated in Fig. 15. At
3 0.808 0.377 1.039
4 0.836 0.360 1.043 p
1 0.804 0.330 0.986 R
- 0.906 0.236 0.994 L0 Tors10N UNDER CONSTANT COMPRESSION
HB AcTuAL VARIATION
3 0.669 0.420 0.999
4 0.739 0.354 0.960
[ D
(5) Comments to Inelastic Torsional Buckling 1 E
Problems { ~
! ~
. ) !
In order to account for the contradlcflons be / /4\\ INTERACTION CURVE
tween the flow theory and the deformation theo- ! N
ry, in 1949, Batdorf presented a theory for effec- ;' INITIAL YIELD LINE \\
tive shear modulus based on the concept of slip A \
as shown in Flg. 14, and justiﬁed the use of the H PROPORTIONAL LOADING \\
deformation theory in the analysis of the plastic ;' \\ ,—-F-
/ L y;
0 1.0

B
[

EFFECTIVE
Comp, SHEAR MODULUS
STRESS FLow TH. G
Der. tH. (ES/EDG

G A
New TH. (Es/E)G (B) APPROX.

SHEAR STRESS

Fig. 14 Theories of Effective Shear
Modulus by Batdorf.2t

buckling of plate?V. It is proposed, in his theo-
ry, that different shear modulus should be taken
according to the direction of the incremental
stress vector as a bifurcation problem. As for
the bifurcation theory, which assumes the tor-

Fig. 15 Variation of Force Vector.

any stress state D, three particular directions of
the force vector may be defined. That is, the
direction B is outwardly directed normal to the
interaction curve, the direction A is normal to
the line OD and the direction C is tangential to
the supposed actual path O-D-E. The tangent
torsional rigidity concerning three kinds of direc-
tion A, B and C may be estimated consistently
by the present method. The tangent torsional
rigidity reduces its magnitude as the direction
of force vector varies from A to B. The one for
A will take an approximately same value with
the elastic one and that for B will rather coin-
cides with the prediction of the deformation
theory?®. Accordingly, the concept of Batdorf
about the effective shear modulus may be gene-
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ralized for a member with initial imperfection by
introducing the tangent torsional rigidity based
on the flow theory. The important fact about
the actual behavior of the column with initial
imperfection is that the column will twist with
the increase of the axial compression. It is sup-
posed, consequently, that the more close predic-
tion of the maximum load will be obtained if
the tangent torsional rigidity will be estimated
by tracing the variation of the direction of the
force vector by the present method. Above dis-
cussion suggests that the contradiction between
the deformation theory and the flow theory in
the inelastic buckling analysis may be well ac-
counted for only by means of the flow theory,
but it is necessary to show whether the actual
magnitude of the initial imperfection is large
enough to complete above reasoning or not?,26),

4. CONCLUSIONS

The following conclusions may be drawn from
the results of this study:

1) The tangent stiffness matrix of thin-walled
closed cross-section developed under some
assumptions is suitable for use in elasto-plas-
tic analysis of a tubular member with partially
yielded cross-section. Then, the tangent stiff-
ness matrix derived here may be extended
and applied to the various kinds of struc-
tural analyses including torsion.

2) The theoretical estimations based on the flow
theory of plasticity show good correspond-
ence with the experimental results of welded
box cross-section under combined axial com-
pression and torsion.

3) Presence of residual stress, in general, re-
duces the torsional rigidity of a member.

4) The reduction of tangent torsional rigidity in
elasto-plastic range is dependent on the di-
rection of incremental force vector composed
of stress resultants and stress couples besides
the current stress and strain state.

5) It is confirmed experimentally again that the
initial tangent torsional rigidity of the par-
tially yielded cross-section under constant
compression remains unaltered at its elastic
value.

6) It was shown experimentally that the elasto-
plastic deformations of such realistic magni-
tude as occured in actual steel members take
different values according to the difference
of loading path, and furthermore, a sufficient
explanation to this fact was given by the
presented method based on the flow theory.

7) The yield criterion of von Mieses can give
a good approximation to all test results re-
gardless the loading path.

8) The possibility to account for the contradic-
tion between the deformation and the flow
theory consistently by the flow theory only
was suggested from these considerations and
discussions.
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NOTATIONS
A  =cross sectional area;
b =width of component plates of the cross

section;

Ci~Cs =component of tangent stiffness matrix
defined in Eq. (13);

Dy~ Ds=component of tangent stiffness matrix
defined in Eq. (18);

d =vector of deformation;

E  =modulus of elasticity;

Es;  =secant modulus of elasticity;
f =vector of force;

G =shear modulus;

GJ =torsional rigidity;

(GJ ), =tangent torsional rigidity;

Iy, I, =moment of inertia of the cross section
about ¥ and z;

Iy, =product of inertia of the cross section;

J =St. Venant torsion constant for a closed
cross section;

k;, k.=tangent stiffness matrix;

My, M,=bending moment about y and z;

P =axial force;

Py =fully plastic axial force;

q =shear flow;

s  =normal distance from the shear center to
a tangent at any point of the cross sec-
tion;

s =curvilinear coordinate along component

plates of the cross section;
Sy, Sz=moment of area of the cross section about

y and z;
T  =torsion;
Ty =fully plastic torsion;
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t =thickness of component plates of the cross
section;
u =displacement of the origin of the coordi-

nates in the z direction;

v, w =displacements of the section’s shear center
in & and y direction, respectively;

x, ¥, z=coordinate system;

7 =shear strain;

€ =normal strain;

€0 =normal strain at the origin of the coordi-
nates;

e&r  =residual strain due to welding;

&gy  =yield strain;

¥y, ¥.=curvature about y and z;

[/} =rate of twist;

0y =rate of twist at the beginning of fully
plastic state due to torsion;

[ =normal stress;

op =equivalent stress defined as v ¢*+37%;

gy =yield stress;

T =shear stress;

¢ =angle of twist;

@ =warping.

APPENDIX

Flow Chart for Numerical Computation

READ _INPUT DATA

COMPUTE : SECTIONAL PROPERTIES
COORDINATE OF EACH SUB-ELEMENT
RESIDUAL STRESS etc.

{IS_SUB-ELEMENT PTASTIC ?

YES

(DOES FLASTIC UNLOADING OCCUR 7>
NO j YES

COMPUTE PLASTIC PART COMPUTE ELASTIC PART
OF STIFFNESS MATRIX OF STIFFNESS MATRIX

NO

ASSEMBLE ALL ELEMENT'OF STIFFNESS MATRIY

s NG, OF_CYCLES N0, OF SUB=ELEMENT %
IYES

IS:ALL OF SUB-ELEMENT PLASTIC ? PRINT,
NO YES
STOP
GIVE_TOAD INCREMENTS

IS _SUM OF LOAD INCREMENTS SPECIFIED VALUE 2

NO PRINT

COMPUTE INVERSE OF STIFFNESS MATRIX
STGP,

lCOMPUTE DEFORMATION AND STRESS INCREMENTS
{88, A, 4 48], , 40, AT,

NO

YES

[COMFUTE WINI/UM VALUE OF LoAD WULTIPLIER: &'~

]COMPUTE CURRENT LOAD, DEFORMATION AND STRESS
[ fi=fiimaf , di=di+mads, g =0 iemde;

PRINT SOLUTIONS
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