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ON A NEW EDDY MODEL IN TURBULENT SHEAR FLOW

By Hiroji Nakacawa* and Iehisa Nezu**

1. INTRODUCTION

Turbulent flows may be classified into two
categories by the fact that the flow would be
directly influenced by solid boundaries or not: the
wall turbulent flow and the free turbulent flow.
Because of complicated boundary conditions the
research on wall turbulence has been more back-
ward as compared with that on free turbulence.

Air-tunnel experiments conducted by NACA
group are one of the representative studies on
wall turbulence in early the 1950’s. In this group
Schubauer, Klebanoff et al*> worked at the bounda-
ry layer flow and Laufer? dealt with the pipe
flows, both obtaining noteworthy results. As
peculiar characteristics of turbulent shear flow
different from those of free turbulence had been
recognized by experiments, a few kinds of an
eddy model were proposed by some researchers
to explain the behaviours of wall turbulence.

In 1956 Townsend?® presented so called ‘ attached
eddy model’ by applying his theory of large eddy
motion derived from the experimental results on
grid or wake turbulence to the wall turbulent
flow. He tried to explain the experimental facts
obtained by Laufer by making use of this model
of which a rotating axis oriented to longitudinal
direction. Following Townsend’s concept, Grant®
devised a similar eddy model in 1958. These
models are constructed so as to satisfy the
measured data of spatial correlations of turbulence,
but even in qualitative aspects these include
something unreasonable. Early in the 1960’s
Willmarth et al®, Corcos® and the others dis-
tinguished more clearly the structures of wall
turbulence by the analysis of time-space correla-
tions of the fluctuating pressure in a boundary
layer flow. Besides a rapid progress in measure-
ment of turbulence in open channel flow has been
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made in the last ten years by adopting a hot-film
anemometer and a hydrogen bubble tracer.

There were several attempts to describe mecha-
nism of turbulence production by making use of
so called ‘hairpin eddy model’” which has been
considered for transition from laminar flow to
turbulent low. In 1966 Willmarth et al® proposed
‘average model of vortex line’ in order to de-
scribe structures of wall turbulence qualitatively.
The vortex line in this model was assumed to
be on a flat plane which inclined at an angle
¢ to the wall as shown in Fig. 1. The model
was verified by detailed measurements of time-
space correlation due to Favre® and Sternberg!®,
and the angle of inclination of vortex line 4 was
fairly evaluated.
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Fig. 1 Average model vortex line (after
Willmarth et al®)

In 1967 a research group of Stanford University
represented by Kline et al'!? offered a noteworthy
eddy model so that a mechanism of wall turbulence
production could be reasonably explained. This
model was based on detailed measurement of
bursting processes obtained by improved a hydro-
gen bubble technique which was thought to be
the most effective method of measurements of
wall turbulence. In the model low-speed streaks
with vorticities in the direction of z-axis are
lifted up and then stretched with travelling as to
have an inclination toward the wall. The vortex
line is eventually broken up and more chaotic
motions of the vortex appear to produce turbu-
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Fig. 2 Mechanics of streak breakup (after
Kline et al'D)

lence as shown in Fig. 2.

Such an eddy model which is called a horseshoe
vortex model has been applied to the descrip-
tion of turbulence characteristics. For instance,
Yokoshi et al'® tried to explain the structure of
turbulence in actual river by using the eddy model
and concluded that a boiling phenomenon in the
river would be caused by this eddy.

Early in the 1970’s the efforts to elucidate the
structures of wall turbulence have been made by
the combined means of point measurement with
hot-film anemometers and of flow visualization
with hydrogen bubble tracers. The interesting
researches have been done by Corino et al!®, Kim
et al¥), Grass'®, Clark!®, Wallace et al'” and
Willmarth et al'®, Despite of recent results that
production mechanism of bursting has been indi-
cated clearly by analysis of experimental data and
proposal of reasonable eddy models, none of them
looks to be refined to explain the behaviours of
wall turbulence quantitatively yet.

In consideration of the situation mentioned
above, a simple eddy model to describe quantita-
tively the characteristics of wall turbulence in
open channel flow is proposed and it is verified
by analytical investigations of experimental results
obtained by Laufer and the authors.

2. »-EDDY MODEL

(1) Constitution of an Eddy Model and its
Formulation

Due to the fact that a horseshoe vortex model
proposed already by Willmarth or other reseachers
is fairly reasonable in qualitative aspects, as
mentioned above, this horseshoe vortex model is
accepted as an original eddy model in the follow-
ing discussions. But, since it is fairly difficult to

Lified and stretched
voriex clement

Fig. 3 A =m-eddy model

obtain exact expression of the horseshoe vortex
model, in order to discuss quantitatively its be-
haviours, a simplified eddy model which has the
angular vortex lines as described in Fig. 3 may
be considered here. As the vortex line of this
simplified eddy model has a I7-shape, this model
may be called ‘a w-eddy model’.

As shown in Fig. 3 a square vortex line which
has an angle of inclination @ toward the x-axis is
assumed for two-dimensional turbulent shear flow.
Its legs AB and CD are in a plane parallel to tha
z-y plane, and its top BC is parallel to the z-
axis. The condition #=0 represents an incipient
stage of a w-eddy which coincides with a hairpin
eddy and an attached eddy. However, due to
insufficiency of the observed data in the wall
layer (y+=yU*/v=5~10, for the thickness of
viscous sublayer), an equilibrium condition under
which the m-eddy is lifted up from the bottom
and fully developes is considered here.

Now, a particular eddy is observed in relation
to the coordinate travelling with convective veloc-
ity of the eddy U,. Because the distance BC is
negligible compared with AB as indicated by Kline
et al'V, contribution of the vortices along the line
BC to turbulence production can be ignored ex-
cept that the line BC will suffer lift force. On
considering the mean eddy scales, a vortex tube
AB may be assumed to have an elliptical cross
section with a long radius @ in the x-direction
and a short radius b in the z-direction. This
assumption has been also done for an attached
eddy model proposed by Townsend®, and veri-
fied by the measurements of spatial correla-
tions due to Laufer?® and other experimenters.
Consequently it is concluded that the z-eddy
shows an elliptic motion with angular velocity o.
(Fig. 4)

Relationships between the coordinates (x(f),
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Fig. 4 Vortex line of a w-eddy.

y(f), 2(t)) of an arbitrary point on the surface of
a vortex tube and (%o, Yo, 20) of a point P on
the rotating axis in the circuit will be given by
z(t)=xo(t)— a cos of sin 4
Y(E)=yo(t)+a cos vt cos }
2(t)=2¢()+b sin wt

It is expected that the point P(xo, Yo, 20) Will be
lifted up along the vortex line due to acceleration
of the vortex stretching carried by lift force for
BC and by main shear flow, and that it will be
descended due to depression of the stretching,
besides the length scale of the eddy in the z-
direction may be assumed to be invariable because
the vortex stretching in the z-direction by the
main flow U(y) is dominant.

When a head of equilibrium w-eddy is infinite-
simally displaced by disturbance from B to B’ as
indicated in Fig. 5, the vortex line AB shifts to
AF by stretching. By the fact that the circu-
lation in any circuit moving with the fluid is
invariant, it can be concluded that the angular
velocity of the vortex o changes into (w+d4dw).
So long as a w-eddy under the equilibrium condi-
tion does not instantaneously disappear by stretch-
ing, some apparent resistances must be thought
to work upon the eddy, resulted from complex
interactions between the mean flow and turbu-
lence. Analytical investigation of bursting and
sweeping phenomena which characterize the

A 7
Fig. 5 Vortex stretching of a n-eddy.

mechanism of wall turbulence production will
surely contribute to evaluate such a resisting force
of the eddy model.

But, as the first step for the present, this ap-
parent resisting force may be simply assumed to
be proportional to a displacement length of the
vortex line.

The acting forces are given by

Lift force : L=pUR%wl;
Drag force: D=Cdl72Rll
Resistance : F=kl’

where U: relative velocity (U~Up), R: a radius
of the vortex on BC, /;: the half length of BC,
Cg: a drag coefficient, k: a proportional constant
and //: stretched length of AB.

Considering balance of forces in each direction
at point B, the following relationships will be
given as explained by Fig. 6,

L

w
U——-.+/ 6
D

F

Fig. 6 Force balance of a x-eddy.

k1’ cos 6= Cal2Rl }
ki sin §=pU R2wl,
Taking account of the perturbation, the force

balance at point B’ is obtained in the same
manner as

L= p<t7+ %Ay)(R+AR)2(w+Am)ll
. 2
D=Cd<U+%—Ay> (R+4R); (4)
F=k(I'+41)
Inertia force=—prR%\((4%), (4%))
where

Az =4I cos —1sin 646 }
dy=4l sin 8+1 cos 046
di=d¥dx)|dt?, dij=dddy)/de

And the equations of vorticity and mass conser-

vation are given by the followings, respectively,
S~ R2W==CONSt., +rrrereerrercrareiiariirecees (6 )
pSl:const' ....................................... ( 7 )

where S denotes a cross sectional area of the
vortex and [ is the length of AB.

Using Egs. (3) to (7), the following equation is
obtained.
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(i) A B\/4
(7 G A — 5
where
__k Call? cos 0 _( 2C,U cos 6
o R, 2,037:1?1 oR
+——sm6>-%f—sm0 ..................... (9)

B=— (——ZCdU cos ¢ -l——cZ sin 0)——dU I cos @
o R T dy

.............................. (10)
. Cal?sin 6 ( 2l sing_o
T 20mRI orR z °%° )
v
——;17 SIN @ covveerrsciereiiiiiiiiiiiiiiiiinee, (11)

D= (»20(1;,;__2}1_@__% cos 0>%l cos @ (12)
Upon assuming that the convective velocity of a
w-eddy, Ue, is nearly equal to local mean flow
velocity, U, according to the experimental results
obtained by Favre et al® or Sternbergl®, the
relative velocity U becomes zero and hence
dUJdy=dUjdy. Putting these relations to use,
Egs. (9) to (12) can be simplified as

k @ aUu

e e GIN2A —— terrrenieinenen
A= onRl m sin% 2y (13)
®, . aUu
B__.-—T;-l sin @ cos @ dy T (14)
® al
C=— - sin 6 cos @ dy (15)
@ .0 AU
= e ] COSZO e eereineneeiaeieaenas 1
D nlcos 0 ay (16)
@0 and 9o are represented by
#o=(dl) cos 6—1 sin 6(46) } an
Ho=(dly sin 0+1 cos 6(46)

Eq. (8) being a linear equation with a symmetric
matrix, it can be easily solved, and hence #; and
Yo are obtained from Eq. (17). Well, considering
that the apparent resisting force is included only
in term A, it may be concluded that a perturba-
tion along a vortex line is represented by (Ai).
Thus (4§) can be regarded as negligible compared

with (4) in Eq. (17), and @ is assumed to be

independent of time ¢ for simplifying the analysis.

Differentiating Eq. (1) by ¢ and making use of
Egs. (8) and (17) in consideration of the above
mentioned, the formulation of a 7-eddy model
will be obtained as

u(t)=ao sin wt sin 6+ Aowy cos (wef +38) cos §

v(f)=—aw sin wf cos §
+ Aowo oS (wot+8) Sin g «ovvvvvvnnns (19)

W(E)=DW COS WF +++++vvererrennenenianiiniiann, (20)
where,
=]k o .,dU
CE=N xR, 7 037 @

and, Ay and 6 are constants. As turbulence is
composed of a mixture of eddies with various
size, the right hand sides of Egs. (18) to (20) are
expanded into Fourier series of @ in which co-
efficients a2, b2 and A} indicate contribution of
the power.

It is noticed from Eq. (21) that for larger
velocity gradient dUJdy or angular velocity o a
resisting force against the vortex stretching
apparently becomes more feeble so that the vortex
line may be more easily raised with a longer
period of the perturbation and in an extreme case
a w-eddy may disappear by quick stretching with-
out any vibration. However, it is difficult to
evaluate the actual value of w, at present.

(2) Turbulence Intensities and Reynolds Shear
Stresses

By making use of Eqs. (18) to (20) and ortho-
gonality of the trigonometrical functions due to
woxw, turbulence intensities and Reynolds shear
stresses can be obtained as follows:

- .

2=(aw) 81121 g +(Aowo)? COZS AN (22)
2 in2

P=(aw) °°25 9 +(A0w0)25“2‘ AN (23)

WE=(B@YH2 vvveerrrereminneniiniiiiin (24)

no= —é—{(aw)z—-(/lowo)z} sinf cosd ---(25)

Eqgs. (26) and (27) obviously indicate that there
is no correlation between # and w and between
v and w, that is, the flow under consideration can
be treated as two-dimensional turbulent shear
flow. Especially, the relationship #w=0 has been
confirmed by authors’ experiment for open channel
flow.

Taking notice that ——m:%(azwz—A?,wﬁ) sin 6
cos >0, the following unequality can be obtained,
a wo
AZ e

It is suggested from this functional relationship
that the perturbation effect of vortex-stretching is
secondary in comparison with the effect of main

rotating miotion. The correlation coefficient be-
tween # and v is given by,
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—uv (a%w®— Aiw}) sin 6 cos @

k= VEAE . V{(aw) sin®o-+ (Aewo)? c05%0) ((aw) COS?O+ (Aoswa) sin®d) <1

and the above unequality indicates one of the
actual characteristics of turbulence.

Well, from Egs. (22) and (23) the difference be-
tween 72 and 7% is given by

u‘z——52=%{(aw)2——(Aowo)2} {sin%d — cos®G}

As it is obviously recognized that #? is larger
than 72 on the average for turbulent shear flow,
almost all of wx-eddies have to be applicable in
the following range of the inclination angle:

(3) Spectrum Density Functions of Energy

The above investigation has been limited only
to a specified eddy element, but the characteristics
of turbulence as a whole contributed by all of the
eddies should be made clear. In order to attain
this purpose, the conception of energy spectrum
must be introduced, together with adoption of
space wave number in Eulerian expression instead
of the above Lagrangian form.

Now it is assumed that there exists so called
turbulence cascade process, which a large scale
eddy produced in the mean flow by Reynolds
stress successively transports its turbulence ener-
gy into a small scale eddy'®. In other words,
the turbulence similarity (Reynolds similarity) is
assumed to be realized for any eddy element.
When direct-viscous dissipation during the cas-
cade process can be neglected, the transport of
turbulence energy for each eddy should be equal
to its final dissipation rate e.

A rate of work done by mean effective viscosity
of eddy (a%+b%)w/2 against eddy motion can be
approximately given by application of Oseen’s
law for a circular cylinder?®;

W~ dn(a®+b2) o[22+ 02+ D)3 --ooeeeee (32)

When the second term in right hand side of Eq.
(22) or (23) will be ignored due to aw»A.w,,
the dissipation rate ¢ per unit mass and unit time
can be written by

Kaxey
3e

where e=bfa, and K is a constant.
Let a vortex line inclining by @ degree to the
z-axis as shown in Fig. 7 represent by one-

; Als x
g
/

Fig. 7 Vortex element of a n-eddy.

dimensional wave number k in the z-direction.
Since the wave length 1 in the x-direction is
equal to 2a/sind, k becomes

2 w .,
k_T_;Slnﬂ .............................. (34)
Substituting Eq.(34) into Eq. (33), then the angular
velocity will be given by

5. (Be[K)/

o= (7r sin G)4/362/3k4/3 «.vvvvnns 35
(1 + 82)4/3

Therefore, a spectrum density function of w? will
be obtained for ko<k<k..

ko and k. are the lower and upper limits of wave
number within a range where the turbulent cas-
cade process can be realized, respectively, and
the wave numbers beyond these limits hardly
contribute to this process. It has been also
verified by Inoue’s investigation? that G(k) is
proportional to ¢%/3k1/3 as shown in Eq. (36).

Now, on the assumption that w, is so inappreci-
able compared with w in the cascade process of
turbulent energy, turbulence intensities can be
written in terms of the wave number.

(l) = Sir;‘? (% sin 0>ZG(k)EEu(k)
.............................. (37)

52(k) = °°252‘9 (% sin 0>2G(k)EEv(k)
.............................. (38)

u‘)z(k):~e2~2—<% sin 0>2'G(k)EEw(k)
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where Ey(k), Ek) and Ew(k) are spectrum
density functions of turbulent energy expressed
by wave number for #’, v’ and w’, respectively,
and given as

_2 (Be/Kys

El)= 3 W(?‘E)z/s(sin G)8/3e2/3)c=5/3
.............................. (40)
2 (3e/K)¥* .
Efk =3 _%1——}/@“2}4? ()2/¥(sin 0)2/3
X (COS B)2eB8/3 cunnrnniiiiiiiiias 41)
/
Bu(y=2 CCUEV sosin gyisesn-s/s

3 (1+ed)ws

As shown by Egs. (40) to (42), the local isotropic
theory proposed by Kolmogoroff that each spectrum
density function is in proportion to —5/3 power
of the wave number k¥ in the cascade process
(ko< k<k.) may be realized.

(4) Intensity of Turbulent Energy

Here, the inclination angle of a vortex line for
each eddy element § will be evaluated. Differing
with the wave numbers, ¢ can be calculated from
the time-space correlations in the z- and y-direc-
tions of filtered fluctuation components. The
observed values of 8 for a large eddy have been
given by wind-tunnel experiments conducted by
Willmarth et al®, Favre et al® and Sternberg!®.
Referring to Fig. 8 given by Sternberg, ¢ for a
large eddy in a turbulent boundary layer flow
takes a value larger than 20 degrees at the outer
edge of a viscous sublayer, and rapidly increasing
with y, it may be around 90 degrees in main fiow
region. From this fact ¢ for a representative
eddy may be given as a function of y/h where

fFrom favre
%=34ma 2:=194cm

U, = 12 misec
25- 1

< Line of maximum correlation

e
L e

|
{
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y

151 a
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5 | Edgeof sublayerz ]://”'""}"‘"‘a"'-‘ k1o

£ {deg)
Fig. 8 Eddy inclination to the wall
(after Sternberg!®)

Sweepback increases
approaching surface

h is the flow depth in open channel. Moreover,
dependence of # upon wave number k makes
it more difficult to evaluate # precisely. Thus,
for simplifying, @ is assumed to have a uniform
distribution among the eddies so as to contribute
to the turbulence intensity on an average. On
this assumption, spectra of turbulent energy can
be numerically calculated by averaging Egs. (40)
to (42) within n/4<f6<x/2. In those equations e
is fairly assumed to be constant because similarity
of the turbulent structures is discerned in the
cascade region ko<k<k, and hardly affected by
vortex stretching.

Well, Eq. (6) should be wvalid in stretching
vortex, then resulting in

Q22U ==COMNSE., ++orrrrrerrnreatuarainreriucneanans (43)

Taking account that the vortex stretching would
bring about extreme distortion of the cross section
of a vortex line, that is e2¢1, the following will
be deduced from Eq. (43);

2\2
o)

@
Erw

a’wd~elale?

e
Then, the spectrum density functions of turbulent
energy will be rewritten by

Eulle)~Et, Ey(l)~kmt «oorverrercnceninnnns (44)
Euw(l)~k oo (45)

By applying a transfer function of Heisenberg’s
form, Tchen?® also obtained the same expression
as Eq. (44) for a production region of turbulent
energy. By making use of a w-eddy model pro-
posed here, Eq. (45) different from Eq. (44) has
been obtained on the basis of an assumption that
vortex stretching does not affect the spanwise
components as indicated by Eq. (24).

Now, let a constant e for the cascade region
relate to Taylor’'s integral scales (mean eddy
scales) designated as L, in the x-direction and L,
in the z-direction. Since L,/L. is given as 0.5
for isotropic turbulence in which ¢=1, a value
of e for any integral scale will be estimated as

@22y Ly woeverereeneesieniraninaiaee (46)

According to Laufer’'s experiment (K.=3.08x10%)
for a two-dimensional channel flow?®, it was
shown that the value of L,/L, became about 0.33
independently of y/k. Substituting this value into
Eq. (46), ¢ to be adopted here becomes 0.66.

Using this constant value of ¢, a numerical
analysis of Egs. (40) to (42) averaged for =/4<4
<7/2 yields the followings about relative turbu-
lence intensities:
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Author Laufer by Eq. (31), Eq. (40) can be written
CASE| YA | Whr Kl Experimental Curve by using ¢=0.66 as
Azl O L] 0 Re:10x1(§ v, fe=11 )‘164 2/3
B—1l o | & | 91 v Ek)=2 295[—6
Cmil g | @ [480F:007 |y, u(k)=2. KQ+e2y
o-1] & | @ |136.2  e2/3]p-5/3
)
=1.074(e/K)/3k~5/3 (48)
Theoretical Curve «wh =358 crerreniannn (48)’
, v .3 o]
Wi 3 ‘f”,“‘: — ’_"{'/’:‘“i—ii According to Kolmogoroff?9 C is
'0&/«5: w7 %__nft%}ffﬂ-k oL - w & o o, assumed to be a universal constant
osh /9;%;“‘ T ® we  © e 3F 40 o to be determined by experiment.
v o8 : 2o = Grant et al®® made a turbulence
\ Theoretical Curve cvh measure'ment of a tidal channel
flow with very high Reynolds
number (R,=3x108) in which the
cascade process was perfectly a-
0 0'1 0'2 o 0‘4 . o'e e 0'8 0'9 o chieved, and he obtained C=0.47
A ' ; ’ ' ’ ' +0.02. Lawn?® measured a rate
h

Fig. 9 Relative turbulence intensities.

v'[u’=0.455 and w’'/u’=0.726 (47)

These theoretical values are compared with
author’s experimental results for open channel
flows* and with Laufer’s data for closed channel
in Fig. 9. In this figure A-1, B, C-1 and D-1
denote the runs for hydraulically smooth, in-
completely rough and completely rough bed, re-
spectively. A good agreement between theoret-
ical turbulence intensities and observed ones due
to the authors is recognized, especially near the
wall boundary and free surface. From the fact
that the experimental values of v'/u’ or w'[u’
obtained by the authors show a convex or concave
variation with y/k independently of the wall
conditions while the theoretical values are invari-
ant with the flow depth, the existing conception
that the structures of turbulence approach to be
isotropic with increase of distance from the wall
cannot be applied to open channel shear flow.

On the other hand, the turbulent flow in a closed
channel indicates a characteristic of isotropic
turbulence around the pipe axis as shown by
Laufer’s results, and therefore it may be suggested
that a free surface has a peculiar effect upon the
structure of turbulence.

(5) Turbulence Intensity

If the distribution of the rms velocity fluctu-
ations in the x-direction #’ is determined, o’
and w’ can be directly calculated from Eq. (47).
Within the range of the inclination angle given

* A report on author’s experimental investiga-
tion for open channel turbulent flow is going
to be published.

of turbulent energy dissipation in
a pipe flow and obtained C=0.53
for turbulent shear flow.
For the turbulent shear flow under considera-
tion, C=0.53 may be used. Thus, integrating of
Eq. (48) yields

i Csz/sgkm k-5/3dk =%C€2/3(k0_2/3— k;z/a)
ko
.............................. (49
when ko<k,, Eq. (49) reduces to
' _ [3C_1 ( s
U, N2 U, k0> ’ ++(50)

where U, is friction velocity.

Denoting P as turbulent energy production and
T as diffusion, the turbulent energy equation can
be written by neglecting higher order terms:

As indicated by Townsend®, Laufer?® and the

authors?”, T in Eq. (51) is so small compared

with the other terms in a wall region. Then,

the approximation that e~ P yields
3~P__.__u—ig—;]~ .............................. (52)

Assuming the mean flow with logarithmic velocity
distribution and substituting Eq. (52) into Eq. (50),

it results in

u \/T C /1 1 \v3

U N2 w8 (koy‘ km)
where £ is Karman’s constant (=0.4) and C is
a constant nearly equal to 1.0 (¢=CGP). The
lower limit of wave number %, (for a large eddy)
where the turbulent cascade process begins to
realize is concerned with a geometric scale of
turbulent shear flow, as pointed out by some
researchers.
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For two-dimensional shear flow in open channel
under consideration the flow depth % is taken as

a geometric scale. Then,
kytah or hlkommCy cooreerierinmniiann (54)
Therefore, Eq. (53) will be reduced to
u’ —~ 1 /8
{o=1.682YC .cs< o ~.1> ......... (55)

where Cs=C,-C;1/?
Since Eq. (83) is valid only for y< 4, Eq. (55)
becomes by using C=0.53,

’ -1/3
L=1.2C3<%>

For y/h=~1 it can be concluded that turbulent
energy dissipation becomes the same order as its

diffusion and so Eq. (56) is no longer valid. From .

Eq. (56) it is noticed that turbulence intensity is
proportional to —1/3 power of y/k and that
w'{Up=0O(1), where O is order notation.

CASE
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\ Theoretical Curve (E:B: 11
30 t 1 D-1
2 ’\f’?‘)ﬁrrf ' !
0 i ”7”,%?8;5?‘9%.0\& ST
. | T,
u/U | ~80%,
10 rLaufer's experimental *"”Q&o_
: i | Curve “g
.
1 \
3
01
0.01 ot 10
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Fig. 10 Turbulence intensity of u

The observed turbulence intensities obtained by
the author’s experiment are plotted in Fig. 10
against y/h, together with an experimental curve
given by Laufer. A theoretical curve shown in
the figure was obtained by determining C; in Eq.
(56) so as to satisfy the observed values of #’/Uy
in the wall region. In this manner /U, can
be expressed as

u! y\~Y3
A _0,95(_}7> .............................. (57)
Therefore, C;=C;-C;/*=0.79. Being C: nearly
equal to 1.0, C; becomes equal to about 2.0. It
is obvious from Fig. 10 that the theoretical curve
slightly deviates from the experimental values
with increase of y/k, and that a r-eddy model
represents the structures of wall turbulence with
a fair accuracy.
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3. FURTHER DISCUSSIONS

(1) Application of a z-Eddy Model to a Larger
Eddy Scale

The formulation of turbulence production
mentioned above has been proved to be valid only
in the turbulent cascade region (ke<k<k.). A
region where k>k.. is so called a viscous region
to which Heisenberg’s theory may be applied.
However, this region with high wave number
hardly contributes to turbulent energy, only play-
ing an important role on the micro-turbulence
such as energy dissipation.

Hence, consider here a larger scale of eddy
(k<ko). For k smaller than ko a vortex stretch-
ing has a great influence on production of turbu-
lent energy and a spectrum functions may be so
complicated. One of them has been given by
Eqs. (44) and (45). In a region where 0<k<k.,
it seems most appropriate to use an interpolated
formula due to Karman?® as an energy spectrum
function:

Eu(le)~(k*+ K)o

One of the authors? has found that Eq. (58) has
a fairly good agreement with the observed results
for shear flow in closed conduit. Doing the same
operation as applied to Eq. (48), Eu(k) in this
case can be obtained as

Eu(le)=Ce2/3(Je?+3)~5/% for 0< k< kwrr+(59)

E (k) and Ey(k) are also given by the same re-
presentation as Eq. (59).

Now, considering the correlation function and
the spectra, the following two equations can be
obtained.

Eu(O)ziLzu”:Cez/skgm

it cC /1 1
12— ~—Bl— = \e23p-2/3
u't= So Eyk)dlk~ 5 B< 5 3 >82 3fy2/% (61)

where B(r, y) is Beta function. From Egs. (60)
and (61) Lzko can be easily given by

Loko=n/B(1/2, 1/3)=0.746 +vv-verervrenes (62)
From Eq. (54) L:/h becomes
Laflim=0.37 coverrnereseeeeeeninnncnenes (63)

(2) Applicable Range of a z-Eddy Model

Finally, applicability of a n-eddy model will be
discussed. From the above description it is con-
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cluded that the n-eddy model can fairly explains
the structures of wall turbulence by averaging
within the range of inclination angle given by
Eq. (81). Therefore, this model is not applicable
to a region with smaller inclination angle of
eddies (that is 050<x/4). According to the ex-
periments made by Favre et al® this turbulent
field is located very close to the wall and the flow
in this field shows constant shear stress. Monin
et al'® found that the turbulence intensity in this
region could be represented as a universal func-
tion of yt+, and obtained the following results by
analyzing a lot of existing data:

For yt—co, #/|Uy—2.3, v']Ux—0.9 and
w’'|Up—1.7. Hence, v//u’—0.39 and
w’/u’~>0.74. .................................... (64)

These values shows a good agreement with the
theoretical ones given by Eq. (47), and so, as far
as y* is large enough, the z-eddy model can be
applied even to the region with constant shear
stress. However, for smaller values of y+ (y+<30),
it was suggested that v//u’~0.25 and w’/u’=~=0.54.
Therefore, it is reasonable to apply an eddy model
with #=0 such as an attached eddy model or a
hair-pin eddy to this region.

4. CONCLUSIONS

In this paper some characteristics of wall turbu-
lence has been analyzed quantitatively by appli-
cation of a horseshoe vortex model which has
been confirmed to exist in the qualitative aspect.

Since a w-eddy model proposed here has been
so simplified, it cannot predict perfectly the
quantitative properties of wall turbulence, but it
succeeds to describe the macro-turbulence struc-
tures to an extent. The results obtained here
are summarized as follows;

1) An important characteristic of a turbulent
shear flow that v/ <w’/<#’ can be deduced from
the 7-eddy model.

2) It is proved that turbulence intensity based
on this model satisfies the —1/3 power law against
y/h and coincides with experimental results.

3) The flow depth %, the mean eddy scale L,
and a reciprocal of the lowest wave number in
the turbulent cascade region k7! are of the same
order of magnitude. However, this model leaves
something to be improved because it is inappli-
cable to a region close to the wall and cannot
discern the effects of the wall boundaries.

The bursting and sweeping phenomena which
play an important part in production of turbulence
for y*<70 cannot be explained by x-eddy model.

So further attempts to reform an eddy model
should be made for describing clearly these actual
phenomena.

REFERENCES

1) Klebanoff, P.S.: Characteristics of turbulence
in a boundary layer with zero pressure
gradient, TN 3178, NACA, 1954.

2) Laufer, J.: The structure of turbulence in
fully developed pipe flow, TR 1174, NACA,
1954,

3) Townsend, A.A.: The structure of turbulent
shear flow, Cambridge Univ. Press, London,
1956.

4) Grant, H.L.: The large eddies of turbulent
motion, Jour. of Fluid Mech., Vol. 4, 1958,
pp. 149-190.

5) Willmarth, W.W. and Wooldridge, C.E.:
Measurements of the fluctuating pressure at
the wall beneath a thick turbulent boundary-
layer flows, Jour. of Fluid Mech., Vol. 18,
1964, pp. 187-210.

6) Corcos, G.M.: The structure of turbulent
pressure field in boundary-layer flows, Jour.
of Fluid Mech., Vol. 18, 1967, pp. 353-378.

7) Tani, I.: Review of some experimental ve-
sults on boundary-layer transition, The
Physics of Fluids, Vol. 10, 1967, pp. S11-S16.

8) Willmarth, W.W. and Tu, B.J.: Structure
of turbulence in the boundary layer near the
wall, The Physics of Fluids, Vol. 10, 1967,
pp. S134-S137.

9) Favra, A., Gaviglio, J. and Dumas, R.:
Structure of velocity space-time correlations
in a boundary layer, The Physics of Fluids,
Vol. 10, 1967, pp. S138-S145.

10) Sternberg, J.: On the interpretation of space-
time correlation measurements in shear flow,
The Physics of Fluids, Vol. 10, 1967, pp.
$146-8152.

11) Kline, S.J., Reynolds, W.C., Schraub, F.A.
and Rundtadler, P.W.: The structure of
turbulent boundary layers, Jour. of Fluid
Mech., Vol. 30, 1967, pp. 741-773.

12) Ishihara, Y. and Yokoshi, S.: On the struc-
ture of turbulence in a river flow, Annual of
D.P.R.I.,, Kyoto Univ., No. 13-B, 1970, pp.
323-331 (in Japanese).

13) Corino, E.R. and Brodkey, R.S.: A visual
investigation of the wall region in turbulent
flow, Jour. of Fluid Mech., Vol. 37, 1969, pp.
1-30.

14) Kim, H.T., Kline, S.J. and Reynolds, W.C.:
The production of turbulence near a smooth



70

15)

16)

17)

18)

19)

20)

21)

22)

H. NAKAGAWA and I. NEzZU

wall in a turbulent boundary layer, Jour. of
Fluid Mech., Vol. 50, 1971, pp. 133-160.
Grass, A.J.: Structural features of turbulent
flow over smooth and rough boundaries, Jour.
of Fluid Mech., Vol. 50, 1971, pp. 233-255.
Clark, J.A.: Flow visualization in turbulent
boundary layers, Proc. of ASCE, HY-10,
1971, pp. 1653-1664.

Wallace, J.M., Eckelmann, H. and Brodkey,
R.S.: The wall region in turbulent shear
flow, Jour. of Fluid Mech., Vol. 54, 1972,
pp. 39-48.

Willmarth, W.W. and Lu, S.S.: Structure of
the Reynolds stress near the wall, Jour. of
Fluid Mech., Vol. 55, 1972, pp. 65-92.
Monin, A.S. and Yaglom, A.M.: Statistical
fluid mechanics; Mechanics of turbulence,
The M.I.T.Press, 1971, pp. 1-25 and pp. 257-
416.

Lamb, H.: Hydrodynamics, Cambridge Univ.
Press, 1932, pp. 614-616.

Inoue, E.: On the structure of wind near
the ground, National Institute of Agricultural
Science, Series A, No. 2, 1952 (in Japanese).
Tchen, C.M.: On the spectrum of energy
in turbulent shear flow, Jour. of Research of
National Bureau of Standards, Vol. 50, No.

23)

24)

25)

26)

27)

28)

29)

1, 1953, pp. 51-62.
Laufer, J.: Investigation of turbulent flow
in a two-dimensional channel, NACA TR-
1053, 1951.
Batchelor, G.K.: The theory of homogeneous
turbulence, Cambridge Univ. Press, 1953.
Grant, H.L., Stewart, R.W. and Moilliet, A.:
Turbulence spectra from a tidal channel,
Jour. of Fluid Mech., Vol. 12, 1962, pp.
241-268.
Lawn, C.J.: The determination of the rate
of dissipation in turbulent pipe flow, Jour.
of Fluid Mech., Vol. 48, 1971, pp. 477-505.
Nakagawa, H., Nezu, I. and Ueda, H.: On
turbulence measurements in a closed channel
flow by dual-sensor hot-film anemometer,
Annual Meeting of Kansai Branch of JSCE,
1973 (in Japanese).
von Karman, T.: Progress in the statistical
theory of turbulence, Proc. of N.A.S., Vol.
34, 1948, pp. 530-539.
Nezu, I.: A study on turbulence characteris-
tics of hydraulic jump in a closed conduit,
Master Thesis of Kyoto University, 1973 (in
Japanese).

(Recetved May 20, 1974)




